
Putnam study meeting notes

Tuesday November 1, 2022

John McCuan

November 18, 2022

We worked on (and somebody was able to solve) two A1 problems. Some of us
also tried part A of the 2004 exam on the previous Saturday October 29. I will try
to put some notes on what I understood about those problems as well.

1 A1 (2004)

S(N) is the number of successful free throws (in basketball for a particular player)
out of the first N attempted free throws. If for some N0 it is known that S(N0) is
less than 80% of N0 and for some N1 > N0 one has S(N1) is greater than 80% of N1,
determine if there must be some N for which S(N) is precisely 80% of N .
Note: This was the practice exam we worked on for three hours (timed). Several
of us got pretty much full credit solutions for this problem under simulated testing
conditions.
Solution: For each n ∈ N = {1, 2, 3, . . .} either S(n + 1) = S(n) (if the (n + 1)-st
free throw is missed) or S(n + 1) = S(n) + 1 (if the (n + 1)-st free throw is made).
From this it follows that for n ∈ {2, 3, 4, . . .}

S(n− 1) = S(n) or S(n− 1) = S(n)− 1.

Let n0 be the minimum integer greater than N0 for which

S(n0) >
4n0

5
.

Notice N1 ∈ {N ≥ N0 : S(N) > 4N/5}, so n0 is the minimum integer in this
nonempty set. (Technically, we’re using the greatest lower bound property of the
natural numbers here.)
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Note first that n0 6= N0 because S(N0) < 4N0/5. Therefore,

n0 > N0.

In particular, n0 ∈ {2, 3, 4, . . .}. Also, since S(n0) > 4n0/5 ≥ 8/5, we know S(n0) > 1.
(Incidentally, n0 > 2 because if n0 = 2, then we must have N0 = 1 which means
S(N0) = S(1) < 4/5 so that S(1) = 0, and S(2) ≤ S(1) + 1 = 1 < 4n0/5 = 8/5.
This contradicts the fact that S(n0) = S(2) > 4n0/5. Thus, n0 ∈ {3, 4, 5, . . .} and
S(n0) > 4n0/5 ≥ 12/5 > 2. But we don’t need any of this to solve the problem.)

Exercise 1 What is the smallest possible value of n0?

I do need n0 > 1 because I’m about to consider S(n0 − 1).
Second, it must be the case that

S(n0 − 1) = S(n0)− 1.

Otherwise,

S(n0 − 1) = S(n0) >
4n0

5
>

4(n0 − 1)

5

and n0 − 1 ∈ {N ≥ N0 : S(N) > 4N/5} is smaller than the smallest element in the
set, which is a contradiction (of the definition of n0).

Finally, since n0 − 1 ≥ N0, it must be the case that

S(n0 − 1) ≤ 4(n0 − 1)

5
.

Again, the alternative gives n0 − 1 ∈ {N ≥ N0 : S(N) > 4N/5}.
The inequality

S(n0) >
4n0

5

implies
4n0 < 5S(n0).

The inequality

S(n0 − 1) = S(n0)− 1 ≤ 4(n0 − 1)

5

implies
5S(n0) ≤ 4n0 + 1.
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Thus 5S(n0) is a natural number for which

4n0 < 5S(n0) ≤ 4n0 + 1.

The only natural number between the natural numbers 4n0 and 4n0+1 (not including
4n0) is 4n0 + 1. Therefore,

5S(n0) = 4n0 + 1 and S(n0 − 1) = S(n0)− 1 =
4n0 + 1

5
− 1 =

4(n0 − 1)

5
.

Indeed for N = n0 − 1 the value of S(N) is exactly 80% of N .

2 A1 (2009)

Let f be a real-valued function defined on the plane such that for every square (with
vertices) A, B, C, and D in the plane, there holds

f(A) + f(B) + f(C) + f(D) = 0.

Does it follow that f(P ) = 0 for every point P in the plane?
Notes: I think Jonathan and Evan gave solutions for this. If I remember correctly,
Jonathan’s solution (the first I try to “recreate” below) was based on the observation
that if a square with (conscutive) vertices A1, A2, A3, and A4 is divided evenly into
four sub-squares so that the midpoint of side AjAj+1 is Pj , for j = 1, 2, 3 then the
sums of the values of two vertices on one of the rectangles must be the same as the
sum of the values of the two oppsite vertices. For example,

f(A1) + f(P1) = f(P3) + f(A4).

From there (as I understood it) Jonathan wrote down various algebraic equations and
determined that the opposite vertices of every square had to have opposite values:
f(A1) = −f(A3). But then also the center of the square P0 must have value −f(A1)
as well as −f(A3) = f(A1). Thus, f(P0) = −f(P0) for f(P0) = 0, and since every
point in the plane is the center of some square, one has f ≡ 0. We’ll see if we can
figure it out.

Evan (as I recall) did something like cycle the vertices and used that the midpoints
of the sides P1, P2, P3, and P4 are also the vertices of a square.
First solution: Given any point P0 in the plane construct around P0 a square
with vertices Aj , j = 1, 2, 3, 4 with center P0 and side midpints Pj, j = 1, 2, 3, 4 as
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Figure 1: A square composed of four subsquares.

indicated in Figure 1. Since f(P4) + f(A1) = −[f(P0) + f(P1)] and f(P2) + f(A2) =
−[f(P0) + f(P1)], we get

f(P4) + f(A1) = f(P2) + f(A2),

and a similar assertion holds for the opposite sides of each rectangle in the figure, at
least with respect to the shorter sides of the rectangles with two short sides and two
long sides. In particular,

f(P2) + f(A3) = f(P4) + f(A4).

It follows from these two equations that

f(A2)− f(A3) = f(A1)− f(A4) or f(A1)− f(A2) + f(A3)− f(A4) = 0.

Combining this last equation with the basic equation f(A1)+f(A2)+f(A3)+f(A4) =
0 gives

2[f(A1) + f(A3)] = 0.

So this indeed tells us the value at opposite vertices of a square are the negatives of
each other. Applying this consecutively to A1 and P0, and then to P0 and A3 gives
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f(P0) = −f(A1) and f(P0) = −f(A3). But also f(A1) = −f(A3), so

f(P0) = −f(P0) or f(P0) = 0.

Second solution: Proceeding as above, about any point P0 in the plane construct
around P0 the same square. Consider the four subsquares consecutively along with
the fact that P1, P2, P3, and P4 are the vertices of a square:

f(A1) + f(P1) + f(P0) + f(P4) = 0

f(A2) + f(P2) + f(P0) + f(P1) = 0

f(A3) + f(P3) + f(P0) + f(P2) = 0

f(A4) + f(P4) + f(P0) + f(P3) = 0.

Adding these four equations gives

4
∑

j=1

f(Aj) + 4f(P0) +

4
∑

j=1

f(Pj) = 0.

Since
4
∑

j=1

f(Aj) =
4
∑

j=1

f(Pj) = 0,

we get 4f(P0) = 0 and f(P − 0) = 0.

3 A1 (2012)

Let d1, d2, . . . , d12 be real numbers in the open interval (1, 12). Show there exist
distinct indices i, j, k such that di, dj, dk are the side lengths of an acute triangle.
Notes and preliminary comments: Lawrence gave the solution for this one. The
solution was based on a couple important facts about triangles that are probably
worth keeping in mind.

First of all, three positive numbers a, b, and c are the sides of some triangle if and
only if they satisfy the “triangle inequalities”

a < b+ c

b < a+ c (1)

c < a+ b.
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Second the angle C opposite the side of length c is acute, i.e., of angle measure strictly
less than π/2, if and only if

c2 < a2 + b2.

This is an implication of the law of cosines which says

c2 = a2 + b2 − 2ab cosC.

Thus, one can always solve for cosC to get

cosC =
1

2ab
[c2 − (a2 + b2)].

Since 0 < C < π and cosC decreases from 1 to −1 on this interval with cosC > 0 if
and only if 0 < C < π/2, the implication follows. Thus, and acute triangle, in which
all the angles are acute, has side lengths satisfying

a2 < b2 + c2

b2 < a2 + c2 (2)

c2 < a2 + b2,

and conversely, three positive numbers a, b, and c satisfying (1) and (2) are the sides
of an acute triangle.

Lawrence made a couple other basic and important observations, but I’ll save
those for the solution.

Solution: By reordering one may assume d1 ≤ d2 ≤ · · · ≤ d12. I believe Joseph
suggested these inequalities can be taken as strict. I think that is not the case,
however. The statement says to find “distinct” indices, but does not say the numbers
are distinct. In any case, Lawrence asserts that the desired side lengths a, b, and c
must be three consecutive numbers from this list:

a = dj , b = dj+1, and c = dj+2 for some j ∈ {1, 2, . . . , 12}.

Thus, he starts with the first three d1 ≤ d2 ≤ d3 and assumes these three lengths
are not the side lengths of an acute triangle. A first crucial observation at this
point is that if one of the triangle inequalies (1) is violated then the “corresponding”
acuteness1 inequality must also be violated. For example, if a ≥ b+ c, then

a2 ≥ (b+ c)2 = b2 + 2bc+ c2 > b2 + c2.

1Isn’t this a-cute word? Although. . . it may not be a word.
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As a consequence, if one can show all the acuteness inequalities hold for some a, b, and
c, then the triangle inequalities will necessarily also hold. Next, if the three numbers
a, b, and c are ordered a ≤ b ≤ c, and there is a violation of one of the acuteness
inequalities, then one can assume it is the inequality

c2 < a2 + b2

that is violated. This is because the other two a2 < b2+c2 and b2 < a2+c2 necessarily
follow from the assumption a2 ≤ c2 and b2 ≤ c2.

With this in mind, if no three consecutive numbers

a = dj , b = dj+1, and c = dj+2

from the list are the sides of an acute triangle, then one must have

d23 ≥ d21 + d22 > 12 + 12 = 2,

d24 ≥ d22 + d23 > 12 + 2 = 3,

d25 ≥ d23 + d24 > 2 + 3 = 5,

d26 ≥ d24 + d25 > 3 + 5 = 8,

d27 ≥ d25 + d26 > 13,

d28 ≥ d26 + d27 > 21,

d29 ≥ d27 + d28 > 34,

d210 ≥ d28 + d29 > 55,

d211 ≥ d29 + d210 > 89,

d212 ≥ d210 + d211 > 144.

Thus, d12 > 12 which is a contradiction. Notice the estimates for the sequence of
squares are Fibonacci numbers.
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4 A2 (2004)

If triangles T1 and T2 have side lengths a1, b1, c1 and a2, b2, c2 respectively, then do
the conditions

1. Triangle T2 is an acute triangle, and

2. a1 ≤ a2, b1 ≤ b2, and c1 ≤ c2,

imply the area of triangle T2 is as least as great as the area of triangle T1?

Note: This seemed to be a more difficult problem. I’m not sure any of us got a full
credit solution during the actual practice exam. I think the solution below is complete
and correct, but I thought about it for several days. I did have most of the basic ideas
during the three hours of the practice test, but I didn’t really get them written down
properly...at all. And some of the ideas I had were not fully developed or incorrect.

I will use the basic facts discussed in the preliminary discussion of the previous
problem.

Solution: The answer is “yes.”
We can work with certain coordinate triangles having the same areas as triangles

T1 and T2. Say T is any triangle with side lengths a, b and c. There is a unique
triangle having the same area as that of T and satisfying the following properties:

1. The vertices of T are B = (0, 0), C = (a, 0), and A = (x, y) where

2. y > 0, and

3. (x, y) is the unique intersection of the circle x2 + y2 = c2 (with center B =
(0, 0) and radius c) and the circle (x−a)2+ y2 = b2 (with center C = (a, 0) and
radius b) in the first quadrant.

Let us call such a triangle a “coordinatized representative.”
Before we consider coordinatized representatives of T1 and T2 let us note that the

numbers a1/a2, b1/b2, and c1/c2 satisfy

0 <
a1
a2

,
b1
b2
,
c1
c2

≤ 1.

Furthermore, we can put these numbers in some (weakly) ascending order. By re-
naming the corresponding sides if necessary, we may assume

0 <
c1
c2

≤ b1
b2

≤ a1
a2

≤ 1. (3)
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My plan is to execute a series of reductions to nominally simpler cases. The first
reduction is obtained by scaling all sides of triangle T2 by the ratio a1/a2. In this way
we obtain a triangle T3 with side lengths

a3 =
a1
a2

a2 = a1, b3 =
a1
a2

b2, and c3 =
a1
a2

c2.

It is very easy to check that the lengths a3, b3 and c3 satisfy the triangle inequalities
and thus are indeed the sides of a triangle. In fact, both the triangle inequalities and
the acuteness inequalities are invariant under uniform scaling. For example,

a3 =
a1
a2

a2 ≤
a1
a2

(b2 + c2) = b3 + c3,

and

a23 =

(

a1
a2

)2

a22 ≤
(

a1
a2

)2

(b22 + c22) = b23 + c23.

In point of fact, I don’t think we will need the angle opposite the side of length a,
once we have ordered the sides according to the ratios as in (3), but we’ll see about
that as we go along.

The traanlge T3 also satisfies

area(T3) ≤ area(T2).

In fact, T3 is similar to T2; one can check that the angles are the same using the law
of cosines, and the area is half the product of two sides and the sine of the included
angle. Thus,

area(T3) =

(

a1
a2

)2

area(T2) ≤ area(T2) to be exact.

Thus, if we are able to show area(T3) ≥ area(T1), then we are done. Notice now that
triangle T3 has a side length a3 = a1 in common with the side of length a1 of triangle
T1. Furthermore, the remaining two sides satisfy

b3 =
a1
a2

b2 ≤ b2 and c3 =
a1
a2

c2 ≤ c2.

We also have information on the ordering of the new ratios c1/c3, b1/b3, and a1/a3 = 1.
Namely,

0 <
c1
c3

≤ b1
b3

≤ a1
a3

= 1.
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This is because
c1
c3

=
a2
a1

c1
c2

≤ a2
a1

b1
b2

=
b1
b3

≤ a2
a1

a1
a2

=
a1
a3

= 1.

We are now in a position to execute our second reduction. We consider the three
numbers

a4 = a3 = a1, b4 =
b1
b3
b3 = b1, and c4 =

b1
b3
c3.

First we should check to see if these three numbers are the side lengths of a triangle.
In fact,

c4 =
b1
b3
c3 ≤

b1
b3
(a3 + b3) =

b1
b3
a3 + b4 ≤ a4 + b4.

b4 =
b1
b3
b3 ≤

b1
b3
(a3 + c3) =

b1
b3
a3 + c4 ≤ a4 + c4,

and

a4 = a1 ≤ b1 + c1 = b4 +
c1
c3
c3 ≤ b4 +

b1
b3
c3 = b4 + c4.

So we have a triangle T4. We wish to show next that area(T4) ≤ area(T3). Then we
will have

area(T4) ≤ area(T3) ≤ area(T2)

and our task will be reduced to showing area(T1) ≤ area(T4) where T4 is a triangle
having side lengths a4 = a1, b4 = b1 (i.e., two side lengths in common with the
corresponding side lengths of T1) and

c4 =
b1
b3
c3 =

b1
b2

a2
a1

a1
a2

c2 =
b1
b2
c2 ≥

c1
c2
c2 = c1.

The area of T4 is given by

area(T4) =
1

2
a4b4 sin(C4) =

1

2
a3b4 sin(C4) ≤

1

2
a3b3 sin(C4)

where C4 is the angle opposite the side of length c4 in triangle T4. Note that we have
used

b4 =
b1
b3
b3 ≤ b3 since

b1
b3

≤ 1.
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The law of cosines gives

cos(C4) =
1

2a4b4
[a24 + b24 − c24]

=
1

2(b1/b3)a3b3
[(a23 + (b1/b3)

2b23 − (b1/b3)
2c23]

=
1

2a3b3

[

a23
b1/b3

+ (b23 − c23)(b1/b3)

]

. (4)

At this point we use that the angle opposite the side of length b is acute which tells
us

b23 < a23 + c23 or a23 > b23 − c23.

Therefore,
a23 > b23 − c23 ≥ (b1/b3)(b

2

3 − c23).

This implies the following string of inequalities:

a23

(

1− b1
b3

)

≥ (b23 − c23)
b1
b3

(

1− b1
b3

)

(

b1
b3

)2

(b23 − c23) ≥
b1
b3
a23 +

b1
b3
(b23 − c23)

a23
b1/b3

+ (b1/b3)(b
2

3 − c23) ≥ a23 + b23 − c23

1

2a3b3

[

a23
b1/b3

+ (b1/b3)(b
2

3 − c23)

]

≥ 1

2a3b3
[a23 + b23 − c23]

cos(C4) ≥ cos(C3) ≥ 0.

where C3 = C2 is the angle in similar triangles T3 and T2 opposite corresponding sides
(of lengths) c3 and c2 respectively. Notice strict inequality maintains in this string of
inequalities unless we lose everything in the first inequality because b1/b3 = 1. Weak
inequality is, of course, okay. The last inequality uses (4).

Since we are assuming angle C2 is acute, we conclude

C4 ≤ C3 = C2 <
π

2
.

It follows then that
sin(C4) ≤ sin(C3)
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and

area(T4) ≤
1

2
a3b3 sin(C3) = area(T3)

as desired.
Our final claim then is that if two triangles T1 and T4 have sides a1, b1, c1 and a4,

b4, and c4 respectively satisfying

a1 = a4, b1 = b4, and c1 ≤ c4,

and the angle C4 in triangle T4 opposite the side of length c4 is acute, then

area(T1) ≤ area(T2).

But this is now pretty straightforward because

area(T1) =
1

2
a1b1 sin(C1) =

1

2
a4b4 sin(C1),

and

cos(C1) =
1

2a1b1
(a21 + b21 − c21) =

1

2a4b4
(a24 + b24 − c21) ≥

1

2a4b4
(a24 + b24 − c24) = cos(C4).

In particular, 0 < cos(C4) ≤ cos(C1) < 1, and this means 0 < C1 ≤ C4 < π/2, angle
C1 is also acute, sin(C1) ≤ sin(C4), and

area(T1) ≤ area(T4) ≤ area(T3) ≤ area(T2). �

Follow up/what we used: One thing we didn’t use (really) was the coordinatized
versions of the triangles. Nevertheless, such a construction can be useful for other
purposes, as I hope to demonstrate below. We also didn’t use the fact that the angle
opposite the side of length a2 in triangle T2 was acute. More precisely, given the
ordering (which we assumed by rearrangement)

0 <
c1
c2

≤ b1
b2

≤ a1
a2

≤ 1,

we needed the angles C2 and B2 opposite the sides (of length) c2 and b2 respectively
to be acute. No assumption about the angle A2 opposite the side (of length) a2 came
up.
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The string of inequalities in the reduction to consideration of traingle T4 was diffi-
cult (for me) to find, and I found it based on somewhat more general considerations.
I will try to describe those considerations now.

The general question may be pharsed as follows: What happens when you scale
two sides of a triangle and leave one side fixed? In our case, with reference to the
coordinatized triangles suggested at the beginning of my solution (and not used) we
can fix the horizontal side of length a and scale the other two sides of lengths b and
c as indicated in Figure 2. I was at first primarily interested in scaling the sides (of

Figure 2: Scaling two sides of a triangle. In this illustration a = 2, b = 1, c = 2, and
λ = 1/2, so the triangle with scaled sides has sides of length a = 2, λb = 1/2, and
c = 1.

length) b and c by a scalar λ < 1. It turns out that, in some way, this actually made
the problem more difficult for me as I’ll explain below. In any case, I imagined that
at least for λ close to 1 you get some other triangle, and that the new angle at vertex
C will be smaller as indicated in the figure. And for λ = 1 you get the same triangle.
This turns out to be (basically) correct. But my question was: What conditions on
a, b, and c (and λ) are required to ensure the new angle at vertex C is no larger than
the original angle C? Put another way, I want to know when the new vertex A lies
in the sector determined by sides a and b.

As an aside, I suppose (hope?) you all remember from a good course in Euclidean
geometry that it’s sort of standard notation to label the sides of a triangle a, b, and c
and the respective angles opposite those sides A, B, and C. It’s been so long ago that
I can’t remember if it is standard to denote the corresponding side lengths a, b, and c
as well, but I sort of think it was. I guess I could check my Euclidean geometry book
I have from highschool—which, yes, I still have, or I could even check Euclid which I
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have somewhere translated in two or three volumes from Dover press, though I don’t
seem to see either one on my bookshelf at the moment. Also, I’m not sure Euclid was
using what has become standard notation exactly. In any case, I do remember that
it was a bit nonstandard to use A, B, and C to denote both the vertices as points
(either abstractly as Euclid would have done or in coordinates as Descartes started
to do) as well as for the angle measure of the angles at the corresponding vertices.
We used something cumbersome like m∠A to mean the angle measure of the angle at
vertex A. I don’t see that any great problem arises in using A for m∠A, B for m∠B,
etc., so I’m going to (continue to) do that.

My thinking on this problem (as it progressed) is a little bit embarrassing, but
I’m not especially proud and it may be instructive for me to describe it, so I’m going
to try. None of you seem to have figured it out either. . . or maybe you are all like
Lawrence and just wouldn’t say. In any case, when I first thought about scaling these
two sides I thought the new top vertex would move along a straight line to a special
point on side a. In fact (and this is rather embarrassing) I thought that point would
tend to the midpoint of side a. I even told Joseph this on the day we did the practice
exam. Of course that can’t be the case. The sides (of length) λb and λc keep the
same ratio, so when the last vertex reaches side a the sides (of length) λminb and λminc
must still have the same ratio. That ratio is 1 : 1 for the midpoint, so clearly the new
vertex A does not travel along the median. In fact, one must have

λminb+ λminc = λmin(b+ c) = a,

and this means

λmin =
a

b+ c
, bmin =

ab

b+ c
, and cmin =

ac

b+ c
.

Obviously, if b 6= c, then bmin 6= cmin. This point Amin = (cmin, 0), however, is some
kind of special point, and I persisted in imagining the top vertex would move along
a line to this point as λ decreased from 1 to λmin. After spending a bit of time trying
to prove the triangles with vertices along the median keep the same ratio of lengths
(which was ridiculous because they would then end up with ratio 1 : 1 when λ = λmin)
I tried to prove the ratio would remain the same for points moving along the line from
A to Amin = (cmin, 0). Fortunately, I couldn’t prove this either, because it’s not true.

My son pointed out that it makes good sense to consider λ > 1, and he somehow
immediately intuited that the path of the top vertex would have to “arch over” and
come back down to the x-axis outside the side a. I’m not sure how he “saw” this right
away because he does not seem exceptionally skilled at writing down and working with
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ratios. But he was totally correct. Except in the isosceles case in which b = c where
the top vertex does indeed travel down the (vertical) median (to the midpoint of side
a) as λ decreases from λ = 1 to λ = λmin = a/(2b) and runs straight up the common
altitude line as λ increases from λ = 1 to +∞, the difference between the sides of
length λb and λc will grow proportional to the scaling by λ > 1 and eventually become
“too big” forcing the new top vertex back down to the x axis. To see this it is natural
to consider cases divided by the isosceles case: If b < c as in Figure 1, then λb < λc.
One of the triangle inequalities says c < a + b or c − b < a, but for these triangles
with scaled sides

λc− λb = λ(c− b)

and eventually for λ large enough it will no longer be the case that

λc− λb < a or λc < a+ λb.

Let’s consider this “motion” a little more systematically. We start with the three
triangle inequalities

a < b+ c

b < a+ c

c < a+ b.

The new side lengths a, λb, and λc will be the sides of a triangle if and only if

a < λ(b+ c)

λb < a+ λc (5)

λc < a+ λb.

The first inequality is violated at λmin = b/(b+ c) > 0. And for all λ with

λmin =
a

b+ c
< λ ≤ 1, (6)

all three inequalities hold. In fact, (6) gives the first inequality immediately. Since
c− b > 0,

−a < 0 < λ(c− b) for all λ > 0

so the second inequality always holds. The third inequality is equivalent to

λ(c− b) < a
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and holds precisely when

0 < λ < λmax =
a

c− b
.

Note that since b > 0 and c− b > 0 in this case we get

a

b+ c
<

a

c− b
.

Thus, for all three inequalities in (5) to hold we need precisely that

λmin =
a

b+ c
< λ <

a

c− b
= λmax. (7)

Note finally, that since a < b + c and c − b < a, the value λ = 1 is in this interval.
In this way, we have a well-defined (or at least better defined) problem to consider:
What happens to the angle φ = C(λ) determined by the law of cosines

(λc)2 = a2 + (λb)2 − 2a(λb) cosφ or cosφ =
1

2a(λb)

[

a2 + (λb)2 − (λc)2
]

(8)

as λ increases along the interval (7) from λmin to λmax?

Exercise 2 Consider the case b > c. Determine which values of the scaling parameter
λ > 0 correspond to triangles with side lengths a, λb, and λc and formulate the
appropriate question about the angle φ = C(λ) at the vertex C in this case.

Returning to the case b < c as indicated in Figure 2, note that near λ = λmax a
triangle is determined with the side (of length) λc very nearly too large, and larger
than a in particular as indicated on the right in Figure 3. This confirms my son’s
intuition that the point A = A(λ) must “arch over” and come back down to the axis
outside side a. In this case with b < a, A(λ) comes down to the right of side a as
λ ր λmax.

You can check that if b > c, then as λ tends to λmax = a/(b− c), the point A(λ)
will “arch over” and come back down to the x-axis to the left of side a, or to the left
of the origin. Precisely, the limiting point will be (−λmaxc, 0) = (−ac/(b− c), 0).

Let’s continue, however, with the case b < c. What happens to the angle? Well,
we can write the expression for the cosine of the angle at A given in (8) as

cos φ =
1

2ab

[

a2

λ
+ λ(b2 − c2)

]

.
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Figure 3: Extremeties of scaling two sides of a triangle when b < c. In this illustration
a = 2, b = 1, c = 2 as in Figure 1. The extreme values for λ are λmin = 2/3 (left) and
λmax = 2 (right) so the limiting value for A(λ) = (x(λ), y(λ) when λ is close to λmin

is ((2/3)a, 0) = (4/3, 0) and the limiting value for A(λ) = (x(λ), y(λ) when λ is close
to λmax is (2a, 0) = (4, 0).

Figure 4: The angle at C when b < c.

Note then that

2ab
d

dλ
cosφ = −a2

λ2
+ b2 − c2. (9)

This doesn’t look too difficult to analyze. In Figure 4 I’ve reproduced Figure 1 with
the angle φ labeled. The “motion” suggested in Figures 4 and 3 seems like it might
have φ increasing as a function of λ from φ = 0 when λ = λmin to φ = π when λ = λmax

, so let’s see if we can prove this. Recall that the graph of cosine is decreasing from
cosφ = 1 to cosφ = −1 as φ increases from φ = 0 to φ = π as indicated in Figure 5,
so this means we expect the quantity on the right in (9) to be negative (always). This
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Figure 5: The graph of cosine.

will hold if
a2

λ2
+ c2 > b2 for

a

b+ c
< λ <

a

c− b
.

In fact, on this interval we have

a2

λ2
+ c2 >

a2

a2/(c− b)2
+ c2 = (c− b)2 + c2 = 2c(c− b) + b2 > b2,

so indeed, cos φ decreases for all values of λ on the interval of interest (λmin, λmax)
and φ increases on the same interval. In particular, the angle φ will always be smaller
than the original angle A when λ < 1 as long as a triangle is formed, that is as long
as

λmin =
a

b+ c
< λ < 1.

Notice this argument does not say (or require) anything particular about the angles in
the original triangle being acute. The condition b < c which we have used to define a
particular case, however, does imply b2 < a2+ c2 which means the angle at B = (0, 0)
in this case must be acute. We should expect some kind of restriction on the angle at
B = (0, 0) to come in explicitly, and that must happen in the other case b > c where
such a thing is possible. Note that in this other case, b > c, we have c2 < a2 + b2, so
the angle at C = (a, 0) is defacto required to be acute in this case.

18



Before we move on to the case b < c, there are three more interesting things we
might do in the case b > c:

1. Plot φ and cosφ as a functions of λ on the interval (λmin, λmax).

2. See if we can verify the fact that cosφ is decreasing using direct inequalities
instead of calculus. (This is sort of important because it is how I got the string
of inequalities in the solution above.)

3. Plot the path of the motion of the point A = A(λ) = (x(λ), y(λ)) and see just
what this “arching over” curve looks like.

I’m going to do two of those now. Figure 6 gives the plots of cosφ and sin φ in our
example case with a = c = 2 and b = 1. As should be expected, there is a special

Figure 6: cosφ and φ as functions of λ when a = 2, b = 1 and c = 2.

value of λ where the angle at C = C(λ) becomes π/2 and the point A = (x(λ), y(λ)
is directly above C = (a, 0). This value λ = λc is indicated on the left in Figure 6
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where the graph crosses the λ-axis and is given explicitly from the condition

a2 + (λcb)
2 = (λcc)

2 or λc =
a√

c2 − b2
.

In general, the value of λc may be less than λ = 1 or greater than λ = 1 depending
on the initial angle at A.

We didn’t check the monotonicity of the angle at the “top” point A(λ) = (x(λ), y(λ)),
but its limiting values (from the figures at least) are π at λ = λmin and 0 at λ = λmax,
so there should be at least one value for which this angle is π/2, and in fact there is
a unique such value λ = λa determined by

a2 = (λab)
2 + (λac)

2 or λa =
a√

b2 + c2
.

We should expect, and indeed it is obviously the case that, λa < λc. Again, where
λa falls relative to λ = 1 depends in general on the lengths a, b, and c in the original
triangle. In our example triangle with all acute angles we have 1 < λa < λc. Nothing
particularly special (apparently) seems to happen in the “motion” at either λ = λa

or λ = λc. In general, in the case b < c, the angle at B = (0, 0) must always remain
acute; in both the limits λ = λmin and λ = λmax we have the angle at B = (0, 0)
tending to θ = 0. This means of course that this angle has some positive (acute)
maximum during the motion.

Exercise 3 In the case b < c, determine the maximum value of the angle at B =
B(λ) = (0, 0) and all values of λ for which this maximum is attained.

The second task on our “to do” list is to try to show cosφ is a (strictly) decreasing
function of λ directly using inequalities rather than calculus. Here is how to do that
in reverse: We expect for λmin < λ1 < λ2 < λmax there holds cos φ(λ2) < cosφ(λ1),
that is,

a2

λ2

+ λ2(b
2 − c2) <

a2

λ1

+ λ1(b
2 − c2).

Indeed, this doesn’t look too terrible, and it is equivalent to

a2λ1 + (b2 − c2)λ1λ
2

2 < a2λ2 + (b2 − c2)λ2

1λ2

(which is obtained by multiplying through by λ1λ2). Rearranging terms, we have a
proposed inequality

a2(λ2 − λ1) > (b2 − c2)λ1λ2(λ2 − λ1)
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or
a2 > (b2 − c2)λ1λ2. (10)

In this case, we already have b2 < a2 + c2 because b < c, so this means we actually
have

a2 > b2 − c2. (11)

Notice that (10) follows form (11) if λ1λ2 ≤ 1. In particular, if we restrict to the in-
terval λmin < λ1 < λ2 ≤ 1 (which actually contains the values we are really interested
in for the original problem anyway) then

a2 > b2 − c2 > (b2 − c2)λ1λ2.

Once we have established (10) the string of inequalities above is reversible, and we
get cos φ(λ2) < cosφ(λ1) directly, at least for λ1, λ2 ≤ 1.

If you take the special case of the discussion I have just given with λ1 = b1/b3 < 1
and λ2 = 1, reversing the inequalities as suggested, then you get pretty much the
string of inequalities I used in the main solution. You should give it a try. Of course,
things need to be “adjusted” a little more to make sure the case b > c is taken into
account.

Exercise 4 Can you get the inequality cosφ(λ2) < cosφ(λ1) directly in the case b < c
even for λ1 ≤ 1 < λ2 or 1 < λ1 < λ2?

Let’s take a look at the case b > c. Hopefully, you’ve figured out that the situation
is quite different. Nominally, the example we’ve considered above illustrates what
happens if we switch b and c and/or consider what happens to the angle at the origin.
Doing the former leads to Figure 7.

Figure 7: Extreme values when b > c.

As you may note, the angle at C limits to φ = 0 at both extremes, so we do
not expect monotonicity. In fact, if we plot cosφ and φ in the our example with
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Figure 8: cos φ and φ as functions of λ when a = 2 = b and c = 1.

a = 2 = b and c = 1, we obtain the plots in Figure 8. If we check the derivative we
see, as indicated in the figures, there is a unique value of λ for which

2ab
d

dλ
cos φ = −a2

λ2
+ b2 − c2

vanishes, namely

λb =
a√

b2 − c2
.

What is this value? First of all, note that this values falls in our interval corresponding
to triangles (Exercise 2):

λmin =
a

b+ c
<

a√
b2 − c2

<
a

b− c
= λmax.

The first inequality is equivalent to (b + c)2 > b2 − c2 or 2c(b + c) > 0. The second
inequality is equivalent to b2 − c2 > (b − c)2 or 2c(b − c) > 0. Finally, noting that
when λ = λb there holds

a2 + (λbc)
2 = (λbb)

2

we see that λb is the unique value for which there is a right angle at vertex B = (0, 0).
Thus, cosφ is not decreasing across the entire interval λmin < λ < λmax when b > c.
Rather cos φ(λ) decreases (so that φ increases as a function of λ (and φ becomes
smaller with smaller λ) for λmin < λ < λb. There is a horizontal tangent to the
graphs of both cosφ and φ at λ = λb and then cosφ increases as a function of λ back
to cosφ(λmax) = 1.
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For good measure, let us note that

2ab
d2

dλ2
cosφ =

2a2

λ3
> 0.

Let us pause to apply what we have found to the original problem: If we want the
angle at C = C(λ) to increase as a function of λ for λmin < λ < 1, i.e., to become
smaller as λ decreases from 1 and in particular to be smaller than the original angle
C in the original triangle corresponding to λ = 1, then in the case b < c, there is no
further restriction needed. This condition, however, implies the angle at B = (0, 0)
is acute. If b = c, then also

2ab cos φ =
a2

λ

is clearly decreasing in λ, which means φ is increasing. In the final case, we need
λb > 1. That is,

a√
b2 − c2

> 1 or b2 < a2 + c2,

that is, we need the original angle at B = (0, 0) to be acute. In this case, we can also
get the inequality directly without differentiation: We want (and expect if cosφ is a
decreasing function of λ) for λ1 < λ2 to have

a2

λ2

+ (b2 − c2)λ2 <
a2

λ1

+ (b2 − c2)λ1. (12)

As long as λ1, λ2 > 0 and certainly if 0 < λ1 ≤ λ2 ≤ 1, this is equivalent to

a2λ1 + (b2 − c2)λ1λ
2

2 < a2λ2 + (b2 − c2)λ2

1λ2 (13)

or
(b2 − c2)λ1λ2(λ2 − λ1) < a2(λ2 − λ1). (14)

This last inequality is equivalent to

(b2 − c2)λ1λ2 < a2 (15)

if λ1 < λ2 ≤ 1, and this inequality follows if b2 − c2 < a2, meaning the angle at B is
acute, and 0 < λ1 < λ2 ≤ 1. In our application we have 0 < λmin < λ1 ≤ λ2 ≤ 1 and
consider also the case λ1 = λ2 = 1.

I’m now going to go through the process of “reversing” the inequalities, that is to
say going through the string of inequalities in reverse order twice. The first time I’ll
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do it just as they stand. The second time, I’ll take the special case 0 < λ1 ≤ λ2 = 1,
and this should be essentially the same as the string of inequalities in my solution.

We start with the assumption that the angle at B is acute which gives

b2 < a2 + c2 or b2 − c2 < a2.

If 0 < λ1 ≤ λ2 ≤ 1, then we get

λ1λ2(b
2 − c2) ≤ (b2 − c2) < a2.

Thus (15) holds. At this point we need to multiply both sides by λ2 − λ1 which may
be zero if λ1 = λ2, so we lose (14), but we do get

(b2 − c2)λ1λ2(λ2 − λ1) ≤ a2(λ2 − λ1)

with equality in the case both sides are dead zero. Next we rearrange to get the weak
version of (13):

a2λ1 + (b2 − c2)λ1λ
2

2 ≤ a2λ2 + (b2 − c2)λ2

1λ2

which is also a strict inequality unless λ1 = λ2. Finally, we divide by the product
λ1λ2 > 0 to get the weak version of (12) which again is a strict inequality unless
λ1 = λ2:

a2

λ2

+ (b2 − c2)λ2 ≤
a2

λ1

+ (b2 − c2)λ1.

Dividing both sides by 2ab gives

cosφ(λ2) ≤ cosφ(λ1) for λmin < λ1 ≤ λ2 ≤ 1

with strict inequality unless λ1 = λ2.
Now, let us repeat this with 0 < λ = λ1 ≤ λ2 = 1. Again, we must start with the

assumption that the angle at B is acute so

λ(b2 − c2) ≤ b2 − c2 < a2 (16)

with strict inequality unless λ = 1. Even in the case of weak inequality in (16) we
have strict inequality

λ(b2 − c2) < a2.

Now, we multiply both sides by 1−λ, and we can no longer preserve strict inequality
under these assumptions, but we get

(b2 − c2)λ(1− λ) ≤ a2(1− λ)
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with equality when λ = 1 and we are henceforth manipulating the equation 0 = 0.
Next rearrangement gives

a2λ+ (b2 − c2)λ ≤ a2 + (b2 − c2)λ2

which is also a strict inequality unless λ = 1. Dividing by 2abλ > 0 we conclude

cosφ =
1

2a
(a2 + b2 − c2) ≤ 1

2ab

[

a2

λ2
+ (b2 − c2)λ

]

= cosφ(λ)

with strict inequality unless λ = 1. Putting λ = b1/b3, this is precisely the string of
inequalities giving the application in my solution.

There was maybe one more thing to do: What is the actual path of the top vertex
under scaling of the two sides? As mentioned at the very beginning of my solution,
the top vertex is determined uniquely in coordinates as the intersection of two circles,
namely

x2 + y2 = c2

(x− a)2 + y2 = b2.

Subtracting the second equation from the first gives 2ax− a2 = c2 − b2 or

x =
1

2a
(a2 + c2 − b2).

The first equation then gives the height of the triangle2

y =

√

c2 − 1

4a2
(a2 + c2 − b2)2.

More generally, for λmin < λ < λmax where λmin = a/(b + c) and λmax = a/|b − c| if
b 6= c and λmax = ∞ otherwise, we get a point

A(λ) = (x(λ), y(λ)) =

(

1

2a
[a2 + λ2(c2 − b2)],

√

λ2c2 − 1

4a2
[a2 + λ2(c2 − b2)]2

)

.

These expressions can be plotted for our example triangles with a = 2, b = 1 and
c = 2 and a = 2 = b and c = 3. What we see in Figure 9 came as a bit of a surprise
to me. By the symmetry of the intersection of the circles top-to-bottom it was clear

2It was my initial strategy to keep track of the area of the triangle(s) using this quantity, though
in the end I just used area(T ) = ab sinC/2.
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Figure 9: The path of the top point A = A(λ) as function of λ when a = 2 = c and
b = 1 (left) and when a = 2 = b and c = 1 (right).

that these curves should cross the x-axis at a right angle, but circles. . . really? Okay,
if this is the case we should be able to check it. Let’s take the first case with b < c,
then the left limiting point has

x(λmin) = x

(

a

b+ c

)

=
a

2

[

1 +
c− b

c+ b

]

=
ac

c + b

and y(λmin) = 0 while the right limiting point has

x(λmax) = x

(

a

c− b

)

=
a

2

[

1 +
c+ b

c− b

]

=
ac

c− b

and y(λmin) = 0. This means that if we have a circle, then the center must be

(

x(λmin) + x(λmax)

2
, 0

)

=

(

ac2

c2 − b2
, 0

)

and the radius must be

x(λmax)− x(λmin)

2
=

abc

c2 − b2
.
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Let’s see if this works.
(

x(λ)− ac2

c2 − b2

)2

+ y(λ)2

=

(

x(λ)− ac2

c2 − b2

)2

+ λ2c2 − x(λ)2

=

(

ac2

c2 − b2

)2

− 2x(λ)
ac2

c2 − b2
+ λ2c2

=
a2c4

(c2 − b2)2
− c2

c2 − b2
[a2 + λ2(c2 − b2)] + λ2c2

=
a2c4

(c2 − b2)2
− a2c2

c2 − b2

=
a2c2

(c2 − b2)2
[c2 − (c2 − b2)]

=
a2b2c2

(c2 − b2)2
.

Indeed, the path is a circle with the center and radius prescribed above. There is no
need to check the case b > c as the diagram illustrates (that case follows from this
one by symmetry).

Exercise 5 How (on earth!) can you see immediately that the path of the top point is
a circle. Note: This construction—the appearance of (half) circles, the involvement
of scaling sides of triangles, the case b = c where the circle becomes a straight line,
etc., suggests several topics in somewhat other (and perhaps some somewhat advanced)
subjects in mathematics, namely, conic sections, complex analysis, Riemann surfaces,
three-dimensional spherical geometry. It would be very interesting if some or all of
these could come together to allow one to “see” what is going on here. A starting
reference is the book Geometry and the Imagination by David Hilbert and Stefan
Cohn-Vossen.

Final note: The discussion above (I believe) essentially gives the (unusual) charac-
terizes of circles as the locus of points with distances to two fixed points having the
same (fixed) ratio b/c. Recall that the standard characterization of an ellipse is the
locus of points having the sum of the distances from two fixed points constant. In
the case of an ellipse, the two fixed points are called the focal points. Similar char-
acterizations are well-known for parabolas and hyperbolas. In the context of these
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characterizations, the circle is distinguished as the ellipse with its two focal points co-
inciding. I do not know what the two special points would be called in this (unusual)
characterization of circles. There are various “hits” referring to this result when one
does an internet search (not using the “only do evil” search engine that shall not be
named of course) for something like “locus with distances to two fixed points having
a constant ratio.” I didn’t find any special name however.

5 A3 (2004)

Define a seqeunce {un}∞n=0 as follows:

u0 = u1 = u2 = 1.

For n ≥ 0,

det

(

un un+1

un+2 un+3

)

= n!.

Show un is an integer for all n.
Note: At least Drake, Joeseph, and Lawrence got this one. Drake made a striking
observation:

u3 = 0! + 1 = 2

u4 = 1! + 2 = 3

u5 = 2! + 6 = 8 = (4)(2)

u6 = (3! + 24)/2 = 15 = (5)(3)

u7 = (4! + 120)/3 = 48 = (6)(4)(2)

and in general for n ≥ 2

un =

{

(2k − 1)(2k − 3) · · · (1), n = 2k (even)
(2k)(2k − 2) · · · (2), n = 2k + 1 (odd).

With this observation, the solution can be given using a relatively straightforward
induction argument. The inductive assertion can be written as

un =











(2k)!

2kk!
, n = 2k (even)

2kk!, n = 2k + 1 (odd).
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It has been checked above that this is true for n = 2, . . . , 7. If we assume the inductive
hypothesis for n ≤ m = 2ℓ + 1, then the next value to check is um+1 = u2ℓ+2. The
determinant relation gives

um+1 =
(2ℓ− 1)! + u2ℓu2ℓ+1

u2ℓ−1

.

By the inductive hypothesis

u2ℓ−1 = 2ℓ−1(ℓ− 1)!,

u2ℓ =
(2ℓ)!

2ℓℓ!
,

and
u2ℓ+1 = 2ℓℓ!.

Notice that

u2ℓu2ℓ+1 =
(2ℓ)!

2ℓℓ!
2ℓℓ! = (2ℓ)!.

Therefore,

um+1 =
(2ℓ− 1)! + (2ℓ)!

2ℓ−1(ℓ− 1)!

=
(2ℓ+ 1)(2)(2ℓ− 1)!

2ℓ(ℓ− 1)!

=
[2(ℓ+ 1)]!

2ℓ+1(ℓ+ 1)!
for m+ 1 = 2(ℓ+ 1) (even).

This is the first formula in the inductive assertion we need to prove:

um+1 =















[2(ℓ+ 1)]!

2ℓ+1(ℓ+ 1)!
, m = 2(ℓ+ 1) (even)

2ℓ+1(ℓ+ 1)!, m = 2(ℓ+ 1) + 1 (odd).

The next term um+2 = u2ℓ+3 is given by the determinant formula as

um+2 =
(2ℓ)! + u2ℓ+1u2ℓ+2

u2ℓ

.
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By the inductive hypothesis

u2ℓ =
(2ℓ)!

2ℓℓ!
,

u2ℓ+1 = 2ℓℓ!,

and

u2ℓ+2 =
[2(ℓ+ 1)]!

2ℓ+1(ℓ+ 1)!
.

The product u2ℓ+1u2ℓ+2 simplifies:

u2ℓ+1u2ℓ+2 =
[2(ℓ+ 1)]!

2(ℓ+ 1)
= (2ℓ+ 1)!.

Therefore,

um+2 =
(2ℓ)! + (2ℓ+ 1)!

(2ℓ)!
2ℓℓ!

= 2(ℓ+ 1)2ℓℓ!

= 2ℓ+1(ℓ+ 1)! for m+ 2 = 2(ℓ+ 1) + 1 (odd).

This is the second formula in the inductive assertion and completes the induction.

6 A4 (2004)

Show that for any positive integer n, the n-th order polynomial x1x2 · · ·xn can be
written in the form

x1x2 · · ·xn =
N
∑

j=1

cj(aj1x1 + aj2x2 + · · ·+ ajnxn)
n

where N is a positive integer, the numbers c1, . . . , cN are rational numbers and ajk ∈
{0,±1} for j = 1, . . . , N and k = 1, . . . , n.
Note: Drake had an idea on this one, and we talked through ironing out some of
the details, but I can’t say we nailed it all down. I’m not going to type up the idea,
though with some effort I might be able to do so.
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