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Given nine planar regions of unit area whose union has area 5, show that some pair of the regions
intersect in an area at least 1/9.

�e approach given in class was to incrementally union the di�erent areas and apply the
condition in the problem statement. While this is certainly a valid approach, what immediately
jumped out to me was an approach using an idea in combinatorics known as the Principle of
Inclusion-Exclusion, or PIE. �is is a method by which to �nd the union of sets by adding the
individual components and then dealing with the intersections.

To understand this idea, consider the following Venn diagram with three sets, A,B, and C
(credit to Wikimedia commons):

In order to �nd |A ∪ B ∪ C|, we would need to sum each of the regions within the diagram.
However, let us approach this naively �rst. If we simply sum the areas of A,B, and C , then we
will overcount, but we will deal with that momentarily. We have:

|A ∪B ∪ C| = |A|+ |B|+ |C| − ε

However, here we have overcounted the pairwise intersections of the sets, since |A|+ |B|− |A∩
B| = |A ∪B|. �us to compensate, let us subtract the pairwise intersections out. We now have:

|A ∪B ∪ C| = |A|+ |B|+ |C| − (|A ∩B|+ |B ∩ C|+ |A ∩ C|) + ε′

What about the intersection of all three sets? Well consider the LHS and the RHS of the latest
equation above. On the le�, within the union of all three sets, the intersection |A ∩ B ∩ C| is
”counted” 1 time. On the right side, when we sum |A|, |B|, and |C|, we ”count” |A ∩ B ∩ C|
three times, since it is contained within each of those sets. However, we then subtract the three
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pairwise intersections of the sets, and thus we subtract |A∩B∩C| three times. �erefore, on the
right side of our current equation, we are not counting the triple intersection at all! So in order
to complete our counting, we can simply add it back in to the RHS as follows:

|A ∪B ∪ C| = |A|+ |B|+ |C| − (|A ∩B|+ |B ∩ C|+ |A ∩ C|) + |A ∩B ∩ C|.

�is is the Principle of Inclusion-Exclusion, since at each step we had to decide what to
include and what to exclude. A nice way to visualize this if the math above was confusing is the
following image (credit to Brilliant):

�is formula can be generalized for n sets as follows:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
S∈(P(N)/∅)

(−1)(|S|+1)

∣∣∣∣∣⋂
s∈S

As

∣∣∣∣∣
= (|A1|+ · · ·+ |An|)− (|A1 ∩ A2|+ · · ·+ |An−1 ∩ An|) + · · ·+ (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|

We can now �nally apply this to the problem at hand. Denote the 9 regions as A1 through A9.
We are given that |A1 ∪ · · · ∪ A9| = 5. By the Principle of Inclusion-Exclusion, we have:

|A1 ∪ · · · ∪ A9| = (|A1|+ · · ·+ |A9|)− (|A1 ∩ A2|+ · · ·+ |A8 ∩ A9|) + · · ·+ |A1 ∩ · · · ∩ A9|

5 = 9− (|A1 ∩ A2|+ · · ·+ |A8 ∩ A9|) + · · ·+ |A1 ∩ · · · ∩ A9|
=⇒ |A1 ∩ A2|+ · · ·+ |A8 ∩ A9| = 4 + ε

where
ε = (|A1 ∩ A2 ∩ A3|+ . . . )− · · ·+ |A1 ∩ · · · ∩ A9|

We see that ε must be positive, since a�er we take the ”triowise” (groups of three sets) inter-
sections and sum them together, which is either 0 or positive, in each successive step of the
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inclusion-exclusion process we cannot subtract away everything such that ε becomes less than
0. �us we see that

|A1 ∩ A2|+ · · ·+ |A8 ∩ A9| ≥ 4

From here, there are many ways to proceed (as an exercise, try using the Pigeonhole Principle).
For simplicity, we will proceed by contradiction. Suppose the opposite of the problem, i.e. |Ai ∩
Aj| < 1

9
for 1 ≤ i, j ≤ 9, i 6= j. We see that the LHS of our inequality above has

(
9
2

)
= 36

elements. By the assumption, this means

|A1 ∩ A2|+ · · ·+ |A8 ∩ A9| < 36 · 1
9
= 4

�us, we have a condradiction, since the sum of the pairwise intersections cannot be both larger
than 4 and less than 4, and we are done.
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