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(verbatim) Find all values of α for which the curves y = αx2 + αx + 1/24 and
x = αy2 + αy + 1/24 are tangent to each other.

Preliminary comments/notes:

Though the statement of this problem is pretty clear, there are aspects with which
one could nitpick. One is that it should be said that α should be a real number. If
α is not a real number, e.g., if α is allowed to be a complex number, then it’s not
entirely clear what it means for an expression like

y = αx2 + αx+
1

24

to be a “curve.” Of course, this expression itself is not a curve, so that is another
slightly problematic aspect of the statement. The proper way to say it might be

{

(x, y) ∈ R
2 : αx2 + αx+

1

24

}

is a set which is (or turns out to be) a curve. Generally, the technical definition for
such a thing to be true is something like this:

A set C ⊂ R
2 is a curve if for each point p ∈ C, there exist positive

numbers r and ǫ and a continuous function γ : (−ǫ, ǫ) → R
2 such that

C ∩ {(x, y) ∈ R
2 : |(x, y)− p| < r} = {γ(t) : |t| < ǫ}.
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In some contexts people think about curves in pretty much this form. For exam-
ple, you can look up (and study) something called a Peano (space filling) curve,
which is an object pretty much of this sort. Suffice it to say, the image of such a
“curve,” is not one that necessarily fits most people’s intuition about what a curve
should be. For that one usually considers a more restricted class of functions γ.
One improvement—getting us closer to what we might think of as a curve—is to
require γ to be differentiable or continuously differentiable, i.e., γ(t) = (x(t), y(t))
where x, y : (−ǫ, ǫ) → R

2 are differentiable functions or differentiable functions with
continuous derivatives.

This leads into thinking about curves from a different point of view. Let’s take
the time to explain this a little more and make it precise:

One point of view (and that implicitly taken by the problem) is that curves are
particular kinds of sets. In particular, they are sets which can be parameterized
locally by functions γ : (−ǫ, ǫ) → R

2 more or less as described above.
The second point of view is that curves are the parameterizations themselves.

More precisely, a (parameterized) curve is a continuous function γ : I → R
2 where

I is some interval in the real line. Then from there one can restrict the kinds of
continuous functions under consideration by imposing various requirements on the
function γ like differentiability. From this point of view the set

{γ(t) : t ∈ I} is the image of the curve

rather than the curve itself.
On the face of it, these two points of view concerning curves lead to different

kinds of things, and it surely helps to consider some examples. Starting with the
parameterization point of view is perhaps the easiest: As the parameter t moves
along the interval I, one can imagine the point γ(t) ∈ R

2 moves around the plane.
For example, if γ : [0, 2π] → R

2 by γ(t) = (cos t, sin(2t)), the image is indicated in
Figure 1. You can plot some points along this curve starting with t = 0 at γ(0) = (1, 0)
and imagine how γ(t) moves along the image (curve) as the parameter changes.

When we think of a curve as a set, on the other hand, we are thinking about
something like the circle shown in Figure 2. Here we can start with the point p = (1, 0)
and take the radius r = 1/2 and consider

{(x, y) ∈ R
2 : x2 + y2 = 1} ∩

{

(x, y) ∈ R
2 : |(x, y)− p| < 1

2

}

.

Incidentally, a set like {(x, y) ∈ R
2 : |(x, y)−p| < r} is called a ball or disk of radius
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Figure 1: The image of a parameterized curve γ(t) = (cos t, sin(2t)).

r with center p. It has a notation:

Br(p) = {(x, y) ∈ R
2 : |(x, y)− p| < r}.

In any case, we can parameterize the subset

{(x, y) ∈ R
2 : x2 + y2 = 1} ∩ B1/2(0, 0)

by γ : (−π/6, π/6) → R
2 with γ(t) = (cos t, sin t). This gives a local parameterization

identifying the set C = {(x, y) ∈ R
2 : x2 + y2 = 1} locally as a curve. Of course, a

similar local parameterization can be found at any point p ∈ C.

Exercise 1 Find a local parameterization in an open ball centered at every other

point p ∈ C.

In fact, according to our (provisional) definition of a curve as a set given above, we
can find a global parameterization of C for each point p ∈ C as follows: Let
r > 2, then C ⊂ Br(p) and γ : (−2π, 2π) → R

2 by γ(t) = (cos t, sin t) satisfies the
requirements we’ve put on a local parameterization.
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Figure 2: The circle determined by the relation x2 + y2 = 1.

It may occur to you that the last global parameterization has an undesirable char-
acteristic, namely, it is not one-to-one on the entire interval (−ǫ, ǫ) = (−2π, 2π). As
mentioned above, we can impose other requirements on our local parameterizations,
and we could definitely impose the requirement that γ be one-to-one onto its image.
Usually an even stricter requirement is imposed. To understand this requirement we
need to make sense of the idea that the inverse function γ−1 : C ∩Br(p) → (−ǫ, ǫ) is
continuous. The usual “ǫ-δ definition of continuity will work in this instance:

For each q0 ∈ C ∩ Br(p) and each τ > 0, there is some ρ > 0 for which
|γ−1(q) = γ−1(q0)| < τ whenever q ∈ C ∩ Bρ(q0).

A continuous function γ : I → C that is invertible and has a continuous inverse is
called a homeomorphism. If the function is differentiable, and its inverse is well-
defined and differentiable, then the function is called a diffeomorphism. In this
context, one should always consider the following example:

Exercise 2 Show γ : [0, 2π) → R
2 by γ(t) = (cos t, sin t) is differentiable and one-to-

one onto its image C = ∂B1(0), but γ is not a homeomorphism onto C.

We have also mentioned that differentiability is also usually (or at least often)
imposed on the parameterization γ in the definition of a curve as a set. Peano
curves do not satisfy such a condition, but many more techniques are available if one
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does have differentiability. One can then consider the tangent or velocity vector
γ′(t) = (x′(t), y′(t)). We will come back to another way to enhance this requirement.

Switching perspectives back again for a moment, and considering curves (globally)
as continuous (or differentiable) functions γ : I → R

2, these kinds of curves too may
have some characteristics we might not want to associated with our idea of what it
means to be a curve. Consider, for example, the image in Figure 1. Applying our
intuition about curves as sets, the set {(cos t, sin(2t)) : 0 ≤ t ≤ 2π}∩B1/2(p) centered
at the point p = (0, 0) labeled in the figure does not look so very much like the image
of an interval. At least it does not look in any way very similar to the piece of the
circle in Figure 2. We would say this is “two crossing curves.”

Exercise 3 Find a differentiable local parameterization γ : (−ǫ, ǫ) → R
2 of the set

{(cos t, sin(2t)) : 0 ≤ t ≤ 2π} ∩ B1/2(p) where p = (0, 0) is the origin as illustrated in

Figure 2.

If this exercise seems difficult, or impossible consider yet a third example: The differ-
entiable parameterized curve γ : (−1, 1) → R

2 by γ(t) = (t2, t3) has image as indicated
in Figure 3. Notice this curve has a kind of “turn around” point at γ(0). Of course, to

Figure 3: The image of a parameterized curve γ(t) = (t2, t3) with a cusp.

parameterize the curve in Exercise 3 one needs to use “turn around” points and also
“turn a corner points.” The idea is the same: You need to slow down—or you need
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to have your parameterization slow down—and have a zero derivative: γ′(t0) = (0, 0)
in order to abruptly change direction but remain differentiable.

In spite of the assertion of Exercise 3 there is still no comprehensive identification
between curves as sets and curves as functions without further assumptions.

Exercise 4 Give an example of a globally parameterized differentiable curve γ : I →
R

2 having the property that for each p = γ(t0), there is some τ > 0 such that γ :
(t0 − τ, t0 + τ) → {γ(t) : t0 − τ < t < t0 + τ} is a diffeomorphism, but {γ(t) : t ∈ I}
does not satisfy the definition of a curve as a subset of R2.

The usual approach to giving a unified treatment in which curves as sets and curves
as functions are essentially the same objects, and that these objects do not have any
of the peculiar behavior of some of the examples above is to combine several of the
concepts we’ve considered and to impose an additional assumption called regularity.
A curve (as a set or parameterized) is said to be regular if the (local or global)
parameterization either has or can be taken to have γ′ non-vanishing. A rather nice
class of curves is defined as follows:

1. A curve as a set C ⊂ R
2 is a set for which given p ∈ C, there are positive

numbers r and ǫ and a diffeomorphism γ : (−ǫ, ǫ) → C∩Br(p) with nonvanishing
derivative γ′.

2. A curve as a global parameterization is a function γ : I → R
2 where I is an

(open) interval and for each t0 ∈ I, there exists some positive numbers r and τ
such that γ : (t0−τ, t0+τ) → R

2 is a diffeomorphism onto {γ(t) : t ∈ I}∩Br(p).

There is one small aspect we have glossed over. Namely, the set C should be (required
to be) connected. Otherwise, you might get C being several (or a whole bunch) of
curves. In any case, aside from this issue of C being connected, these regular curves
(as sets and and parameterizations) can be comprehensively identified; talking about
either one, is talking about the same thing.

In this problem, no particular pathological behavior is in play. These are very
simple curves, considered as sets {(x, y) ∈ R

2 : y = αx2 + αx + 1/24}, as regular
parameterizations,

γ(t) = (t, αt2 + αt+ 1/24) for t ∈ R

with
γ′(t) = (1, 2αt+ α) 6= (0, 0),
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or simply as relations y = αx2 + αx + 1/24 as given in the problem. In fact, these
curves are parabolas, and I expect there is a much simpler (or at least somewhat
simpler) approach to solving this problem which does not involve the consideration
of parameterization directly at all. Having said that, I was happy to see that Joseph
was able to solve the problem using the general theory of curves, and I’ll note that
he seemed to be the only one who solved the problem completely and correctly.

Finally, I will add that that one aspect of parameterized curves probably is more
or less necessary to understand to solve this problem. This is the nature of tan-
gency. Say you have two (regular parameterized) curves γ1(t) = (x1(t), y1(t)) and
γ2(t) = (x2(t), y2(t)). Then the tangent vectors (which are nonzero because the
parameterizations are regular) are

γ′

j(t) = (x′

j(t), y
′

j(t)) for j = 1, 2.

For the two curves to be tangent means there are parameter values t1 and t2 for which
the curves intersect,

γ1(t1) = γ2(t2)

and the curves are tangent at the point of intersection meaning the tangent vectors
are parallel, which we denote by writing γ′

1
(t1) ‖ γ′

2
(t2). In terms of an equation,

probably the easiest way to express the condition γ′

1
(t1) ‖ γ′

2
(t2) is to say the vector

orthogonal, i.e., perpendicual, to one of these vectors is orthogonal to the other, that
is to say

γ′

1
(t1) ⊥ (γ′

2
(t2))

⊥ or (γ′

1
(t1))

⊥ ⊥ γ′

2
(t2).

Orthogonality of two vectors can be expressed in terms of the dot product in R
2,

and given any vector v = (v1, v2) either of the vectors (−v2, v1) and (v2,−v1) are
orthogonal to v. The counterclockwise rotation is usually denoted by v⊥ = (−v2, v1).
In any case, the equation for orthogonality would be

(x′

1
(t1), y

′

1
(t1)) · (−y′

2
(t2), x

′

2
(t2)) = 0 or − x′

1
(t1)y

′

2
(t2) + y′

1
(t1)x

′

2
(t2) = 0.
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Solution:

We can parameterize the first parabola by

γ1(t) =

(

t, αt2 + αt+
1

24

)

and the second one by

γ2(t) =

(

αt2 + αt+
1

24
, t

)

.

The tangent vectors are

γ′

1
(t) = (1, 2αt+ α) = (1, α(2t+ 1))

and
γ′

2
(t) = (2αt+ α, 1) = (α(2t+ 1), 1).

Since neither of these vectors can vanish, this indicates that both parameterizations
are regular. The equations for intersection become

t1 = αt2
2
+ αt2 +

1

24

t2 = αt2
1
+ αt1 +

1

24

and the equation of tangency

α2(2t1 + 1)(2t2 + 1) = 1.

Noting that each quadratic relation

η = αξ2 + αξ +
1

24
= α

(

ξ +
1

2

)2

− α

4
+

1

24

can be written as

4η = α(2ξ + 1)2 − α +
1

6
,

we can rewrite the intersection equations as

4t1 = α(2t2 + 1)2 − α +
1

6

4t2 = α(2t1 + 1)2 − α +
1

6
,
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or

2(2t1 + 1) = α(2t2 + 1)2 − α +
13

6

2(2t2 + 1) = α(2t1 + 1)2 − α +
13

6
,

Writing A = 2t1 + 1 and B = 2t2 + 1, we arrive at the nonlinear system

α2AB = 1

2A = αB2 − α+ 13/6

2B = αA2 − α+ 13/6.

First of all notice that in general, according to the first equation, it is impossible to
have any solution with α = 0 (or A = 0 or B = 0). Thus, we have no concerns about
dividing by α (or A or B).

Subtracting the third equation from the second we get

2(A− B) = −α(A− B)(A+B).

If A 6= B then α(A+B) = −2, and dividing by α we have B = −A− 2/α. But then
the first equation becomes

α2A

(

A+
2

α

)

= −1 or α2A2 + 2αA+ 1 = (αA+ 1)2 = 0

so that A = −1/α and B = 1/α−2/α = −1/α contradicting our assumption A 6= B.
Thus, we are reduced to the case A = B, so that t1 = t2, the point of intersection

must be on the line y = x, and the system becomes

α2A2 = 1

αA2 − 2A− α+ 13/6 = 0.

Again, we know α 6= 0, so A2 = 1/α2. If A = −1/α, then

1

α
+

2

α
− α +

13

6
= 0 or 6α2 − 13α− 18 = 0.

From this quadratic equation we get two real values of α, namely,

α =
13±

√
169 + 432

12
=

13±
√
601

12

9



Figure 4: The parabolas corresponding to α = (13 −
√
601)/12 (left) and α = (13 +√

601)/12 (right).

which presumably corresponds to a point of tangency of the curves. Incidentally 601
is prime. Also, substituting these values into a numerical plotter produces the the
output indicated in Figure 4. Thus, apparently these values do indeed give tangency
for the two parabolas, though I’m not precisely sure how one would check that con-
veniently without mathematical software. I guess there is a calculation that would
do it, but I’ll also guess that it would be rather unpleasant.

The other possibility is A = 1/α. In this case, the second equation becomes

1

α
− 2

α
− α +

13

6
= 0 or 6α2 − 13α+ 6 = 0.

Thus we get two more real values of α, namely,

α =
13±

√
169− 144

12
=

13± 5

12

The smaller value is α = 2/3. This gives A = 2t1 + 1 = 3/2 or t1 = t2 = 1/4. The
parabola

y =
2

3

(

x+
1

2

)2

− 1

6
+

1

24
=

2

3

(

x+
1

2

)2

− 1

8
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passes through the point (1/4, 1/4) with slope y′ = 1. The parabola

x =
2

3

(

y +
1

2

)

2

− 1

8
=

1

24

[

4(2y + 1)2 − 3
]

has upper half given by the graph of

y = −1

2
+

1

4

√
24x+ 3.

It is easy to see that this graph also passes through (1/4, 1/4) and also has slope
y′ = 1 at that point. The tangency corresponding to α = 2/3 is indicated on the left
in Figure 5, and this one can be plotted by hand without too much trouble.

The remaining root is α = 3/2. This gives a second “external” tangency of the
parabolas. Here we have t1 = t2 = −1/6. The parabola with vertical axis is

y =
3

2

(

x+
1

2

)

2

− 3

8
+

1

24
=

3

2

(

x+
1

2

)

2

− 1

3
.

passes through the point (−1/6,−1/6). Again, the slope is y′ = 1. It is also natural
to simply consider the parabola

x =
3

2

(

y +
1

2

)

2

− 1

3
,

with respect to the reversed y, x-coordinates. (You just turn your head sideways to do
this. In reversed y, x-coordinates this parabola passes through (y, x) = (−1/6,−1/6)
with slope x′ = 1, and this is, of course, a coincident tangency with the first parabola.
The result is shown on the right in Figure 5.

I also made an animation of the two parabolas plotted together as the parameter
α moves.
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Figure 5: The parabolas corresponding to α = 2/3 (left) and α = 3/2 (right).
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