
Putnam study meeting notes

Tuesday October 25, 2022

John McCuan

October 26, 2022

We decided to try some A1 problems from various years with possibly the goal
for many to get (at least) one problem correct—let’s be ambitious and say “nail one
problem”—on the upcoming practice exam this Saturday October 29 at 10AM in
Skiles room 006. It was further suggested that on Saturday we only do/work on part
A of the exam from 10AM to 1PM and then discuss the exam (perhaps over lunch—
actually that detail wasn’t discussed, but maybe I’ll come up with something and let
you know).

As usual, let me know what I’m missing or have gotten wrong in these notes.

1 A1 (2001) solution by Dennis

Statement: Given a set S and a binary operation ∗ : S × S → S satisfying

(a ∗ b) ∗ a = b for every a, b ∈ S, (1)

prove that a ∗ (b ∗ a) = b for every a, b ∈ S.
Preliminary comments: You may have noticed how Dennis and I had some diffi-
culty communicating the statement of the problem with him reading it and me trying
to write it on the board. In the old days, we had a kind of standard way to express
such things. For statement (1) we would say “The quantity a star b stared with
a is b for all a and b.” So those parentheses were expressed with the words “the
quantity.” Sometimes we might also say “The quantity a star b all stared with a. . . ”
with the word “all” ending the parentheses. Of course, another possibility is “Open
parentheses, a star b, closed parentheses, star a.”
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As a second preliminary comment it may be noted that when one is done solving
this problem, one has shown, in particular, that the operation in question is asso-
ciative.
Solution: For clarity, let us write the fundamental relation (1) as

(A ∗B) ∗ A = B (2)

which is assumed to hold for all A,B ∈ S. Now, let a, b ∈ S. Taking A = b and
B = a in the fundamental relation (2) we know

(b ∗ a) ∗ b = a.

Or turning this around we can replace the first a in a ∗ (b ∗ a) with (b ∗ a) ∗ b to get

a ∗ (b ∗ a) = [(b ∗ a) ∗ b] ∗ (b ∗ a).

Now applying the fundamental relation (2) to the last expression with A = b ∗ a and
B = b we get

a ∗ (b ∗ a) = [(b ∗ a) ∗ b] ∗ (b ∗ a) = b.

2 A1 (2018) solutions by Anant and Drake

Statement: Find all ordered pairs (a, b) of positive integers for which

1

a
+

1

b
=

3

2018
. (3)

Preliminary comments: I usually write the set of positive integers (also known as
the natural numbers) as N = {1, 2, 3, . . .}. The set of all ordered pairs of natural
numbers is then denoted by N× N or N2.

A first step in both solutions was to factor 2018 into primes. Clearly, 2018 =
2(1009). The prime numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31 do not divide 1009
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and some of their quotients with remainders are as follows:

1009 = 7(144) + 1

= 11(91) + 8

= 13(77) + 8

= 17(59) + 6

= 19(53) + 2

= 23(43) + 20

= 29(34) + 23

= 31(32) + 17.

It will be noted that the next prime 37 (and all larger primes) must have quotient
less than 32, in fact 1009 = 37(27) + 10, so no greater prime can divide 1009, or else
we would have found a prime smaller than 32 that divided 1009. The conclusion of
course, is that 1009 is prime, and the prime factorization of 2018 is just

2018 = 2(1009).

Anant’s solution: Rearranging the equation (3) we obtain

2018(a+ b) = 3ab or 2018a+ 2018b = 3ab.

It follows that a divides 2018b, that is 2018b = k1a for some k1 ∈ N. Similarly, b
divides 2018a, so there is some k2 ∈ N with 2018a = k2b. This means

k1k2ab = (2018)2ab or k1k2 = (2018)2.

There are only finitely many choices of integers k1 and k2 in N whose product is
(2018)2. Each pair (k1, k2) ∈ N with k1k2 = (2018)2 determines a pair (a, b) ∈ N

2

with

2018

(

a+
2018a

k2

)

= 3a
2018a

k2
and 2018

(

2018b

k1
+ b

)

= 3
2018b

k1
b,

or

a =
1

3
(2018 + k2) and b =

1

3
(2018 + k1) (4)

which may be checked to see if that pair satisfies equation (3). Any pair (a, b) satis-
fying equation (3) determines a pair (k1, k2), so we will find all solutions by checking
the finitely many possibilities. The possibilities for the pairs (k1, k2) ∈ N with

k1k2 = (2018)2 = 22(1009)2
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are as follows:

(k1, k2) = (1, 22(1009)2)

= (2, 2(1009)2)

= (22, (1009)2)

= (1009, 22(1009))

= (2(1009), 2(1009))

and the pairs (k2, k1) determined by these with the coordinates reversed and corre-
sponding to the reversed pairs (b, a). There are essentially five possibilities to check.
Here are the corresponding pairs (a, b):

(k1, k2) = (1, 22(1009)2) (a, b) = 1

3
(2018 + 20182, 2018 + 1) = (2018(673), 673)

(2, 2(1009)2) 1

3
(2018 + 2018(1009), 2018 + 2)

(22, (1009)2) 1

3
(2018 + (1009)2, 2018 + 4) = (1009(337), 674)

(1009, 22(1009)) 1

3
(2018 + 4(1009), 2018 + 1009) = (1009(2), 1009)

(2(1009), 2(1009)) 2

3
(2018, 2018).

The second and last possibilities do not lead to integers for a and b. Thus, we have
three possibilities:

(a, b) = (2018(673), 673) for which
1

2018(673)
+

1

673
=

2019

2018(673)
=

3

2018
,

(a, b) = (1009(337), 674) for which
1

1009(337)
+

1

674
=

2 + 1009

2018(337)
=

3

2018
,

and

(a, b) = (1009(2), 1009) for which
1

1009(2)
+

1

1009
=

3

1009(2)
=

3

2018
.

In summary, there are six pairs of positive integers (a, b) satisfying equation (3).
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These are

(a, b) = (2018(673), 673) = (1358114, 673)

= (1009(337), 674) = (340033, 674)

= (1009(2), 1009) = (2018, 1009)

= (673, 1358114)

= (674, 340033) and

= (1009, 2018).

Drake’s solution: Rearranging the equation (3) as before and multiplying through
by 3 we get

9ab− 3(2018)a− 3(2018)b = (3a− 2018)(3b− 2018)− 20182 = 0

or
(3a− 2018)(3b− 2018) = 20182.

Since 3a and 3b are positive integers, the factors 3a−2018 and 3b−2018 are definitely
integers, and they are integers with absolute values (both) less than 2018. This means,
the factors cannot be both negative—their product would be too small. They cannot
be of different signs either, since 20182 > 0. Thus, we must have two positive integers
k1 = 3a− 2018 and k2 = 3b− 2018 with k1k2 = 20182. I think from this point on, the
solutions goes pretty much like the one above, except that I have switched the roles
of k1 and k2.
Final comment: Since you (or at least some of you) are going to take a 2022 Putnam
exam on December 3, 2022, it does not seem unreasonable to prime factor the integer
2022 in advance. . . and maybe note anything else interesting about that integer you
might notice. Obviously, 2022 = 2(1011). The sum of the digits of 1011 is 3, so I
know also 2022 = 2(3)(337). The integer 337 is not divisible by 2, 3, 5, 7 and

337 = 11(30) + 7

= 13(25) + 12

= 17(19) + 14

= 19(17) + 14.

Therefore, 337 is prime, and the prime factorization of 2022 is

2022 = 2(3)(337).
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3 A1 (2005) solution by Siddharth

Statement: Show every positive integer n is a sum

k
∑

j=1

xj

of positive integers xj each of which is a product 2r3s of a power of 2 and a power of
3 with exponents r and s nonnegative integers and such that xj does not divide xi

when i 6= j.
Preliminary comments: I like to denote the nonnegative integers by N0 = {0, 1, 2, 3, . . .},
though this notation for the natural numbers with zero has not quite caught on
and become universal (yet).

To state the assertion here with a little more precision takes a lot of indices. It
might be done as follows: Show every n ∈ N can be written as

n =

kn
∑

j=1

xnj

where kn ∈ N and

xnj = 2rnj3snj for some rnj and snj in N0

such that xni/xnj /∈ N for i 6= j. That is,

n =
kn
∑

j=1

2rnj3snj

with
2rni3sni

2rnj3snj
/∈ N for i 6= j and 1 ≤ i, j ≤ kn.

One obvious question I asked myself before looking at this problem for very long was:
If this is true, is the representation unique? I haven’t thought much about that, and
maybe it is not too difficult to answer.

6



Solution: Let’s start with some preliminary observations. First of all, the first few
integers can be handled:

1 = 2030

2 = 21 = 2130

3 = 31 = 2031

4 = 22 = 2230

5 = 2 + 3 = 2130 + 2031

6 = 2 · 3 = 2131

7 = 3 + 22 = 2031 + 2230.

So far, it looks like the representations are unique. For example, you can write
4 = 3 + 1, but then 1 divides 3.

We are also given the example 23 = 9 + 8 + 6 = 32 + 23 + 2 · 3.
Beyond this, Siddharth seems to have made two or three crucial observations.

One is that among the integers

n =

k
∑

j=1

xj

admitting such a representation at most one of the natural numbers xi can be
odd. This is because if xi = 2r3s is odd, then r = 0. Hence, if there were two such
terms 3s1 and 3s2, one of them would have to divide the other.

Expanding on this observation, if an even integer n admits the desired represen-
tation, then none of the terms xj is odd. For even integers n of the form

n =

k
∑

j=1

xj with xj = 2rj3sj for j = 1, . . . , k,

we must have rj ≥ 1. Also, if an odd integer n admits the desired representation,
then exactly one of the terms xj is odd, having the form xj = 3sj .

Having made these preliminary observations, we proceed by induction. If n ≥ 3,
then there is a unique largest power m for which 3m ≤ n. If n = 3, then m = 1 and
we have 3m = n = 3 as above. In general, if we assume n ≥ 4 is even and every
integer ℓ < n admits the desired representation, then n = 2ℓ for some ℓ ∈ N with
ℓ < n, and we know by induction that

ℓ =

k
∑

j=1

2rj3sj with
2ri3si

2rj3sj
/∈ N, for i 6= j.
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Also, we know ri ≥ 1 for i = 1, . . . , k, but I’m not sure we need that. In any case, we
have

n = 2ℓ =
k

∑

j=1

2rj+13sj .

Since
2ri+13si

2rj+13sj
=

2ri3si

2rj3sj
/∈ N for i 6= j,

we see n has the desired representation.
If, on the other hand, n ≥ 5 is odd, then as mentioned above, there is a unique

m ∈ N such that
3m ≤ n but 3m+1 > n. (5)

In this case, consider ℓ = n− 3m. If ℓ = 0, then n = 3m is the desired representation.
Otherwise, ℓ ∈ N, and we have by induction that

ℓ =

k
∑

j=1

2rj3sj .

Note that ℓ in this case is even, so rj ≥ 1 for all j = 1, . . . , k. Furthermore, sj < m
for j = 1, . . . , k becuase if m ≤ sj0 , then since we also know rj0 ≥ 1

n = 3m +
k

∑

j=1

2rj3sj ≥ 3m + 2rj03m = 3m(2rj0 + 1) ≥ 3m+1

contradicting (5). It follows that

2rj3sj

3m
/∈ N for j = 1, . . . , k, (6)

and

n = 3m +
k

∑

j=1

2rj3sj

gives the desired representation for the odd integer n ≥ 5. Just to make this assertion
completely clear, note that in addition to (6) we have

2ri3si

2rj3sj
/∈ N for i 6= j
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because

ℓ =

k
∑

j=1

2rj3sj

is a representation of the desired form for ℓ, and

3m

2rj3sj
/∈ N for j = 1, . . . , k

because rj ≥ 1 for j = 1, . . . , k.
This completes the proof by induction. I’ve phrased the last case for odd n ≥ 5

just because we handled the case n = 3 separately, but I think the reasoning goes
through without any trouble if n = 3 is included as well.
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