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Chapter 1

Methods of Proof

1.1 Proof by way of contradiction

Let n ∈ N = {1, 2, 3, . . .} be a natural number. Let C be a nonempty collection of
sets for which the following hold:

1. Each set in C contains n elements.

2. If k ∈ {1, 2, . . . , n + 1} and U is a subcollection of C with k elements, then the
intersection of the sets in U is nonempty.

Show the intersection of all the sets in C is nonempty.

Proof: Assume by way of contradiction that the intersection of all the sets in C is
empty. Let E be one of the sets in C. Then

E = {x1, x2, . . . , xn}.

Since the intersection of all the sets in C is empty, there must be one set E1 for which
x1 /∈ E1. Similarly, for each j = 2, 3, . . . , n, there must be (at least) one set Ej in C
for which xj /∈ Ej . Then the intersection

E ∩ E1 ∩ E2 ∩ · · · ∩ En = φ.

This is a contradiction because the collection {E,E1, E2, . . . , En} is a subcollection
of C containing at least one element and no more than n + 1 elements.

Notes: The original problem was stated somewhat differently and somewhat ambigu-
ously. It was not clear, for example, if the original collection C = {E1, E2, . . . , Es}
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6 CHAPTER 1. METHODS OF PROOF

was allowed to be empty or not. Of course, it could be argued that the use of the
symbol s here implies s ≥ 1 and hence the set C must have at least one element.
Of course, it could be argued that the notation assumes s ≥ 2 as well, and that is
presumably not what is meant.

At any rate, my statement of the problem is an attempt to make the assertion
clearer. It also allows the possibility to relax various hypotheses: What if the collec-
tion C is allowed to be empty? What if the conclusion of a nonempty intersection in
the second hypothesis only holds if U is a subcollection with precisely n+1 (distinct)
elements?

Problem 1 (Problem 1.1) Show
√
2 +

√
3 +

√
5 is irrational.

Solution: Assume by way of contradiction that

√
2 +

√
3 +

√
5 =

m

n
∈ Q =

{

p

q
: p ∈ Z = {0,±1,±2,±3, . . .}, q ∈ N

}

.

We can also assume (m,n) = 1, that is m and n have no common factors. Note also
that m > 0 since

√
2 +

√
3 +

√
5 > 0.

Then,
n(
√
2 +

√
3) = m− n

√
5,

so
n2(5 + 2

√
6) = m2 + 5n2 − 2mn

√
5 or 2n2

√
6 = m2 − 2mn

√
5.

Therefore,

n
√
6 +m

√
5 =

m2

2n
∈ Q.

Then

6n2+5m2 +2nm
√
30 =

m4

4n2
and

√
30 =

1

2nm

(

m4

4n2
− 6n2 − 5m2

)

=
p

q
∈ Q.

Again we take p ∈ Z and q ∈ N with (p, q) = 1; we in fact know p ∈ N. Then

30q2 = p2,

so p divides 30q2 = (2)(3)(5)q2
1
q2
2
· · · q2k where q has prime factorization q = q1q2 · · · qk,

each qj for j = 1, 2, . . . , k is prime, but the prime factors q1, q2, . . . , qk are not neces-
sarily distinct. If p similarly has prime factorization p1p2 · · · pℓ, then p1 also divides
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30q2 = (2)(3)(5)q2
1
q2
2
· · · q2k. Clearly, p1 must also divide q2

1
q2
2
· · · q2k, but then p1 is

a common factor of p and q, and this is a contradiction because p and q have no
commone factors.

To see this a slightly different way, one can assert first, based on the condition
(p, q) = 1, that p1 6= qj for j = 1, 2, . . . , k. Therefore,

p1 ∈ {2, 3, 5}\{q1, q2, . . . , qk}.

That is,
abq2 = p1p

2

2
· · · p2ℓ

where {a, b} = {2, 3, 5}\{p1}. This is a contradiction because we know p1 does not
divide abq2.

Notes: Gelca and Andrescu improve/simplify the argument given above by start-
ing the analysis of the relation 30q2 = p2 by dividing by the prime factor 2: It must
be the case that 2 divides p. Therefore,

(2)(15)q2 = (2)2(p/2)2 or 15q2 = 2(p/2)2.

It then follows that 2 divides q, so p and q have the common factor 2 contradicting
(p, q) = 1. They refer to this as “Pythagoras’ method for proving

√
2 is irrational.”

Perhaps a bit cleaner presentation may be based on the observation that typical
algebraic manipulations of rational numbers give rational numbers, that is, the ratio-
nal numbers Q is a field, so Q is closed under the operations of arithmetic. Thus,
if √

2 +
√
3 +

√
5 = r ∈ Q

then

2 + 2
√
6 + 5 = r2 − 2r

√
5 + 5 so that

√
6− r

√
5 =

r2

2

and

6− 2r
√
30 + 5r2 =

r4

4
and

√
30 =

1

2r

(

6 + 5r2 − r4

4

)

∈ Q.

One may then proceed with the assumption

√
30 =

p

q
∈ Q

and obtain a contradiction as above.
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More lengthy or less clean routes to the same conclusion
√
30 ∈ Q may be followed

by grouping a different way before squaring, for example,

√
2 +

√
5 = r −

√
3

or not grouping at all:

2 + 3 + 5 + 2
√
6 + 2

√
10 + 2

√
15 = r2

and squaring again with

√
6 +

√
10 +

√
15 = s =

1

2
(r2 − 10)

so that
31 + 2

(

2
√
15 + 3

√
10 + 5

√
6
)

= s2.



Chapter 2

Fall 2024

Here is a record of some problems considered duing the Fall semester of 2024.

2.1 Thursday August 22, 2024,

5PM to 7PM Skiles 255

I think I started with “proof by contradiction” as a kind of subject from Gelca and
Andrescu. Perhaps I started with suggesting someone show the following:

There are infinitely many primes.

This is apparently called Euclid’s theorem. (Who knew?)

A more interesting problem is given as an example by Gelca and Andrescu. The
version I posed is a modified version which is even a little harder I think.

If

P (x) = a0 + a1x+ · · ·+ anx
n

is a polynomial with P (j) a prime number for j = 1, 2, 3, . . ., then P is a
constant polynomial.

I pointed out that the version posed by Gelca and Andrescu with P (0) included as a
prime value is easier.

I think that is more or less what we talked about during the first meeting.

9



10 CHAPTER 2. FALL 2024

2.2 September 29

2.2.1 Induction

On this day we considered showing the sum of the first n natural numbers is given by

n
∑

j=1

j =
n(n + 1)

2
.

This is sometimes called Gauss’ formula; it can be proved by induction.
We also considered similar formulas for squares

n
∑

j=1

j2 =
n(n + 1)(2n+ 1)

6
.

and cubes
n
∑

j=1

j3 =

(

n
∑

j=1

j

)2

=
n2(n+ 1)2

4
.

A more interesting induction problem was Fermat’s little theorem:

If p is a prime number and n is a positive integer, then

p
∣

∣ np − n.

2.2.2 Probability

Problem B4 from the 1985 Putnam exam was proposed by (I believe) Shikhar Ahuja:

If a point P is chosen “at random” on the unit circle S1 = {(x, y) ∈ R2 :
x2 + y2 = 1}, and another point Q is chosen “at random” in the unit disk
B1(0) = {(x, y) ∈ R2 : x2 + y2 < 1}, what is the “probability” that the
coordinate rectangle1 having the segment PQ as diagonal lies entirely in
the closed disk B1(0) = B1(0) ∪ S1?

Madeline Greco offered the following solution:

1i.e., rectangle with sides parallel to the coordinate axes
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The answer is the average value of the probability Π that given P ∈ S1 the
rectangle lies in B1(0). Taking P = (cos t, sin t) with 0 ≤ t < 2π, the average is

1

2π

∫

2π

0

Π dt,

and the probability Π is the area of the rectangle determined by P and −P divided
by the area of the disk:

Π =
4| cos t sin t|

π
.

Thus the answer is

2

π2

∫

2π

0

| cos t sin t| dt = 8

π2

∫ π/2

0

cos t sin t dt

=
4

π2

∫ π/2

0

sin(2t) dt

= − 2

π2
cos(2t)∣

∣

π/2

t−0

=
4

π2
.

I attempted to offer an alternative to Madeline’s “average” explanation by sug-
gesting the use of some form of the law of joint probability and the law of total
probability. Thus, it is perhaps possible to think of the answer rather as a sum of the
probabilities associated with choices of points P around S1, or more properly intervals
partitioning S1 rather than their average. Specifically, if A1, A2, . . . , Ak is a partition
of S1 by small arcs with each arc Aj containing a point Pj for j = 1, 2, . . . k, then
for any P chosen in Aj (my suggestion is) the probability associated with the square

determined by P and Q falling within B1(0) is approximately

Πj =
4| cos tj sin tj |

π

where Pj = (cos(tj), sin(tj)). Thus, by the “law of joint probability,” the prob-
ability that P is chosen in Aj and the rectangle determined by P and Q is in the
closure of the disk is (approximately) the product

lengthAj

2π
Πj .
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Summing these values according to the “law of joint probability”

k
∑

j=1

lengthAj

2π
Πj =

k
∑

j=1

lengthAj

2π

4| cos tj sin tj|
π

=
2

π2

k
∑

j=1

| cos tj sin tj| lengthAj .

The last expression is a Riemann sum for the integral

2

π2

∫

2π

0

| cos t sin t| dt

suggested by Medeline as an average. It is certainly true that the Riemann sum
converges to the integral as the “norm” of the partitition, that is

max{length(Aj) : j = 1, 2, . . . , k}

tends to zero. There is another assumption here however, namely that the limiting
value of the sums converges to the desired probability value.

2.3 September 5

2.3.1 Main Problem

I believe Wesley Lu suggested the following problem from the 2019 Asia-Pacific Math
Olympiad which was the first problem on that exam:

Find all functions f : N → N satisfying

f(n) +m divides n2 + f(n)f(m) for all n,m ∈ N.

Several people made contributions and Wesley gave a hint. Here is some kind of
summary solution with comments/notes.
STEP 1. Taking n = p prime and m = f(p) the divisibility condition gives some
k ∈ N for which

2kf(p) = p2 + f(p)f(f(p)).

This means
[2k − f(f(p))]f(p) = p2.
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That is, f(p) divides p2. Since p is prime, this means f(p) = 1 or f(p) = p or
f(p) = p2.
STEP 2. If f(p) = 1 for some prime, then taking m = n = p in the original relation
gives

k(1 + p) = p2 + 1

for some k = k(p) ∈ N. Clearly k > 1, and it follows that

(k − 1)(1 + p) = p2 − p = p(p− 1).

This is a contradiction because there can be no factor of 1 + p on the right. In
particular, 1 + p is not divisible by p, so we know k − 1 must be divisable by p. This
implies

(

k − 1

p

)

(1 + p) = p− 1,

but this is nonsense because the left side here is larger than p−1, specifically p+1 >
p− 1 and (k − 1)/p ≥ 1. Therefore, we know it is not the case that f(p) = 1.
STEP 3. If f(p) = p2, then we can again take m = n = p in the original relation so
that

k(p2 + p) = p2 + p4 or k(p+ 1) = p(p2 + 1)

for some k = k(p) ∈ N. Again k > 1. It follows that p must divide k. Writing
ℓ = k/p ∈ N, one finds

ℓ(p+ 1) = p2 + 1.

Here ℓ > 1 and
(ℓ− 1)(p+ 1) = p2 − p = p(p− 1).

As observed in STEP 2 there is no factor of p+ 1 on the right.
STEP 4. We conclude from the contradictions of STEP 2 and STEP 3 that
f(p) = p whenever p is a prime number.

We note also that the identity funtion idN : N → N by idN(n) = n for all n does
satisfy the original condition of the problem with

idN(n) +m = n +m and n2 + idN(n)idN(m) = n(n +m)

so that the latter is divisible by the former. Thus, f(n) = idN(n) is one possible
function satisfying the required condition.

It is perhaps natural to conjecture at this point that the identity is the only such
function. At any rate that is what we proceed to show:



14 CHAPTER 2. FALL 2024

Take n = p prime and m ∈ N arbitrary. Then the original relation reads

k(p+m) = p2 + pf(m) = p[p+ f(m)]

where k = k(p,m) ∈ N. Consider m fixed so k = k(p), and consider primes p for
which p > m. For these primes, p does not divide p + m, so p must divide k and
setting ℓ = k/p ∈ N we find

ℓ(p+m) = p + f(m)

Since p+ f(m) ≥ p+m, we know f(m) ≥ m. Thus, either f(m) = m for f(m) > m.
In the latter case, ℓ > 1 and we can write

(ℓ− 1)(p+m) = f(m)−m.

In particular, since ℓ− 1 ≥ 1, this means

(p+m) ≤ f(m)−m

for all large enough primes. Since the right side f(m)−m is fixed independent of the
prime p, we obtain a contradiction for p any prime larger than f(m)− 2m.

We conclude f(m) = m for all m ∈ N and f = idN. �

Note on f(1) The argument of STEP 4 shows f(1) = 1 in particular.
Let’s consider this special case: Taking n = p prime and m = 1 the relation

satisfied by f gives
k(p+ 1) = p2 + pf(1) = p[p+ f(1)].

The argument is slightly simpler at this point. We know immediately that p does not
divide p+ 1 and therefore must divide k. With ℓ = k/p and

ℓ(p+ 1) = p+ f(1),

we also know immediately that either f(1) = 1 or f(1) > 1. In the latter case ℓ > 1
and

(ℓ− 1)(p+ 1) = f(1)− 1.

This means p + 1 ≤ f(1) − 1 for all primes, and we get a contradiction. Of course,
we can simply say f(1) ≥ 1 so that ℓ − 1 ≥ 0. The cases then split as ℓ = 1, in
which case f(1) = 1 directly from the relation, and ℓ > 1, in which case we get the
contradiction.
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Taking m = n = 1 in the original condition leads to the conclusion f(1) = 1 more
directly:

k[f(1) + 1] = 1 + [f(1)]2.

If f(1) = 1, then k = 1, but if f(1) > 1, then k > 1 and we can subtract f(1) + 1
from both sides to obtain

(k − 1)[f(1) + 1] = [f(1)]2 − f(1) = f(1)[f(1)− 1].

This means k − 1 must be divisible by f(1) or (k − 1)/f(1) = ℓ ∈ N and

ℓ[f(1) + 1] = f(1)− 1

which is nonsense because f(1)− 1 < f(1) + 1 ≤ ℓ[f(1) + 1].

Note on STEP 1: Taking n a general natural number and m = f(n) leads to the
more general assertion f(n) divides n2 for all n ∈ N. We only used this assertion in
the case n = p is prime, and in fact Wesley gave the nice hint to try to use this more
general divisibility in the case when “n2 has a minimal number of divisors.”

Here is the general argument: The divisibility condition gives some k ∈ N for
which

2kf(n) = n2 + f(n)f(f(n)).

This means

[2k − f(f(n))]f(n) = n2.

That is, f(n) divides n2.

NOTE on divisibility: The condition m divides n for any integers in Z means there
exists an integer k ∈ Z such that km = n. When restricted to natural the numbers
n,m ∈ N the condition of divisibility is often expressed as

m
∣

∣ n,

and this kind of divisibility has several properties we have used above and are nice to
know.

First of all if m
∣

∣ n, then we always know m ≤ n with m = n if and only if
k = 1. In particular if km = n with k > 1, then we know m

∣

∣ n −m. We used this
observation several times above.
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Another simple fact about divisibility is that if m
∣

∣ n = n1n2 for some n1, n2 ∈ N

with m and n1 relatively prime, i.e., (m,n1) = 1, then m
∣

∣ n2. To see this, write
km = n1n2. Since (m,n1) = 1, it must be that n2

∣

∣ k, thus,

k

n1

m = n2.

Another general observation is that two consecutive integers are relatively prime.
We used this when one of the integers is a prime number. If m and m + 1 have a
common factor ℓ > 1, then we can write m = k1ℓ and m+ 1 = k2ℓ. This means

1 = m+ 1−m = (k2 − k1)ℓ > 1

which is a contradiction. In particular, p + 1 and p are relatively prime as are p− 1
and p when p is prime. More generally, if p is a prime and m < p, then p does not
divide p+m. In fact,

p+m

p
= 1 +

m

p

so this observation follows directly from the division (algorithm).
There may be some other handy facts we have used, but I’m not seeing them at

the moment. You can perhaps run across them by attempting a solution using the
notation m

∣

∣ n as seemed to be the preference for the arguments presented in class. It
is a good exercise to go back and justify carefully manipulations using this notation;
if you are not careful with it, you can make errors. For example, it was asserted in
class that if f(n)

∣

∣n2 for an integer m = n, then m = n or m = n2. This is not
correct, and I think even for a prime n = p we neglected to consider the possibility
that m = f(p) = 1, though I did consider that possibility in the solution above.

2.3.2 Another similar problem

Wesley’s problem reminded me of a problem mentioned by Gelca and Andrescu, and
I offered a simpler version of that problem as an alternative:

If f : N → N is strictly increasing, that is, f(m) < f(n) for m,n ∈ N with
m < n, f(2) = 2, and

f(mn) = f(m)f(n) for all m,n ∈ N,

then show f(n) = n for all n ∈ N, that is f is the identity function on N.
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I already had a suspicion that the answer to Wesley’s problem was that the only such
function was the identity function, but I didn’t know how to prove it. This one really
is much easier however.

I’d like to ask a similar question: What is the motivation for the condition

f(n) +m divides n2 + f(n)f(m)

in the Asia-Pacific problem?
Wesley asked me about the motivation for the condition f(mn) = f(m)f(n). A

function satisfying this condition is said to be “multiplicative,” and there are various
functions in number theory that are multiplicative including something called Euler’s
totient function, which you can look up. Gelca and Andrescu aslo mention that Paul
Erdös proved a more general version of the assertion above for general increasing

The actual version from Gelca and Andrescu doesn’t give the condition above
but rather that the condition f(mn) = f(m)f(n) holds when m and n are relatively
prime, which is the same thing as saying m and n have no common divisors except
k = 1 or that the greatest common factor of m and n is k = 1. This condition is also
expressed by writing (m,n) = 1 or GCD(m,n) = 1. I have never seen it expressed
as GCF (m,n) = 1, but I don’t know why.

2.3.3 Another relatively easy problem

I also suggested another simple induction problem from Gelca and Andrescu:

Show that if n ∈ N and x ∈ R, then

| sin(nx)| ≤ n| sin x|.

No one gave a solution for this.


