
Putnam study meeting notes

Tuesday November 15, 2022

John McCuan

November 20, 2022

I didn’t take good notes for this meeting, but if I remember correctly we discussed
basically three problems:

1. A triangle problem related to A2 (2004),

2. A seating arrangement problem posed by Siddharth and solved by Jonathan
and Siddharth, and

3. A2 (2007).

1 A2 (2004)

Here is the original statement: Let T1 and T2 be triangles in the plane with side
lengths a1, b1 and c1 and a2, b2 and c2 respectively. If a2 ≥ a1, b2 ≥ b1 and c2 ≥ c1
and T2 is an acute triangle, then does this imply area(T2) ≥ area(T1)?

Let me try here to review my solution (posted in the notes from our November
1 meeting), generalize the result, and add a few more comments. Perhaps I’ll start
with the generalization, which is basically along the lines of “you don’t really need
T2 to be acute,” or “to what extent can you relax the requirement that T2 is acute?”
At the very least, the assertion area(T1) ≤ area(T2) still holds if T2 happens to be a
right triangle. Here is the new statement:
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Generalization: Let T1 and T2 be triangles in the plane with sides of lengths α1,
β1 and γ1 and α2, β2 and γ2 respectively. Assume α2 ≥ α1, β2 ≥ β1 and γ2 ≥ γ1 and
order the ratios

α1

α2

,
β1

β2

, and
γ1
γ2

between 0 and 1 (possibly including 1 but not including 0). By renaming the sides,1

we may assume T1 and T2 have sides of lengths a1, b1 and c1 and a2, b2 and c2
respectively satisfying

0 <
c1
c2

≤
b1
b2

≤
a1
a2

≤ 1.

Assume the angles opposite sides b2 and c2 in triangle T2 have angle measure less
than or equal to π/2, then (show) area(T1) ≤ area(T2) with strict inequality unless
α1 = α2, β1 = β2, and γ1 = γ2.

Note that at most one angle in any triangle can be non-acute, that is, at most one
angle can have angle measure greater than or equal to π/2.

Exercise 1 If the angle A2 opposite the side of length a2 in triangle T2 is non-acute,
then the angle A1 opposite the side of length a1 in triangle T1 is non-acute and satisfies

π/2 ≤ A2 ≤ A1.

Let me outline/review my solution, which I claim (with the help of the exer-
cise above) gives a solution for the more general problem and gives a bit more in-
sight/information into the original solution.

There was an initial step, which was not discussed carefully, but is now made
explicit in the generalized problem. This involves relabeling the sides. Let’s say the
two triangles are as indicated in Figure 1 with In this case we have

γ1
γ2

<
α1

α2

<
β1

β2

< 1,

so we rename the sides; aj = βj, bj = αj and cj = γj for j = 1, 2, 3. Then

c1
c2

<
b1
b2

<
a1
a2

< 1.

In Figure 2 I’ve rotated (and flipped) these triangles so that the sides with largest
ratio appear horizontally at the bottom (and could be put in standard coordinate
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Figure 1: Two triangles; the side lengths of the second triangle dominate those of the
first triangle.

Figure 2: Two triangles congruent to those in Figure 1. The sides are relabeled
according to increasing ratios of corresponding sides.

position along the x-axis). It is an assumption at this point that the angles B2 and
C2 each measure less than or equal to π/2. As mentioned above, at most one angle in
any triangle can measure greater than or equal to π/2. Thus, if one of the angles B2

or C2 does measure π/2, then the other two angles are acute. There is the possibility
however, that the angle at A2 measures greater than or equal to π/2. This is the case
in the example shown in Figures 1 and 2. According to Exercise 1 when this is the
case, one must have the angle A1 at least the measure of A2, and we see that is the
case in Figure 2.

The next step, then, is to scale triangle T2 (if necessary) uniformly to attain a

1I will continue the practice here of using the same symbols to represent both the sides a, b, and

c of a triangle as well as the lengths of those sides. I will also denote the opposite angles A, B, and

C and use the same symbols for the angle measures of those angles.
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triangle T3 congruent to T2 but with a3 = a1, b3 ≤ b1, and c3 ≤ c1. The scaling
constant is a1/a2. Naturally, it is very easy to see area(T3) ≤ area(T2). In our

Figure 3: Triangle T3 is similar to triangle T2, but (in this example) each side length
in T3 is shorter than the corresponding side length in T2. Most importantly, note that
b3 ≥ b1 and c3 ≥ c1.

example case here area(T3) < area(T2).
The next step is to scale sides b3 and c3 of triangle T3 by some factor b1/b3 ≤ 1

while leaving the third side length a3 = a1 fixed to obtain a triangle T4.

Exercise 2 Show the triangle T4 exists and satisfies a4 = a1, b4 = b1 and c4 ≤ c1
and area(T4) ≤ area(T3).

This is an enhanced version of the assertion used in my solution of the problem. The
triangle T4 obtained in our example is indicated in Figure 4. In summary

area(T1) ≤ area(T4) ≤ area(T3) ≤ area(T2).
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Figure 4: Triangle T4 is obtained by scaling two sides of triangle T3 and has area no
more than that of triangle T3. Furthermore triangle T4 shares two side lengths with
triangle T1: a4 = a1 and b4 = b1, but c4 ≥ c1. Under these conditions, and since angle
C4 has measure less than or equal to π/2, one concludes area(T1) ≤ area(T4).
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Exercise 3 Given a circle ∂Br(0, 0) of radius r centered at the origin and any point
(R, 0) with R > 0, there is a unique point (ρ, 0) with 0 < ρ < r such that ∂Br(0, 0) is
the locus of points p whose distances to (ρ, 0) and (R, 0) have ratio satisfying

dist(p, (ρ, 0))

dist(p, (R, 0))
=

r − ρ

R− r
.

(True or false?)

Figure 5: As noted elsewhere, the path of the vertex between two sides of a triangle
that moves under scaling of those side lengths by the same value in the path of a
circle.
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2 Knights of the round table

Actually, lots of boys and girls at a round table: If 25 girls and 25 boys sit at a round
table, then show some child must have a girl on both the right and the left.

First Solution: (Jonathan) Assume, by way of contradiction, that no child has a
girl on both the right and the left. Then, in particular, every boy is sitting next to at
least one boy. This means there are some number k of well-defined groups of boys,
and each such group has at least two boys in it, where a “group” is defined to be a
collection of boys sitting next to each other consecutively around the table. There
can be at most 12 such groups because (2)(13) = 26 > 25. Now one can consider
the girls after each group of boys. Again, there can be no more than 12 groups of
girls. If each such group had two or fewer girls, then there would be (2)(12) = 24
or fewer girls, which is a contradiction. We conclude that some group of girls has at
least three girls in it, and one of those girls has a girl on both her left and right.

Second solution: (Siddharth) Consider the children in two groups H1 and H2 of 25
children each as follows: Start with any one child as the first child, and go around
the table including every other child. So one group, say a group called H1, consists
of the first, third, fifth, and so on up to the forty-ninth child. The second group H2

is the complement of the first group (containing the even numbered children). Since
each of these groups includes an odd number of children, namely 25 children, neither
group can have the same number of boys as girls. In fact, one group, call it G will
have more girls than boys, and since there are, in total, equal numbers of boys and
girls, the other group, call it group B must have more boys than girls. If one goes
around the table considering the children in group G starting with a girl, and we
imagine that one finds after each girl in group G a boy coming next in group G, then
when one completes the circuit around the table reaching the starting girl, one will
have found/passed/considered at least as many boys in G as girls. But we know there
are more girls in this group G than boys. This means that at some point one must
find two girls in a row in group G. The child in group B sitting between these two
girls. . . is sitting between two girls.
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3 A2 (2007)

I suggested this problem:

Find the minimum (possible) area of a convex set in the plane containing a point
in each of the two branches of each of the two hyperbolas xy = 1 and xy = −1.

Preliminary discussion: The problem gave an explanation of what it means to
be a convex set. The explanation was that given any two points in the set, the
segment connecting those two points is also in the set. Equivalently, one can say
(more symbolically) C is a convex set if x,y ∈ C implies (1− λ)x+ λy ∈ C for all λ
with 0 ≤ λ ≤ 1.

Let us say the points (x1, 1/x1), (−x2, 1/x2), (−x3,−1/x3), and (x4,−1/x4) are
in a convex set C for some (x1, x2, x3, x4) ∈ (0,∞)4.

Note the following: There is some t0 ∈ (0, 1) for which (1 − t0)x1 − t0x2 = 0,
namely,

t0 =
x1

x1 + x2

.

This means the point
(

0, (1− t0)
1

x1

+ t0
1

x2

)

=

(

0,
1

x1 + x2

(

x2

x1

+
x1

x2

))

=

(

0,
x2

1
+ x2

2

x1x2(x1 + x2)

)

∈ C

as well as the entire segment
{

(1− t)

(

x1,
1

x1

)

+ t

(

x2,
1

x1

)

: 0 ≤ t ≤ 1

}

.

Similar assertions hold for the points (−x3,−1/x3) and (x4,−1/x4): The point
(

0,−
x2

3
+ x2

4

x3x4(x3 + x4)

)

∈ C

and so is the segment
{

(1− t)

(

−x3,−
1

x3

)

+ t

(

x4,−
1

x4

)

: 0 ≤ t ≤ 1

}

.

Notice that the origin is on the segment from
(

0,
x2

1
+ x2

2

x1x2(x1 + x2)

)

to

(

0,−
x2

3
+ x2

4

x3x4(x3 + x4)

)

.
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Thus, the triangle T1 with vertices (0, 0), (x1, 1/x1), and (−x2, 1/x2) is entirely in
C. There are also three more non-overlapping triangles all sharing the origin as a
vertex and all entirely in C including the triangle T3 with vertices (0, 0), (−x3,−1/x3),
and (x4,−1/x4). Let other triangle containing (−x2, 1/x2) be T2 and the remaining
triangle containing (−x3,−1/x3) be T3, then

area(C) ≥ area(T1) + area(T2) + area(T3) + area(T4).

Triangle T2 has area

A1 =
1

2
x1

x2

1
+ x2

2

x1x2(x1 + x2)
+

1

2
x2

x2

1
+ x2

2

x1x2(x1 + x2)
=

x2

1
+ x2

2

2(x1 + x2)

(

1

x1

+
1

x2

)

=
x2

1
+ x2

2

2x1x2

.

This function of x1 and x2 considered for (x1, x2) ∈ (0,∞)2 has gradient

∇A1 =
1

2x2

1
x2

2

(

x2(x
2

1
− x2

2
)

x1(x
2

1
+ x2

2
)

)

.

Thus, the only interior critical points are along x1 = x2 where the area of T1 satisfies
identically A1(x1, x1) = area(T1) = 1.

More generally, the other values of A1 may be expressed in polar coordinates with
r =

√

x2

1
+ x2

2
∈ (0,∞) and θ = tan−1(x2/x1) ∈ (0, π/2) as

A1 =
1

2 cos θ sin θ
=

1

sin(2θ)
≥ 1.

Thus, area(C) ≥ 4, and this is clearly achieved by, for example, the square with
vertices (±1,±1) and/or any of the rectangles aligned with the coordinate axes having
vertices (x1, 1/x1), (−x1, 1/x1), (−x1,−1/x1), (x1,−1/x1).

I guess that’s a solution. ⌣
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