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1 Statement

Given four complex numbers z1, z2, z3, z4 ∈ C\{1} with |zj| = 1, j = 1, 2, 3, 4, it is
not possible that

z1 + z2 + z3 + z4 − z1z2z3z4 = 3. (1)

2 Comments

I’ve been working on this problem off and on all this semester, and it seems appropri-
ate that I polished off the details of what seems to be a complete and clear solution
during the 6 hours of testing during the 2022 exam given on Saturday December 3. I
will attempt to present my solution in detail below. This solution is rather different
from the published solutions I’ve tried to read which seem to me to be either incom-
plete, unclear, or incorrect (I’m not sure which). I’ll also prove the generalizations
we’ve discussed before (at least some of them). In particular, I’ll show the following:

Given n ∈ {2, 3, 4, . . .} and n complex numbers z1, z2, . . . , zn with |zj| = 1
for j = 1, 2, . . . , n

n
∑

j=1

zj −
n
∏

j=1

zj 6= n− 1 (2)

unless #{j : zj 6= 1} ≤ 1, that is, if equality holds in (2) then all the
complex numbers, except at most one, must be 1 ∈ C.

You may recall the even stronger assertion/conjecture from which this will follow:
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If n ≥ 2 and z1, z2, . . . , zn ∈ ∂B1(0) ∈ C, then

∣

∣

∣

∣

∣

n−
n
∑

j=1

zj

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

1−
n
∏

j=1

zj

∣

∣

∣

∣

∣

with equality if and only if #{j : zj 6= 1} ≤ 1.

Here B1(0) = {z ∈ C : |z| < 1} denotes the open unit disk in the complex plane, and
∂B1(0) = {z ∈ C : |z| = 1} is the unit circle. This formulation has associated with it
a nice geometric picture, and we will solve the original problem by proving this.

2.1 Geometric Interpretation(s)

This problem is about the sum and product of a collection of complex numbers of
unit length. The sum of complex vectors a+ bi and c+ di can be visualized the same
way one visualizes vector addition of vectors (a, b) and (c, d) in R2. Thus, the sum

n
∑

j=1

zj

can be visualized as (the end of) a path starting at the origin and ending somewhere
inside (or on) the circle of radius n. By the triangle inequality (and using the case
of equality in particular) one can see that the sum will actually be on the boundary
circle

{z ∈ C : |z| = n}
if and only if all the complex numbers are the same.

Exercise 1 Show that given n complex numbers z1, z2, . . . , zn ∈ ∂B1(0) ⊂ C,

∣

∣

∣

∣

∣

n
∑

j=1

zj

∣

∣

∣

∣

∣

= n if and only if z1 = z2 = · · · = zn.

We will come back to (and use) the special case where z1 = z2 = · · · = zn later.
Figure 1 shows a visualization of the sum of 5 complex numbers. The product

n
∏

j=1

zj = z1z2 · · · zn
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also has a geometric interpretation. It is a little more difficult to “see,” and in some
sense the product in this problem is the more mysterious and difficult quantity with
which one must deal. The geometric interpretation of a product comes, basically,
from trigonometric addition formulas. For example, given z1 and z2 in ∂B1(0) ⊂ C,
there are unique angle θ1 and θ2 in the interval [0, 2π) with

z1 = cos θ1 + i sin θ1 and z2 = cos θ2 + i sin θ2.

If we consider the product z1z2 we get

z1z2 = (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2).

Thus, we say “the arguments add up” when we take a product. In the example shown
in Figure 1 the arguments of the 5 complex numbers used are

π

6
,
π

3
, 0, −π

4
, and

π

6
.

Notice that the sum of these arguments is

5π

12
.

In this case, we can imagine the point on ∂B1(0) representing the partial products

k
∏

j=1

zj , j = 1, 2, . . . , n

as moving (back and forth) in the upper half circle and coming to rest at the red
point in the figure. In general, the sum of the arguments may be more than 2π, and
so we should visualize the partial products as (possibly) winding all the way around
∂B1(0), maybe several times. The point is, it may be difficult to visualize where the
product

n
∏

j=1

zj

ends up on the unit circle.
The product, however will always be on the unit circle, and once we have located

the product, the distance from the product to the point z = 1 and the distance from
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Figure 1: The sum and product of 5 complex numbers and their distances to 5 and
1 respectively.

the sum to the point z = n are easy to visualize; these are the lengths of the red
segments in the figure. The conjecture is that the distance from n to the sum is
always at least as great as the distance from z = 1 to the product. You can see from
the figure that even for 5 relatively widely varying arguments, these two lengths can
be pretty close to each other, so one might expect this conjecture (if it is true) to be
somewhat difficult to prove.

Before continuing, let me make a couple more observations about the product and
the arguments introduced above in particular: We took the arguments (uniquely) on
the interval [0, 2π), but one could pick any (half open) interval of length 2π and also
get a unique argument for a complex number. In particular, another natural choice is
the interval (−π, π], and this latter choice is more compatible the argument we give
below. Also, if we take arguments θ1, θ2, . . . , θn associated with our complex numbers
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z1, z2, . . . , zn, then Euler’s formula holds:

zj = cos θj + i sin θj = eiθj .

This gives another way to see that the product satisfies

n
∏

j=1

zj = ei
∑n

j=1
θj = cos

(

n
∑

j=1

θj

)

+ i sin

(

n
∑

j=1

θj

)

.

With this notation, notice that we have for the sum

n
∑

j=1

zj =
n
∑

j=1

cos θj + i
n
∑

j=1

sin θj .

Finally, the absolute value of a complex number a + bi is the same as the Euclidean
norm of the vector (a, b) ∈ R2, so we can rephrase our conjecture as a question in
which the complex numbers play no explicit role. More precisely, if we consider the
function f = fn : [∂B1(0)]

n → C and g = gn : [∂B1(0)]
n → C by

f(z1, z2, . . . , zn) =
n
∑

j=1

zj and g(z1, z2, . . . , zn) =
n
∏

j=1

zj

respectively, then the conjecture asserts that for n ≥ 2 the function h : [∂B1(0)]
n → R

given by
h(z1, z2, . . . , zn) = |n− f |2 − |1− g|2

is nonnegative and vanishes if and only if #{j : zj 6= 1} ≤ 1. This is equivalent to
asserting (for n ≥ 2) the function H = Hn : (−π, π]n → R given by

H(θ1, θ2, . . . , θn) =

(

n−
n
∑

j=1

cos θj

)2

+

(

n
∑

j=1

sin θj

)2

−
[

1− cos

(

n
∑

j=1

θj

)]2

− sin2

(

n
∑

j=1

θj

)

= n2 − 2n
n
∑

j=1

cos θj +

(

n
∑

j=1

cos θj

)2

+

(

n
∑

j=1

sin θj

)2

− 2 + 2 cos

(

n
∑

j=1

θj

)

(3)
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satisfies H(θ1, θ2, . . . , θn) ≥ 0 with equality if and only if #{j : θj 6= 0} ≤ 1.
While we are on the topic of geometry, let us consider briefly the geometry of the

domains of the functions just introduced, namely [∂B1(0)]
n ⊂ Cn, or (geometrically)

equivalently [∂B1(0)]
n ⊂ (R2)n, and (−π, π]n ⊂ Rn. Actually, we lose nothing by

giving up the uniqueness of the argument in the real formulation:

Exercise 2 Consider the extension of the real function H of n variables above given
by the same formula (3) to all of Rn and to the closed cube [−π, π]n ⊂ Rn in particular.
Assume we can show this extension satisfies

H(θ1, θ2, . . . , θn) ≥ 0 on [−π, π]n (4)

with equality if and only if #{j : θj 6= 0} ≤ 1. Then show the original conjecture
holds. The advantage here is that the extension is a smooth function on all or R

n

and the closed cube [−π, π]n is a compact set on which H must attain a minimum.
Moreover, all the techniques of minimization from multivariable calculus are available
to us in the consideration of this question.

For n = 1, the domain ∂B1(0) considered either as the unit circle in the complex
plane C or the unit circle in the real plane R2 is quite easy to visualize: It is just a
circle. The conjecture is not about the case n = 1. In fact, the assertion does not
even hold when n = 1. The product of two circles [∂B1(0)]

2 = ∂B1(0) × ∂B1(0) is
topologically an object called a flat torus. Unfortunately, there is no nice geometric
representation (technically an isometric embedding) of such a torus as a surface in
three-dimensional space.1 The situation concerning geometric visualization only gets
worse for [∂B1(0)]

n for n > 2. Fortunately, our alternative domain [−π, π]n ⊂ Rn is
relatively easy to visualize at least in some respects. In particular, it is very easy to
understand this domain when n = 2 (a square domain) and when n = 3 (a cube).
We will use this circumstance to our advantage in the solution.

2.2 Two special cases

Before we briefly review why the generalization/conjecture implies the assertion of the
original problem, let us briefly consider two spacial cases. The first special case is when
all but (at most) one of the arguments is zero. This is illustrated on the left in Figure 2.
In this case, it is geometrically clear (from the figure) that H(θ1, 0, . . . , 0) = 0. It is

1There is something like a visualization of a “not so nice” embedding of this two-dimensional torus
in R3, but I can’t see how it is going to help us much. If you’re curious, you can look at a video which
has been created of (an approximation of) this torus at https://www.youtube.com/watch?v=RYH
KXhF1SY.
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Figure 2: The case when n = 4 with z2 = z3 = z4 = 1 (left) and the case when n = 3
and z1 = z2 = z3 (right).

also clear from the formula.
The other special case I want to consider was rather instrumental in some way

for me in solving the problem, and it is used in the solution, though most of the
approaches it inspired did not work—or I could not get them to work. This is the
case when all the arguments are the same, i.e., z1 = z2 = · · · = zn. This is illustrated
in Figure 2 on the right, and it is not entirely clear (to me) geometrically that the
desired inequality holds. In fact, if one is not careful, then even this special case can be
somewhat difficult to see and leads to rather non-obvious trigonometric inequalities,
like

n2(1− cos θ) > 1− cos(nθ) for 0 < θ <
π

2
. (5)

Exercise 3 Verify (5) directly.

If one sticks to the complex formulation, however, the desired result is relatively
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straightforward. We can start with the observation that

|n− nz1| − |1− zn1 | = n|1− z1| − |1− z1||1 + z1 + z21 + · · ·+ zn−1
1 |

= |1− z1|(n− |1 + z1 + z21 + · · ·+ zn−1
1 |) (6)

≥ 0

by the triangle inequality since

|1 + z1 + z21 + · · ·+ zn−1
1 | ≤

n−1
∑

k=0

|zk1 | ≤ n.

It only remains to consider the case of equality. If the quantity in (6) vanishes, then
z1 = 1. To see this, note first of all that if the first factor |1 − z1| vanishes, then
clearly z1 = 1. If the second factor vanishes, then we can apply a result similar to
that stated in Exercise 1:

Exercise 4 For n ≥ 2, if w2, w3, . . . , wn ∈ ∂B1(0) ⊂ C and

∣

∣

∣

∣

∣

1 +
n
∑

j=2

wj

∣

∣

∣

∣

∣

= n, (7)

then wj = 1 for j = 2, 3, . . . , n.

Solution: Recall that equality holds in the complex triangle inequality |z + w| ≤
|z| + |w| if and only if either one of the numbers z, w is zero or there is some c > 0
for which w = cz. This means that in the case n = 2 we must have w2 = c > 0. That
of course means w2 = 1 because |w2| = |c| = c = 1. For n > 2, condition (7) implies

n =

∣

∣

∣

∣

∣

1 +

n
∑

j=2

wj

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∑

j=2

wj

∣

∣

∣

∣

∣

+ 1.

Thus,
∣

∣

∣

∣

∣

n
∑

j=2

wj

∣

∣

∣

∣

∣

= n− 1

and Exercise 1 applies. We conclude

w2 = w3 = · · · = wn, (8)
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and
|1 + (n− 1)w2| = n.

Again, the case of equality in the triangle inequality gives us some c > 0 for which
(n−1)w2 = c. This means of course that w2 = 1, because w2 is positive and |w2| = 1.
In view of (8), we have shown 1 = w2 = w3 = · · · = wn as claimed.

Returning to the case where the second factor in (6) vanishes so that

|1 + z1 + z21 + · · ·+ zn−1
1 | = n

we can apply the assertion of Exercise 4 with

w2 = z1, w3 = z21 , . . . , wn = zn−1
1

to conclude that, in particular, z1 = w2 = 1.

2.3 Solution using the conjecture

If we assume, by way of contradiction that there are n complex numbers z1, z2, . . . , zn ∈
∂B1(0) ⊂ C with n ≥ 2 and

n
∑

j=1

zj −
n
∏

j=1

zj = n− 1,

then

n−
n
∑

j=1

zj = 1−
n
∏

j=1

and

∣

∣

∣

∣

∣

n−
n
∑

j=1

zj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1−
n
∏

j=1

∣

∣

∣

∣

∣

.

By the conjecture this equality implies all but one of the complex numbers are 1 ∈ C.
This is a contradiction because it is assumed none of them are 1 ∈ ∂B1(0) ⊂ C.

3 Proof of the Conjecture

3.1 The special case n = 2

We are going to use induction (and calculus) to analyze the function

H : [−π, π] → R
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defined in (3), and the base case is n = 2. The induction is straightforward, and I’ll
mention it when we come to it, but the more interesting part is a trick involved in the
calculus—which was really the key to solving this problem (at least in my solution).

There are several ways to establish

|2− z1 − z2| ≥ |1− z1z2| for |z1| = |z2| = 1

with equality if and only if one of z1 or z2 is 1 ∈ C. Let’s focus on the equivalent real
formulation because that sets us up with terminology and a bit of a feel for how the
argument is going to go in the general case. We have then the function

H(θ1, θ2) = 2−4(cos θ1+cos θ2)+ (cos θ1+cos θ2)
2+(sin θ1+sin θ2)

2+2 cos(θ1+ θ2).

We consider the values of this function on the closed square domain [−π, π]2 in R2.
The expression for H simplifies as

H(θ1, θ2) = 4− 4(cos θ1 + cos θ2) + 2 cos(θ1 − θ2) + 2 cos(θ1 + θ2)

= 4[1− (cos θ1 + cos θ2) + cos θ1 cos θ2].

Note that on the boundary square where θ2 = ±π we have

H(θ1,±π) = 8(1− cos θ1) ≥ 0

with equality only if θ1 = 0. Similarly, H(±π, θ2) ≥ 0 with equality only if θ2 = 0.
Thus, on ∂[−π, π]2 the function H takes strictly positive values except at the center
of each side of the square boundary.

Next we differentiate to find interior critical points. In particular, note that if
H were anywhere negative, then there would be an interior minimum point and the
gradient of H would have to vanish at that point. At all interior critical points
(θ1, θ2) ∈ (−π, π)2, there holds

1

4

∂H

∂θ1
= sin θ1 − sin θ1 cos θ2 = sin θ1(1− cos θ2) = 0

and similarly,
1

4

∂H

∂θ2
= sin θ2(1− cos θ1) = 0.

If sin θj = 0 for j = 1 or j = 2, then there is a critical point at (θ1, θ2). This means
that the entire coordinate axes consist of critical points. We know also that the
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function H vanishes along the coordinate segments within the square corresponding
to either z1 = 1 or z2 = 1. These segments on the coordinate axes have endpoints the
centers of the sides of the square boundary where the value of H as zero as we found
before. There are no other interior critical points. In fact, if θ1 6= 0, then sin θ1 6= 0
and we must have cos θ2 = 1. That means θ2 = 0 and z2 = 1.

So we have a pretty good picture of what happens when n = 2. In particular, it
gives us a proof that the value of H is strictly positive on the diagonals of the square
aside from the point (θ1, θ2) = (0, 0) at the origin. Explicitly,

H(θ1, θ1) = 4(1− 2 cos θ1 + cos2 θ1) = 4(1− cos θ1)
2

which only vanishes for −π ≤ θ ≤ π when θ = 0.

3.2 symmetry

It will be rather important for us later that the order of the particular values of
θ1, θ2, . . . , θn or correspondingly z1, z2, . . . , zn does not matter in various ways. This
is, on the one hand obvious because addition and multiplication are commutative and
associative. On the other hand, we may do well to give some formal structure to some
of the consequences and record some of the ones we will use below.

Lemma 1 (first symmetry lemma) Consider the case where θj0 takes a particular

value θ0 for one index j0 ∈ {1, 2, . . . , n} or correspondingly zj0 takes a particular value

z0. Let I = {1, 2, . . . , n} denote the collection of all the indices and let J0 = I\{j0}.
If σ : J0 → {1, 2, . . . , n− 1} is any one-to-one and onto function, then

H(θσ(1), θσ(2), . . . , θσ(n−1), θ0) = H(θ1, θ2, . . . , θn) and

h(zσ(1), zσ(2), . . . , zσ(n−1), z0) = h(z1, z2, . . . , zn).

Lemma 2 (second symmetry lemma) Consider the case where the angles θj take
one particular value Θ1 for a certain collection of indices j ∈ J ⊂ I = {1, 2, . . . , n}
and one other particular value Θ2 for all other indices j ∈ I\I, or correspondingly,

there are two values Z1, Z2 ∈ ∂B1(0) ⊂ C and (z1, z2, . . . , zn) is a point with

zj = Z1 for j ∈ J and zj = Z2 for j ∈ I\J .

11



For each j = 1, 2, . . . , n, let ej denote the standard unit basis vector in Rn. Then

H





∑

j∈J

Θ1ej +
∑

j∈I\J

Θ2ej



 = H

(

k
∑

j=1

Θ1ej +

n
∑

j=k+1

Θ2ej

)

and

h





∑

j∈J

Z1ej +
∑

j∈I\J

Z2ej



 = H

(

k
∑

j=1

Z1ej +

n
∑

j=k+1

Z2ej

)

where k = #J .

These results will simply make the computations a little notationally simpler at
certain points.

3.3 The boundary values

We are now considering the function H = Hn for n ≥ 3 on the n-dimensional cube
C = [−π, π]n and/or the function h = hn on [∂B1(0)]

n. As we did in the case n = 2,
let us assume θj0 = ±π for some j0 ∈ I = {1, 2, . . . , n} corresponding to one of the
“faces” of the cube C. It turns out that the algebraic expression is again a little easier
to manipulate if we take advantage of the complex notation/version. By the first
symmetry lemma the values

h(z1, z2, . . . , zn) with θj0 = ±π and zj0 = −1

attained for −π ≤ θj ≤ π for j ∈ J0 = I\{j0} are the same as the values

h(z1, z2, . . . , zn−1,±π) =
∣

∣

∣

∣

∣

n + 1−
n−1
∑

j=1

zj

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

1 +

n−1
∏

j=1

zj

∣

∣

∣

∣

∣

2

attained for −π ≤ θj ≤ π for j = 1, 2, . . . , n− 1. Notice first that

∣

∣

∣

∣

∣

n+ 1−
n−1
∑

j=1

zj

∣

∣

∣

∣

∣

2

=

(

n+ 1−
n−1
∑

j=1

cos θj

)2

+

(

n−1
∑

j=1

sin θj

)2

and
(

n + 1−
n−1
∑

j=1

cos θj

)2

= 4 + 2

(

n− 1−
n−1
∑

j=1

cos θj

)

+

(

n− 1−
n−1
∑

j=1

cos θj

)2

.
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Therefore, for n ≥ 3 we an aply the inductive hypothesis

(

n− 1−
n−1
∑

j=1

cos θj

)2

+

(

n−1
∑

j=1

sin θj

)2

≥
[

1− cos

(

n−1
∑

j=1

θj

)]2

+ sin2

(

n−1
∑

j=1

θj

)

= 2

[

1− cos

(

n−1
∑

j=1

θj

)]

.

to conclude
∣

∣

∣

∣

∣

n+ 1−
n−1
∑

j=1

zj

∣

∣

∣

∣

∣

2

≥ 4 + 2

(

n− 1−
n−1
∑

j=1

cos θj

)

+ 2

[

1− cos

(

n−1
∑

j=1

θj

)]

.

On the other hand,

∣

∣

∣

∣

∣

1 +
n−1
∏

j=1

zj

∣

∣

∣

∣

∣

2

=

[

1 + cos

(

n−1
∑

j=1

θj

)]2

+ sin2

(

n−1
∑

j=1

θj

)

= 2

[

1 + cos

(

n−1
∑

j=1

θj

)]

.

From this and the fact that for n ≥ 3

n− 1−
n−1
∑

j=1

cos θj ≥ 0, (9)

we see

h(z1, z2, . . . , zn−1,±π) ≥ 4 + 2

(

n− 1−
n−1
∑

j=1

cos θj

)

− 4 cos

(

n−1
∑

j=1

θj

)

≥ 0.

Finally, the equality h(z1, z2, . . . , zn−1,±π) = 0 implies equality in (9) and we can
then conclude cos θj = 1 and

θ1 = θ2 = · · · = θn−1 = 0 or z1 = z2 = · · · = zn−1 = 1. (10)
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In fact, if for some j0 we have cos θj0 < 1, then we get from equality in (9) that

0 = n− 2−
∑

j 6=j0

cos θj + 1− cos θj0 ≥ 1− cos θj0 > 0

(which is a contradiction).
Notice that the equality condition expressed by (10) specifies that the value of H

will be positive on the entire face θn = ±π with the exception of the intersection of
that face with the coordinate axes passing through it. A similar assertion holds then
for each of the other faces θj0 = ±π of ∂[−π, π]n.

We have established at this point that if H take any negative value (on the interior
(−π, π)n of the cube C = [−π, π]]n) then a minimum negative value must be attained
at some interior point in (−π, π)n, and the gradient of H must vanish at this point.

4 Interior values

At this point it is natural to compute the gradient of H and attempt to show the
value of H is nonnegative at all critical points and only takes the value H = 0 on
the coordinate axes within the cube C = [−π, π]]n. We will in fact show this, but
the approach is somewhat non-standard. In any case, we start by computing the
components of the gradient. Differentiating the expression in (3) with respect to θℓ
we find

1

2

∂H

∂θℓ
= n sin θℓ − sin θℓ

n
∑

j=1

cos θj + cos θℓ

n
∑

j=1

sin θj − sin

(

n
∑

j=1

θj

)

.

Thus, if these values vanish for ℓ = 1, 2, . . . , n we obtain the relations

sin θℓ

(

n−
n
∑

j=1

cos θj

)

+ cos θℓ

n
∑

j=1

sin θj = sin

(

n
∑

j=1

θj

)

for ℓ = 1, 2, . . . , n.

We know this system of equations has solutions along the axes where any n−1 of the
components in (θ1, θ2, . . . , θn) vanish. If we knew these were the only critical points,
then we would be done. Unfortunately, I do not know how to prove the solution set
of this system of equations is precisely along the axes. (I do not know if that is true
at the moment, but see my further comments after the solution is complete.)
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Let us think a little bit carefully about the relation

sin θℓ

(

n−
n
∑

j=1

cos θj

)

+ cos θℓ

n
∑

j=1

sin θj = sin

(

n
∑

j=1

θj

)

for a fixed ℓ. This is a rather crucial point in the solution, specifically because I don’t
know how to solve the system. We can think of this relation as saying there is a fixed
vector

(a, b) =

(

n
∑

j=1

sin θj , n−
n
∑

j=1

cos θj

)

∈ B2n(0) ⊂ R
2

and a fixed number

c = sin

(

n
∑

j=1

θj

)

∈ [−1, 1] ⊂ R

for which the unit vector (cos θℓ, sin θℓ) satisfies

(cos θℓ, sin θℓ) · (a, b) = c. (11)

Of course, a, b, and c depend on θℓ, but nevertheless these are the same numbers for
each ℓ ∈ {1, 2, . . . , n}. Notice, furthermore, that if the vector (a, b) = (0, 0), then

n−
n
∑

j=1

cos θj = 0,

and as we have noted before this means (θ1, θ2, . . . , θn) is the interior point 0 ∈ Rn.
We already know this is a critical point and H(0) = 0, so we can set this point aside
and assume (a, b) 6= (0, 0). Then we have a well-defined unit vector

u =
(a, b)√
a2 + b2

,

and we can write the relation (11) as

(cos θℓ, sin θℓ) · u =
c√

a2 + b2
. (12)

Geometrically, we conclude that if there exists a critical point (θ1, θ2, . . . , θn) for H
away from the origin in the interior (−π, π)n of the cube C, then there must exist a
well-defined unit vector u ∈ R

2 and a number

α =
c√

a2 + b2
∈ [−1, 1] ⊂ R

15



Figure 3: Finding θℓ geometrically (left) and analytically (right).

so that the projection of the unit vector (cos θℓ, sin θℓ) onto the line determined by u is
precisely αu. This situation is illustrated on the left in Figure 3. Given the projection
αu ∈ B1(0, 0) on the line determined by u, there can be at most two unit vectors
(cos θℓ, sin θℓ) satisfying the relation (12); there must be at least one. Furthermore,
the two possibilities for (cos θℓ, sin θℓ) have the form

(cos(φ± ψ), sin(φ± ψ)

where φ is the argument of u
u = (cosφ, sinφ)

and we can take φ ∈ (−π, π] and where ψ is some angle with ψ ∈ [0, π]. If ψ ∈ (0, π),
then there are two possibilities, if ψ = 0, then θℓ = φ ∈ (−π, π) for all ℓ, and if ψ = π
there is only one possible choice for θℓ ∈ (−π, π).

Notice that we have not concluded (and cannot conclude) from the equality

(cos θℓ, sin θℓ) = (cos(φ± ψ), sin(φ± ψ)

that θℓ ∈ {φ± ψ}. We can conclude, however, that

θℓ ∈ {φ± ψ + 2πk : k ∈ Z}

and from the point of view of calculating values of H , this amounts to the same
thing: At a critical point (θ1, θ2, . . . , θℓ) ∈ (−π, π)n\{0} the values of θℓ all lie in a
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set containing at most two angles: If there is a nonzero interior critical point, then
there exist fixed angles Θ1 and Θ2 satisfying −π < Θ1 ≤ Θ2 < π such that

θℓ ∈ {Θ1,Θ2} for j = 1, 2, . . . , n.

We should reach this same conclusion analytically. A way to do that is as follows:
Define the angle φ ∈ (−π, π] by

cosφ =
a√

a2 + b2
and sinφ =

b√
a2 + b2

.

That is, φ is the argument of u. Then the relation (12) can be written as

cos(θℓ − φ) = α.

Recall that we know |α| ≤ 1. We claim there are at most two solutions (and at least
one solution) of the equation

cos(t− φ) = α

with −π < t < π. We can write these solutions as Θ1 ≤ Θ2 with equality correspond-
ing to the case when there is only one solution. This conclusion is illustrated on the
right in Figure 3. Notice also the symmetry of the function cos(t − φ) with respect
to φ; there is a unique maximum of 1 at t = φ. This tells us the form of and how to
find the solutions Θ1 ≤ Θ2. Namely, there exist angles t1 and t2 with

t1 = φ− ψ∗ ≤ φ ≤ φ+ ψ∗ = t2 for some ψ∗ ∈ [−π/2, π/2]

such that
cos(tj − φ) = |α| for j = 1, 2.

These angles t1 and t2 are not indicated in Figure 3 and they may not be in the
interval (−π, π). However, if tj /∈ (−π, π) for either j = 1 or j = 2, then exactly one
of the angles tj ± 2π is in [−π, π]. Call this angle t∗j with t∗j = tj if tj ∈ (−π, π) for
j = 1, 2. That is to say, for j = 1, 2, set

t∗j =







tj , if tj ∈ (−π, π)
tj − 2π, if tj − 2π ∈ [−π, π]
tj + 2π, if tj + 2π ∈ [−π, π].

Now we consider various possibilities. If φ = 0 and α ≥ 0, then −π/2 ≤ t1 =
−ψ∗ ≤ ψ∗ = t2 ≤ π/2. We can take Θ1 = t1 and Θ2 = t2 to conclude θℓ = ±ψ∗ for
all ℓ.
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Similarly, if φ = 0 and α < 0, then t = Θ1 = t2 − π and t = Θ1 = t1 + π are the
unique solutions of cos(t− φ) = α and they must satisfy −π < Θ1 < −π/2 < π/2 <
Θ2 < π. We conclude that θℓ = ±(ψ∗ − π). Notice that in this case we cannot have
α = −1 because then there could be no t ∈ (−π, π) for which cos(t − φ) = cos t =
α = −1 and hence no crtical point.

We have considered all possibilities in which φ = 0.
If 0 < φ < π, then t1 ∈ (−π, π). If in this case we also have α ≥ 0, then one of the

solutions of cos(t− φ) = α is t = t1 = φ − ψ∗. If t2 < π, then t = t2 = φ+ ψ∗ is the
other solution of cos(t−φ) = α in (−π, π) is t2. We take in this case Θ1 = t1 < t2 = Θ2

and we have reached the desired conclusion

θℓ ∈ {Θ1,Θ2}. (13)

Notice that the determination of Θ1 and Θ2 here depended only on the disposition of
the aggregate values φ and α, i.e., on a, b, and c, but not individually on θℓ.

We should check our geometric intuition associated with the illustration on the
left of Figure 3: We have here Θ1 = φ − ψ∗ and Θ2 = φ + ψ∗ and θℓ is, up to an
additive multiple of 2π, of the form φ± ψ.

If φ > 0, α ≥ 0 and t2 = π, then there is only one solution of cos(t− φ) = α with
−π < t < π, namely t1, so we take Θ1 = t1 and reach the same conclusion (13). In
this case our geometric intuition holds as well: We have θℓ = φ− ψ∗ = φ− ψ, and it
is just the case that φ+ ψ = π and so is excluded.

If φ > 0, α ≥ 0 and t2 > π, then t∗2 = t2 − 2π satisfies −π < t∗2 ≤ t1 < π and
cos(t∗2 − φ) = α. The two solutions of cos(t− φ) = α are t∗2 and t1. We take Θ1 = t∗2
and Θ2 = t1 and (13) then holds.

As for the form θℓ = φ± ψ ± 2kπ, we have Θ1 = φ+ ψ∗ − 2π and Θ2 = φ− ψ∗.
If φ > 0 and α < 0 as shown in Figure 3, then t3 = t1 − π and t4 = t2 − π are

solutions of cos(t−φ) = α. These solutions are symmetrically spaced with respect to
the minimum at φ − π with t3 = φ− π − ψ∗, and t4 = φ− π + ψ∗ ∈ (−π, π). If also
t3 > −π as shown in the illustration, then we can take Θ1 = t3 ≤ t4 = Θ2 and (13)
holds with

Θ1 = φ− ψ∗ − π = φ+ (π − ψ∗)− 2π and Θ2 = φ+ ψ∗ − π = φ− (π − ψ∗).

If it happens that t3 = −π, then there is only one possibility for θℓ, namely, Θ2 =
t4 = φ+ ψ∗ − π. If t3 = t1 − π < −π, then t1 < 0 and we take Θ1 = t4 = φ+ ψ∗ − π
and

Θ2 = t3 + 2π = t1 + π < π.
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In this case,

Θ1 = φ+ ψ∗ − π = φ− (π − ψ∗) and Θ2 = φ− ψ∗ + π = φ+ (π − ψ∗).

It remains to consider the cases when −π < φ < 0. These are, of course, somewhat
symmetric to the cases we have considered above. We omit the details.

The important conclusion is this: If there is an interior critical point (θ1, θ2, . . . , θn) ∈
(−π, π)n for H , then there exist angles Θ1 and Θ2 satisfying

−π < Θ1 ≤ Θ2 < π

and there exists a subcollection J of the indices I = {1, 2, · · · , n} such that

θℓ = Θ1 for ℓ ∈ J , and

θℓ = Θ2 for ℓ ∈ I\J .

By the second symmetry lemma, the possible values taken H restricted to the set

Γ = ΓJ ,Θ1,Θ2

= {(θ1, θ2, . . . , θn) ∈ (−π, π) : θℓ = Θ1 for ℓ ∈ J , and θℓ = Θ2 for ℓ ∈ I\J }

are precisely the same as the values taken by G : (−π, π)2 → R by

G(Θ1,Θ2) = H

(

k
∑

j=1

Θ1ej +

n
∑

j=k+1

Θ2ej

)

where k = #J and ej is the j-th standard unit basis vector in R
n.

In this way, we are reduced to considering the values of G : [−π, π]2 → R on the
square domain [−π, π]2 ⊂ R2 for each k = 0, 1, . . . , n. Actually, we probably only
need to consider at least a full half of the values of k, but the important point is
that these values will include the values of H at each interior critical point. If we can
show they are all non-negative (with appropriate equality conditions) then we will
have proved the conjecture. We already know the boundary values of G are among
the boundary values of H and satisfy

G(±π,Θ2) ≥ 0 and G(Θ1,±π) ≥ 0 for (Θ1,Θ2) ∈ [−π, π]2.

Thus, we turn to the gradient and look for critical points. Note first that

G(Θ1,Θ2) = [n− k cosΘ1 − (n− k) cosΘ2]
2 + [k sinΘ1 + (n− k) sinΘ2]

2

− (1− cos[kΘ1 + (n− k)Θ2])
2 − sin2[kΘ1 + (n− k)Θ2].
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Therefore,

1

2k

∂G

∂Θ1
= [n− k cosΘ1 − (n− k) cosΘ2] sinΘ1 + [k sinΘ1 + (n− k) sinΘ2] cosΘ1

− (1− cos[kΘ1 + (n− k)Θ2]) sin[kΘ1 + (n− k)Θ2]

− sin[kΘ1 + (n− k)Θ2] cos[kΘ1 + (n− k)Θ2]

= [n− (n− k) cosΘ2] sinΘ1 + (n− k) sinΘ2 cosΘ1

− (1− cos[kΘ1 + (n− k)Θ2]) sin[kΘ1 + (n− k)Θ2]

− sin[kΘ1 + (n− k)Θ2] cos[kΘ1 + (n− k)Θ2],

and

1

2(n− k)

∂G

∂Θ2
= [n− k cosΘ1 − (n− k) cosΘ2] sinΘ2 + [k sin Θ1 + (n− k) sinΘ2] cosΘ2

− (1− cos[kΘ1 + (n− k)Θ2]) sin[kΘ1 + (n− k)Θ2]

− sin[kΘ1 + (n− k)Θ2] cos[kΘ1 + (n− k)Θ2]

= [n− k cosΘ1] sinΘ2 + [k sin Θ1 cosΘ2

− (1− cos[kΘ1 + (n− k)Θ2]) sin[kΘ1 + (n− k)Θ2]

− sin[kΘ1 + (n− k)Θ2] cos[kΘ1 + (n− k)Θ2].

If both of these quantities vanish, we can set them equal to each other, and this
gives, noticing the last terms (associated with the product) are identical and after
simplification

n sinΘ1 − (n− k) sin(Θ1 −Θ2) = n sinΘ2 + k sin(Θ1 −Θ2)

or
sinΘ1 − sin Θ2 = sin(Θ1 −Θ2).

This can be rewritten as

sinΘ1(1− cosΘ2) = sinΘ2(1− cosΘ1).

If either Θ1 = 0 or Θ2 = 0, we can assume by symmetry that Θn = 0 and conclude
for n ≥ 3 more generally that

H(θ1, θ2, . . . , θn−1, 0) =

∣

∣

∣

∣

∣

n− 1−
n−1
∑

j=1

eiθj

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

1−
n−1
∏

j=1

eiθj

∣

∣

∣

∣

∣

2
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is nonnegative and vanishes only if at least all but one of θ1, θ2, . . . , θn−1 vanishes.
This is by induction.

Consequently, we can turn to the case where neither Θ1 nor Θ2 vanishes and write

sinΘ1

1− cosΘ1

=
sinΘ2

1− cosΘ2

. (14)

Now the graph of the function

f(θ) =
sin θ

1− cos θ

on (−π, π) is shown in Figure 4, and it can be plainly seen that f is decreasing and
if (14) holds for some nonzero Θ1 and Θ2, then we must have Θ1 = Θ2. In fact,

Figure 4: The graph of sin θ/(1− cos θ).

f ′(θ) = − 1

1− cos θ

so it is easy to see the value of f decreases from f(−π) = 0 to −∞ as θ approaches
θ = 0 from the left, and f(θ) approaches +∞ as θ approaches θ = 0 from the right
and decreases to f(π) = 0 (just as indicated in the illustration).

This tells us that if there is a critical point for G, it has to be on the diagonal

{(Θ,Θ) : −π < Θ < π}
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of the square (−π, π)2. Also, any critical point of H would correspond to/result in
a critical point of G, so we know also that all critical points of H must lie on the
diagonal axes

{(θ, θ, . . . , θ) : −π < θ < π}
of the cube C = (−π, π)n.

We happen to have already checked these values as a special case associated with
the illustration on the right of Figure 2 in section 2.2 above. In fact we saw there
that all the diagonal values were positive except at the origin.

Thus we have shown G ≥ 0 with equality only if k = 1 or k = n− 1 and Θ1 = 0
in the former case and Θ2 = 0 in the latter case. That is, H is positive except for
precisely on the coordinate axes in the cube [−π, π]n, and the conecture holds. �

5 Follow up

There are mainly two things to say. First of all, it would be nice to know there are
no critical points on the diagonal axes. I suspect this is true, but I don’t see that
I’ve actually shown it. I just showed that the values are positive along the diagonal
axes, except at the origin. Maybe there is a local maximum or saddle point on a
diagonal. . . but I doubt it.

Second, there were a number of other conjectures (some of which seemed pretty
interesting) and were nominally stronger, i.e., harder to prove, than the conjecture
we’ve proved above. I guess those are true, and the methods used above can be
used to verify at least some of them. But I haven’t done that. These conjectures,
remember, are contained in the first set of notes I posted about this problem before
I could solve it.

This is IMHO a pretty neat inequality involving complex numbers. The field of
“several complex variables” is a notoriously difficult field. Whatever the case, I’m
glad to have laid this one to rest.

6 One more comment

Given a set J ⊂ I = {1, 2, . . . , n} the “diagonal sets”

D = DJ = {(θ1, θ2, . . . , θn) ∈ [−π, π]n : θi = θjfor i, j ∈ J and θi = θj for i, j ∈ I\I}

used in the proof of the conjecture above are interesting sets to consider. Just to be
clear about the analytic expression here, a point is in C if there are numbers Θ1 and
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Θ2 in [−π, π] for which

θj = Θ1 for j ∈ J , and

θj = Θ2 for j ∈ I\J .

The numbers Θ1 and Θ2 depend on the point (θ1, θ2, . . . , θn) ∈ D, but the set D does
not depend on the two numbers.

Exercise 5 Draw all the diagonal sets in the cube C = [−π, π]3 ⊂ R3 and analyze

the values of H on these subsets of C.

As far as the values go, due to the second symmetry lemma above we need only
consider the special diagonal sets

D = Dk = {(θ1, θ2, . . . , θn) ∈ [−π, π]n : θ1 = θ2 = · · · = θk, θk+1 = · · · = θn}

for k = 1, 2, . . . , n.
Incidentally, I’m not entirely happy with the statement(s) and application(s) of

the first and second symmetry lemmas above. I think they are at least sort of correct,
but I’m guessing there’s a much better way to say (precisely) what I’m trying to say
there. If you have any ideas, let me know.
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