Problem A3 of the 2018 Putnam FExam
(currently unsolved)
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1 Original statement:

Maximize
10
ZCOS(BHj)
j=1

subject to

10
Z cos(6;) = 0.
j=1

2 First rephrasing:

Consider the problem as the special case where n = 10 of maximizing

Z cos(36;)
j=1

subject to

Z cos(6;) = 0.
j=1



cos(30) = cos(260) cosf — sin(26) sin 6
= (2cos®f — 1) cosf — 2 cos @ sin® 0
= (2cos?f — 1) cosf — 2 cos (1 — cos® f)

= 4cos® 6 — 3cosh.

Thus, we are being asked to maximize

4Zcos3ej — BZcosﬁj
j=1 j=1
subject to

Z cos(6;) = 0.
j=1

Given the constraint
n n n
4ZC083 0; — 32008@- = 4ZC0839J',
j=1 j=1 j=1

so the original problem is essentially equivalent to this rephrasing:
Maximize

f(xl,xg,...,xn):Zx? on [—1,1]"
j=1

subject to
n

Zl’j = 0.

j=1
Assuming a nonnegative maximum value for this problem, the maximum value of the
original problem (for general n) will be four times that value.

3 Second rephrasing—substitution

We could approach the problem via Lagrange multipliers. Instead I will substitute
forn >3

n—1 n—2
Zlﬁ'n:—g l’j:—g Tj — Tp—1 = —S — Tp-1
Jj=1 Jj=1



where
n—2
S = E Zlfj.
j=1

In this way, I will obtain an unconstrained problem on a different domain. The new
objective function is obtained as follows: For n > 3

n—2
_ 3 3 3
f= E T+, + T,
=1

n—2

= Z 23 4 (Tt 4 20) (2 — Tnoa @ + 5.
j=1
With the substitution we write g = g(x1,zo,...,x,_1) as
n—2
g= Zx? -5 (zi_l + @p—1(8 + Tp1) + (s + 55%—1)
j=1

n—2
= Z x) — s (8% + 3sw,_1 + 32)_,) .
=1

Note: There should be a simpler expression for g. This expression does not make
it entirely clear that g is symmetric in all the variables. We know this is the case,
however, because

Incidentally, in the case n = 2, we have
f=a3+a5 = (21 +22) (2] — w120 +23) =0 (given the constraint x; + x5 = 0).

In the general case, we wish to maximize g on

A=[-1,1]""1n {(ml, ey Tpq)

Consideration of the cases n = 3 and n = 4 can help with seeing the structure of the
set A.



4 Third rephrasing/first reduction:

I claim that for n > 3 the function g can have no interior maximum on A. To see
this, consider the gradient entries in Vg:

8 n—1 2

g 2

— =3x; — 3 ;

e vt=3(80)
n—1 2

= -3 (Z xj) —

- ']:1
[ /n—1 n—1
= -3 (ZLL’] —LUk) (Zl’j"—l’k)
L \j=1 Jj=1
At an interior critical point (z1,...,z,_1) for g, we have the system of equations

n—1 n—1
(ij_xk> (ij+:ck>:0, k=12 n—1. (1)
= j=1

Lemma 1 IfVg(zy,...,2,-1) = (0,...,0), then g(z1,...,2,-1) = 0.

Proof: Each of the equations corresponding to k = 1,...,n — 2 can be written as

z; = (s+zn1)%

Thus, at an interior critical point we have

n—2
g= (s + xn_l)zxj — s (52 + 3sx,_1 + Bxi_l)
=1
=s(s+ap_1)?—s (82 + 3sx,_1 + 33:%_1)

—5(8xp_1 +222_))

<

= —an_l(s + 2In—1)-
The last such equation corresponding to k =n — 1 is
s(s+2x,-1) = 0. O

In view of the lemma, if we can show any value of g is strictly positive, then we
can reduce the maximization of ¢ to the maximization of g on dA. For n > 3, g does
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in fact take positive values. In fact, we can take any two of xy,...,z,_1 to be —1/2
and all the rest (if there are any) to satisfy z; = 0. Then

n—1

1 1 3
ij:—l and g=-—-—<— (—1)=->0.
j=1

The maximum must occur on dA in all cases. Thus, we have reduced to the following
problem:
Maximize

n—1 n—1 3
=S (Zx]) |
j=1 j=1

on 0A where

n—1
A= [_1’1]n—1 N {(Il, .. .,In_1> : ij S 1} .

j=1
5 Fourth rephrasing
The boundary of A contains of n — 1 faces in the hyperplanes z;, = —1 for k =
1,2,...,n—1. Each of these faces is in an n — 2 dimensional plane and can be said to
be of dimension n — 2. Similarly, there are n — 1 faces in the hyperplanes z;, = 1 for
k=1,2,...,n—1. The remainder of the boundary consists of two remaining n — 2

dimensional hyperfaces within the hyperplanes

n—1 n—1
Z:Bj:—l and| Z:):jzl.
=1 j=1

To see this decomposition, draw the sets A in the cases n = 3 (A C R?) and n = 4
(A C R?). Let’s call the 2, = —1 hyperfaces F}” for k = 1,...,n — 1 and similarly
F" for the hyperfaces in 2 = 1. Finally, let’s denote the remaining hyperfaces by
G*.



Let us consider these cases one by one starting with F,_;. Here the problem is
the following:
Maximize

n—2 n—2 3
h=h(zy,..., 0, 0)= Zx? —1- <Zx3 — 1)
=1 j=1
on

n—2
H = [—1,1]"‘2ﬂ {(Il,...,xn_2> -0 S ZSL’J’ S 2} .
j=1

The condition defining H comes from the fact that we needed

—_

e
-1< r; <1 and we're taking x, ; = —1.
1

J

in A. It is clear that the maximization of g on F}~ for k =1,...,n — 2 will give the
same value as obtained from this problem. Thus, these n — 1 maximum problems are
reduced to a single problem.

Similarly, maximizing g on F;" for k = 1,...,n — 1 gives the same result as this
problem:

Maximize

n—2 n—2 3
h=h1, ... 2p) =Y 2] +1— <ij+1>

on

n—2
H=[-1,1]""?%n {(xl,...,xn_g) 1 —2< )y ;< 0} :

The two problems for the faces parallel to the coordinate hyperplanes are also
related. Denoting the first objective function as h~ : H- — R and the second
objective function as h™ : HT — R we see

H={—x:xeH} and h*(—x)=-h"(x).

Consequently, if h™(xg) = mingey- h~(x), then h*(—x¢) = maxyey+ hT(x). Simi-
larly, if AT (x0) = mingey+ h'(x), then h™(—x¢) = maxyey- h™(x). Either way, if
we understand the maximum and minimum for one of these two problems on the
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coordinate faces, then we understand the maximization problem on the union of all
the coordinate faces.

Let us now turn to the non-coordinate hyperfaces. Maximizing g on G~ is the
following problem:

Maximize
n—2 n—2 3
h(l’l,...,l'n_g) = ZZL’? +1-— (Z[L’] + 1)
7=1 j=1

on

n—2
H = [—1,1]”_2ﬂ {(1’1,...,.]7“_2) =2 S ZSL’J’ S 0} .

j=1
This will be recognized as identical to the problem of maximizing h™ on H". Effec-
tively, the face G~ is parameterized on H with g taking precicely the same values
as ht, that is to say the same values g takes on F\ ;.
Similarly, g takes the same values on G that g takes on F,,_;, so no higher values
are attained on G*. We have reduced the maximization of g on A to the following:
Let M = maxxep h(x) and m = mingey h(x) where

n—2 n—2 3
h:h(l'l,...,l'n_g) :ZZE?—I— <Zl'j—1>
j=1

j=1
and
n—2
H = [_1’1]n—2 N {(2171, .. .,In_2> -0 S ZSL’J’ S 2} .
j=1
Then

max g(x) = max g(x) = max{M, —m}

6 Comments about h

If we seek interior critical points for h : H — R, then noting that

n—2 n—2 3 n—2
h=>Y al—1- (ij—1> => 2t —1-(s— 1)
j=1

j=1 j=1

we have

Oh

8_xk::s:cz—?)(s—l)? fork=1,...,n—2.



Thus, if VA = 0 at an interior point, then we must have
r? = (s —1)° fork=1,...,n—2,
and (at the critical point)
h=(—-1)72s—1—(s—1)*=s(s—2).

Since 0 < s < 2 on H we see these values must be non-positive with the least possible
value taken for n > 4 at

T =Ty ="''+=Tp—2=

with s = 1. For n > 4, we clearly get an interior point in H where the value
h=-1 is attained.

For n = 3, as explained in more detail below, the relation determining the critical
point
ri=(s—1)*= (21— 1)

already specifies x; = 1/2. This is an interior point of H, but the minimum value is
not h = —1 but only h(z;) = —3/4.
In general, we have shown that for n > 4

inf h<-—1.

x€int(H)
Also, for n > 4 the interior supremum value

sup h >0
x€int(H)

with the value h = 0 attained at all points x € int(H) with ; = —25 and z; =0
for j =3,...,n—2. When n = 3, as discussed below, the actual maximum value is
h = 0 and is attained on the boundary at x; = 0 and/or z; = 1.

7 Special cases

Recall that when n = 2 the function f is identically zero and g is not well-defined.
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When n = 3, the set H is [-1,1) N [0,2] = [0, 1], and we wish to both minimize
and maximize

h(z)) =2 — 1 — (21 — 1)* = 3(zF — 21) = 321 (2; — 1).

On the interval [0, 1] this function has maximum M = 0 and minimum m = —3/4 at
x1 = 1/2. Thus, the maximum value of g on A is

max{0,3/4} = 3/4

and the maximum for the original problem when n = 3 is 3.
For n > 4, we know the following

There is no interior critical point with value outside [0, 1], (2)
and

m=minh(x)= inf h(x)<-1<0< sup h(x)= max h(x). 3
xeH ( ) x€int(H) ( ) - - __xehn%H) ( ) x€int(H) ( ) ( )

When n = 4, the set H is a triangle in the x1, zo-plane determined by the lines
r1 = —To, x1 = 1, and x5 = 1. Checking the values of h around 0H the implication
of (2-3) can be used to solve the problem. In fact, for z; = —x9, we get

h=a+25—1—(v; +29—1)> =0.
For 1 = 1, we have
h(l,2y) =14a5 —1— (1 +29—1)* =0.

And similarly (or by symmetry) hA(x1,1) = 0. Thus, for n = 4 we have

h =0.
‘xEOH
Therefore, M = 0 and m = —1. The maximum values of g and f are 1, and the
original problem for n = 4 has answer 4 max{0,1} = 4 taken at cost) =x; =1/2 =
x9 = cosby, cosfy = x3 = —1 and cosfy = x4y = —(x1 + 29 + x3) = 0. This means

when n = 4, the maximum is attained at 0; = 0y = 7/3, 03 = 7, and 6, = 7 /2.
In summary, we have reduced the general problem to determining the maximum
and minimum values of

n—2 n—2 3
h:h(l'l,...,l'n_g) :ZZL'?—I— <ZZL'] — 1)
j=1 J=1
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on the region

n—2
H = [—1,1]"_2ﬂ {(xl,...,xn_2):0 S ZSL’J’ §2}

Jj=1

Unfortunately, consideration of the case n = 5, in which the region H can be visual-
ized in R?, suggests that the region H grows in complexity to a certain extent with
dimension. There should still be a decomposition into faces parallel to the coordinate
axes along with two additional faces in the (hyper)planes

n—2 n—2
ij:O and ij:z
j=1 j=1
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