
Putnam problem A3 (2020 exam)

John McCuan

September 17, 2022

1 Preliminary discussion:

I read over this problem and, as I often do, started to think about it liesurely, over
several hours, just going to write down ideas or details when they came to mind. Of
course, those taking the exam do not have the luxury to take such an approach, but
fortunately, I do not have to actually take the exam in a timed fashion. Unfortunately,
in this instance the problem I was thinking about in my head was not the same as
the stated problem A3 on the 2020 exam. It was this problem:

Misstatement

If a0 = π/2 and an = sin(an−1) for n = 1, 2, 3, . . ., then determine the conver-
gence/divergence of the series

∞
∑

n=0

an. (1)

A first thing to note about this series is that a1 = sin(π/2) = 1 < π/2 ≈ 3/2. It
follows that 0 < an < π/2 for n = 1, 2, 3, . . .. Therefore, the partial sums

k
∑

n=1

an

are increasing in k, and the only question is: Are these partial sums bounded above
or not?

Perhaps a second thing to note is that the terms are decreasing: an < an−1, so
the question is, in some sense, how quickly are they decreasing. My first inclination
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was that probably the series canverged, i.e., was bounded above. This inclination was
loosely based on the observation that sin x < x and the series

∞
∑

n=1

1

np

converges for p > 1 (and xp < x for 0 < x < 1 when p > 1). But then I drew this
picture:

Figure 1: The values of iterates of sine starting with 1 = sin(π/2) compared to y = x.

This made me realize two things. First of all, these iterates are getting extremely
close to y = x and second, I remembered, that for p > 1 the function f(x) = xp is
convex and not really close1 to y = x for 0 < x < 1, at least in the sense of growth—
more precisely, the derivatives y′ ≡ 1 and f ′(x) = pxp−1 are bounded away from one
another near x = 0, and f(x) = xp is much much smaller. This made me skeptical
about my first inclination and I started trying to prove divergence to infinity, i.e.,
that the sequence of partial sums is unbounded.

1I’ve not plotted f(x) = xp for p > 1 in Figure 1, but you might want to draw it in.
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Notice a1 = sin(π/2) = 1. Thus, in some sense, a2 = sin(1) is the first interesting
term to estimate. I know

1−
x3

3!
< sin x. (2)

In particular, sin(1) > 5/6. At this point, I figured I was going to have to (or at least
I decided to try to) compare the series in question to the harmonic series

∞
∑

n=1

1

n
= ∞.

Certainly it was true that a1 = 1 and a2 > 5/6 > 1/2. So then I tried an induction:
If I know ak > 1/k, then

ak+1 = sin(ak) >
1

k
−

1

6k3
=

6k2 − 1

6k2
.

So the question becomes: Is it true that

6k2 − 1

6k3
>

1

k + 1
?

This inequality would be implied by

6k3 < (k + 1)(6k2 − 1) = 6k3 + 6k2 − k − 1

which would be implied by the inequality

6k2 > k + 1.

This is clearly true for k ≥ 1 since 6k2−k−1 = (3k+1)(2k−1) and both the factors
are positive for k ≥ 1. So I had a (first) solution:

By induction an ≥ 1/n for n ≥ 1. Therefore,

∞
∑

n=0

an =
π

2
+

∞
∑

n=1

an ≥
π

2
+

1

n
= ∞.

But this bothered me a bit, though I imagined this was the solution the author
of the problem expected. One thing that bothered me was the first term a0 = π/2. I
wondered, in particular, if I could incorporate the first term, and with that thought
came something that seemed interesting:

a0 =
π

2
, a1 = 1 >

π

2

1

2
=

π

4
≈

3

4
, a2 = sin(1) >

5

6
>

π

2

1

3
.
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These are not tighter inequalities, but they do include a0 and suggest a pattern. More
precisely, I wondered about the (pretty) guess/conjecture:

an ≥
π

2

1

n+ 1
for n = 0, 1, 2, 3, . . . with strict inequality for n > 0. (3)

Obviously we have our base cases. So now I assume I know

ak ≥
π

2

1

k + 1
.

Then

ak+1 = sin(ak) >
π

2

(

1

k + 1
−

π2

24(k + 1)3

)

=
π

2

24k2 + 48k + 24− π2

24(k + 1)3
,

and the question becomes: Is it true that

24k2 + 48k + 24− π2

24(k + 1)3
>

1

k + 2
?

Or put another way, is it true that

24(k3 + 3k2 + 3k + 1) < (k + 2)(24(k2 + 2k + 1)− π2) ?

Since (k+2)(k2+2k+1) = k3+4k2+5k+2, this would be implied by the polynomial
inequality

π2(k + 2) < 24k2 + 48k + 24 (4)

which is clearly true for k large enough. In fact, π2 < 12, which implies π2 < 48 and
2π2 < 24 so this inequality holds for k ≥ 0. Of course, estimating π < 4 or even
π < 3.5 is not good enough to see π2 < 12. But it is also true that π < 32/100 which
means π2 < 1024/100 = 10.24 < 12.

This establishes (3) and leads to the (perhaps in some ways prettier) solution

∞
∑

n=0

an ≥
π

2

∞
∑

n=0

1

n + 1
=

π

2

∞
∑

n=1

1

n
= ∞.

When I finished this, I thought also that it would be good enough to show

an >
1

n + 1
for n = 0, 1, 2, 3, . . .,
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and maybe the induction would be easier. (This is clearly true in view of (3) because
π/2 ≈ 1.5 > 1.) Here is the inductive step: Assume

ak >
1

k + 1
.

Then

ak+1 >
1

k + 1

(

1−
1

6(k + 1)2

)

=
6k2 + 12k + 5

6(k + 1)3
.

Now the question is simply, is this quantity greater than 1/(k + 2)? Well,

(k + 2)(6k2 + 12k + 5) = 6k3 + 24k2 + 29k + 10, and

6(k + 1)3 = 6k3 + 18k2 + 18k + 6,

so indeed

(k + 2)(6k2 + 12k + 5) > 6(k + 1)3 for k ≥ 0, and
6k2 + 12k + 5

6(k + 1)3
>

1

k + 2
.

That’s a third somewhat pretty solution:

∞
∑

n=0

an ≥
∞
∑

n=0

1

n + 1
=

∞
∑

n=1

1

n
= ∞.

Exercise 1 Does (3) follow directly from the fact that an ≥ 1/n for n ≥ 1?

So I was pretty happy with myself at this point. I’d solved a Putnam problem
without looking at the solution. It wasn’t too difficult, but it was somewhat difficult,
and it has some interesting aspects to it—see the follow-up discussion below. I decided
to look at the published solution just to double check my answer and see if I could get
any new ideas or better understand what they were expecting as a solution. As I read
the solution it became apparent pretty quickly that it was the solution for a different
problem. So I went back and read the statement of the problem again. Unfortunately
for me, I had misread or misremembered the statement of the problem. Here is the
actual statement:

Statement

If a0 = π/2 and an = sin(an−1) for n = 1, 2, 3, . . ., then determine the conver-
gence/divergence of the series

∞
∑

n=0

a2n. (5)
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The terms in the sum are squared (!).
Now the proof they had was essentially the same as my proof (for the misstated

problem), so that was sort of good. But in principle, the actual problem is much
harder than the problem I had solved. More precisely, I don’t really have a good
intuition as to why to write down the inductive statement/hypothesis

an ≥
1
√
n

for n ≥ 1. (6)

The solution didn’t give any explanation either, but this turns out to be true. Once
you have (6) you’re back in a position to compare to the harmonic series—so I guess
that intuition was correct, but I don’t see geometrically (or any other way) that it is
obvious that (6) holds. And I don’t really see any good reason to argue for divergence
to infinity (apriori) for the series in the actual problem.

2 Solution

We should perhaps start with the observations above: We have for all n = 0, 1, 2, 3, . . .

0 < an ≤
π

2
with strict inequality for n ≥ 1

so that
0 < an+1 < an for all n = 0, 1, 2, 3, . . ..

Claim:

an ≥
1
√
n

for n ≥ 1. (7)

For n = 1, we know a1 = 1, so the inequality holds with equality. Next assume k ≥ 1
and

ak ≥
1
√
k
.

Then

ak+1 = sin(ak) > sin

(

1
√
k

)

>
1
√
k

(

1−
1

6k

)

=
1
√
k

6k − 1

6k
.

So the question is: Is this quantity greater than 1/
√
k + 1? This would be implied

by the inequality
(6k − 1)

√
k + 1 > 6k

√
k,
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which would be implied by

(36k2 − 12k + 1)(k + 1) > 36k3,

which would be implied by

24k2 − 11k + 1 = 24(k − 11/48)2 + 1− (11/48)2 > 0.

This is true for k ≥ 1 since 1 > 11/48 > (11/48)2. Alternatively, 24k2 − 11k + 1 =
(3k − 1)(8k − 1) > 0 for k ≥ 1.

In view of (7) we have

∞
∑

n=0

a2n ≥
π

2
+

∞
∑

n=1

1

n
= ∞. �

Incidentally, my “pretty stuff” doesn’t work here. Take the hypothesis

an ≥
π

2

1
√
n + 1

.

For n = 0 this holds, but for n = 1 you’re asking for

1 ≥
π

2
√
2

or 8 ≥ π2,

and this of course is not true.

3 Follow-up

Even before I saw/comprehended the real problem, much less saw the solution, I had
a couple follow-up or warm-up questions/topics to go along with this problem.

harmonic series

One of the topics I had in mind is the demonstration that the harmonic series diverges
to infinity.

Exercise 2 Show
∞
∑

n=1

1

n
= ∞.
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Solution: I like the estimate

2k
∑

n=1

1

n
> 1 +

k

2
=

k + 2

2
. (8)

To see this, let n be arbitrary and consider the terms in the series following 1/j:

1

j + 1
+

1

j + 2
+

1

j + 3
+ · · ·+

1

j +m
.

Each of these terms is at least 1/(j +m). All but one of them is strictly greater, and
there are m of them. Therefore, the sum of these terms satisfies

j+m
∑

n=j+1

1

n
≥

m

j +m
.

In particular, taking m = 2j we find

2j
∑

n=j+1

1

n
≥

1

2
.

Take j = 1 to get
2

∑

n=1

1

n
= 1 +

1

2
.

Then assuming
2ℓ
∑

n=1

1

n
> 1 +

ℓ

2
,

we can consider j = 2ℓ and the next 2ℓ+1 terms:

2ℓ+1

∑

n=1

1

n
=

2ℓ
∑

n=1

1

n
+

2ℓ+1

∑

n=2ℓ+1

1

n
> 1 +

ℓ

2
+

1

2
= 1 +

ℓ+ 1

2
.

Thus, (8) follows by induction. In particular,

∞
∑

n=1

1

n
> 1 +

k

2
for every k = 1, 2, 3, . . .

and the harmonic series is not bounded above. Of course, the posted solution of
problem A3 (2020) assumed the divergence of the harmonic series.
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Estimating sine with the Taylor polynomial

The posted solution, on the other hand, gave a proof of my assertion (2), which I
would have assumed could be quoted without proof. On the other hand, something
much more general is true which is fun to know about. Let’s start with the published
proof since that uses Taylor’s formula with remainder which we’ve recently considered.
The third order formula with remainder for the sine function is

sin x = x−
x3

3!
+

d4

dt4
sin t∣

∣

t=x∗

x4

4!
.

In this case, the fourth derivative of sin t is sin t, so the remainder term is

sin x∗ x4

4!

for some x∗ between 0 and x. Thus, if x is between 0 and π, which in this application
we know happens to be between 0 and π/2, then the remainder is positive, and we
get

sin(x) > x−
x3

3!
for 0 < x < π.

In fact, the inequality (2) holds as follows:

sin(x) > x−
x3

3!
for x > 0.

This does require some proof. Let’s start with a preliminary exercise:

Exercise 3 Write down the Taylor expansions at x = 0 for sine and cosine.

Solution:

sin x =
∞
∑

j=0

(−1)j

(2j + 1)!
x2j+1,

cosx =
∞
∑

j=0

(−1)j

(2j)!
x2j .

It will be noted that each of these series is alternating, and the claim is that each
additional nonzero term of the series gives a global monotone estimate for the
value of the respective trigonometric function. This does not quite work for the first
term of the series for cosine, but we do get

cosx ≤ 1 a global estimate from above for all x ∈ R. (9)
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Now consider the estimate for sine using the first term:

sin x ≤ x.

We can get this from integrating (9), and this tells us two interesting things. First
the estimate holds for all x ≥ 0 and is strict for x > 0:

sin x < x for x > 0. (10)

Second, taking the positive difference g(x) = x− sin x and differentiating we see the
derivative g′(x) = 1− cos x ≥ 0 with only isolated zeros at x = 2kπ, k = 0, 1, 2, 3, . . ..
This implies a rather strong version of (10):

0 < x− sin x < max
0<t≤x0

(t− sin t) = x0 − sin x0 for 0 ≤ x < x0.

Notice that x > sin x and the difference g(x) is strictly monotone increasing, even
though the derivative g′ sometimes vanishes. This is what we mean by a global
monotone estimate.

Exercise 4 Plot the first few terms of the Taylor series for sin x and cosx in com-
praison with sin x and cos x respectively.

Of course, things only get better. Integrating (10) we find

∫ x

0

sin t dt <

∫ x

0

t dt or − cosx+ 1 <
x2

2
for x > 0.

That is,

cosx > 1−
x2

2
globally for x > 0. (11)

Exercise 5 State (and prove) a stronger version of (11) as a global monotone esti-
mate.

Integrating estimate (11) brings us to the global estimate (2) I quoted at the outset
of my solution to the misstated problem:

sin x > x−
x3

6
globally for x > 0.

This estimate, and every such estimate for cosine and sine using the Taylor expansions,
is a global monotone estimate with the “worst” approximation precisely at the right
endpoint.
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Exercise 6 State and prove an inductive hypothesis giving all the global monotone
estimates for cosine and sine in terms of Taylor polynomials.

As a final note, when and if one would actually want to use a Taylor expansion
to approximate the value of sine or cosine2 at a particular value of x > 0, then using
the symmetry and periodicity of the trigonometric functions one really only needs to
consider these polynomial approximations on the interval [0, π/2], and the error values
are given by the next nonzero remainder. For example, if one wishes to approximate
sin x for x = 7π + 0.1, then one can use the value approximating − sin(0.1) or

sin(7π + 0.1) ≈ −0.1 +
(0.1)3

6

and know one is off (in fact, above or to the right) by no more than

(0.1)5

5!
=

(0.1)5

120
.

More generally, if one wants to approximate the value of sin x on the entire interval
7π ≤ x ≤ 7π + π/2, then one can use the value

sin x ≈ −(x− 7π) +
(x− 7π)3

6

and know the approximation is off (in the same direction as the one at 7π + 0.1) by
no more than

(x− 7π)5

120
<

π5

25(120)

with the latter estimate applying globally on the entire interval. Thus, generally
speaking, the global error values

πn

2n(n!)

are of interest. You can approximate sine or cosine on the entire real line using
reduction formulas and a polynomial of order n− 2 to this accuracy.

Exercise 7 Compile a table of how many (n− 2) terms you need in a Taylor expan-
sion for sine (and one for cosine) in order to get an accuracy

πn

2n(n!)
< 0.1, 0.001, 0.0001, 0.00001.

2Incidentally, this is precisely how early computers or calculators would calculate such a value;
I’ve seen it translated from machine language.
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