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Original Statement: For every positive real number x, let

g(x) = lim
r→0

[(x+ 1)r+1 − xr+1]1/r.

Find

lim
x→∞

g(x)

x
.

The second posted solution of this problem starts out by replacing the “base part” of
the limiting quantity in the definition of the function g as follows:

(x+ 1)r+1 − xr+1 = (r + 1)xr +O
(

xr−1
)

. (1)

Let me start by explaining what is meant by this. Given real valued functions p and
q defined in an open interval (a, b) with t0 ∈ (a, b), one says

p(t) = O(q(t)) as t limits to t0

if the quotient p(t)/q(t) remains bounded as t tends to t0. More precisely, there is
some M > 0 and some ǫ > 0 such that

∣

∣

∣

∣

p(t)

q(t)

∣

∣

∣

∣

≤M for all t satisfying 0 < |t− t0| < ǫ.

Notice the positivity of |t− t0| rules out the possibility t = t0, so the condition says
nothing about the values of p and q at the point t = t0. Furthermore, it is assumed
there is some punctured neighborhood 0 < |t− t0| < ǫ of t0 on which q(t) 6= 0.

This may perhaps be considered the “basic” definition of big-O notation.
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The first thing you may note is that specification of the variable to which the
big-O notation applies, e.g., something like as t limits to t0, is missing from the
posted solution. Furthermore, since there are two variables in play (x and r) one
needs to know which one the author has in mind. The following suggestion of the use
of Taylor’s theorem gives at least a little bit of context, and indeed it turns out (I’m
pretty sure) the variable referenced is x. Thus, I think (1) means

(x+ 1)r+1 − xr+1 − (r + 1)xr = O
(

xr−1
)

as x→ ∞. (2)

But now there’s a problem with the basic definition because it requires a finite
limit t0 ∈ (a, b) ⊂ R. Here is the relevant modifiction to suit the desired application:

Definition 1 Given real valued functions p and q defined in an open interval (a,∞) ⊂
R, one says

p(t) = O(q(t)) as t limits to ∞

if the quotient p(t)/q(t) remains bounded as t tends to ∞. More precisely, there is
some M > 0 and some N > 0 such that

∣

∣

∣

∣

p(t)

q(t)

∣

∣

∣

∣

≤M for all t > N .

Here it is assume q(t) 6= 0 for t > N as well.
Translating (2) into what it actually means then: The author first claims there is

some M > 0 and some N > 0 such that
∣

∣

∣

∣

(x+ 1)r+1 − xr+1 − (r + 1)xr

xr−1

∣

∣

∣

∣

≤M for all x > N , (3)

Before we address why the author wrote this, much less the validity of the claim,
let’s check to see if this is plausible. First note that (x+ 1)r+1 − xr+1 > 0 for x > 0.
The same applies to the denominator xr−1 > 0 for x > 0. It might not be entirely
clear that the full numerator (x+ 1)r+1 − xr+1 − (r + 1)xr is positive, but that turns
out to be true too. Because of this, we can take away the absolute values and write
the main inequality of the claim as

(x+ 1)r+1 − xr+1 − (r + 1)xr ≤ Mxr−1.

Here is probably what the author is thinking: There is a generalized binomial expan-
sion (series) for the first term on the left side. This series looks like

(x+ 1)r+1 ∼ xr+1 + (r + 1)xr +
r(r + 1)

2
xr−1 +

(r − 1)r(r + 1)

3!
xr−2 + · · · . (4)
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Do you see the pattern of the terms? It may also help to compare to the standard
binomial expansion

(a+ b)n = an + nan−1b+
n(n− 1)

2
an−2b2 + · · ·+ bn =

n
∑

j=0

(

n
j

)

an−jbj .

This standard binomial expansion is easy to prove by induction. The expansion series
of (a+ b)α where a, b, α > 0 was discovered by Isaac Newton, and if I’m not mistaken
the resulting series is known as Newton’s binomail expansion. Formally,

(a+ b)ρ ∼

∞
∑

j=0

ρ(ρ− 1) · · · (ρ− j − 1)

j!
aα−jbj . (5)

The series actually converges, so “∼” in (5) can be replaced by “=,” but Newton
almost certainly didn’t prove this. He was too busy trying to find a clever way to put
fig jam in cookies, and also Weierstrass didn’t formulate what it would actually mean
to prove convergence for another couple hundred years (after Newton’s clever discov-
eries). In any case, we really don’t need any of these binomial expansion details to
work this problem. They can be grouped together under the heading of “heuristics,”
but they are fun to know about, and there is no doubt that if you do know about
Newton’s expansion, then the quantity on the left in (2) can be written as

(x+ 1)r+1 − xr+1 − (r + 1)xr =
r(r + 1)

2
xr−1 +

(r − 1)r(r + 1)

3!
xr−2 + · · ·

where each of the terms on the right has a factor of xr−1. That is,

(x+ 1)r+1 − xr+1 − (r + 1)xr =

(

r(r + 1)

2
+

(r − 1)r(r + 1)

3!
x−1 + · · ·

)

xr−1

≤

(

r(r + 1)

2
+

(r − 1)r(r + 1)

3!
+ · · ·

)

xr−1.

In particular, if you believe the quantity on the left is positive (which we have not
yet established) and the binomial series converges, then you can take

M1 =
r(r + 1)

2
+

(r − 1)r(r + 1)

3!
+ · · · ,

and the claim (3) certainly holds.
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Exercise 1 Assuming Newton’s binomial expansion converges (to the binomial ex-
pression Newton said it represented), what is

M1 =
r(r + 1)

2
+

(r − 1)r(r + 1)

3!
+ · · ·?

At this point, I hope we understand (3) of the posted solution. The thing is the
author immediately claims something much stronger. Here is the real claim needed
for this solution:

Lemma 1 f(x) = (x+ 1)r+1 − xr+1 − (r + 1)xr satisfies

|f(x)| ≤ (r + 1)rxr−1 for x ≥ 1 and r ≤ 1. (6)

This may be viewed as a statement f(x) = O(xr−1) with an explicit bound of M =
(r+1)r depending on r and with range of applicability r ≤ 1 ≤ x. But really it’s better
viewed as simply a statement about the function φ(x, r) = (x+1)r+1−xr+1−(r+1)xr

as a function of two variables. It is suggested that we use “Taylor’s theorem with
remainder.” Before we explore what that might mean, let’s see if it is reasonable to
even imagine this is correct. In Figure 1 I have plotted φ(x, r) as a function of x
for three values of r with 0 < r < 1. This suggests the function φ is positive and

Figure 1: Plots of φ as a function of x.

decreasing in x. We will verify this later. In Figure 2 I have plotted each of the
curves from Figure 1 along with the proposed upper bound m(x, r) = (r + 1)rxr−1.
We know m is decreasing in x and limits to m = 0 as x→ ∞. The plots in Figure 2
suggest this stronger version of the author’s claim:

Lemma 2 f(x) = (x+ 1)r+1 − xr+1 − (r + 1)xr satisfies

0 < (x+ 1)r+1 − xr+1 − (r + 1)xr < (r + 1)rxr−1 for x ≥ 1 and r ≤ 1. (7)
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Figure 2: Plots of φ as a function of x compared to m(x, r) = (r + 1)rxr−1.

This is, in fact, correct, and we will prove it. We will not prove

∂φ

∂x
< 0,

but this is presumably true too.
Proof of (7): It seems to me the easiest way to prove (7) is to use the mean value
theorem which says a continuously differentiable real valued function ψ defined on
a closed interval [a, b] ⊂ R with a < b satisfies, for some t∗ ∈ (a, b)

ψ(b)− ψ(a)

b− a
= ψ′(t∗).

Taking ψ(t) = tr+1, a = x and b = x+ 1, the mean value theorem gives us a point t∗
with x < t∗ < x+ 1 for which

(x+ 1)r+1 − xr+1 = (r + 1)tr∗. (8)

Therefore,

(x+ 1)r+1 − xr+1 − (r + 1)xr = (r + 1)tr∗ − (r + 1)xr = (r + 1)(tr∗ − xr).

Applying the mean value theorem a second time with ψ(t) = tr, a = x and b = t∗ we
get a second point t∗∗ for which x < t∗∗ < t∗ and

tr∗ − xr = rtr−1
∗∗ (t∗ − x).

From this we see

(x+ 1)r+1 − xr+1 − (r + 1)xr = r(r + 1)tr−1
∗∗ (t∗ − x).
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On the one hand, the quantity on the right is clearly positive, so

0 < (x+ 1)r+1 − xr+1 − (r + 1)xr.

On the other hand, the function ψ(t) = tr−1 is strictly decreasing (in t), at least for
r < 1 and x < t∗∗ < t∗ < x+ 1. This means

tr−1
∗∗ (t∗ − x) < xr−1

and
0 < (x+ 1)r+1 − xr+1 − (r + 1)xr < r(r + 1)xr−1

as desired. �

Exercise 2 What happens in the case r = 1?

Exercise 3 Can you show

∂φ

∂x
< 0 for x ≥ 0 and 0 < r < 1?

What happens when r = 1?

What about using Taylor’s formula with remainder? Here’s one version:

Theorem 1 If ψ ∈ Ck(a, b), i.e., ψ is continuously differentiable k times, and a <
t0 < b, then for each t ∈ (a, b) there is some t∗ such that

ψ(t) = ψ(t0)+ψ
′(t0)(t−t0)+

ψ′′(t0)

2
(t−t0)

2+· · ·+
ψ(k−1)(t0)

(k − 1)!
(t−t0)

k−1+
ψ(k)(t∗)

k!
(t−t0)

k.

The last term

Rk(t, t0) =
ψ(k)(t∗)

k!
(t− t0)

k

is called the remainder and there are different formulas for it, but this is one of the
easier ones. A good feature of this formula is that it gives an approximation for f(t)
by the polynomial

k−1
∑

j=0

ψ(j)(t0)

j!
(t− t0)

j

of order k−1, with an estimate that holds, in a certain sense, for all values of t in the
interval (a, b) of definition. If one has uniform estimates for the k-th derivative ψ(k)(t)
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(from above and below) on the interval (a, b), then this is really true. One thing one
must take into account, however, is that the point t∗ appearing in the remainder
formula changes when t changes. More precisely, t∗ = t∗(t, t0) is a function of t and
t0, and of course k as well. One does know also that t∗ is between t and t0.

Note that the zero order expansion with remainder formula of order one is essen-
tially the same thing as the mean value theorem:

ψ(t) = ψ(t0) + ψ′(t∗)(t− t0).

Therefore, we should be able to follow our proof of Lemma 2 above and replace the
use of the mean value theorem with the use of Taylor’s formula with remainder. It’s
a little bit of a weird application, however. We take the function ψ(t) = tr+1, which
is easy enough, but then we take an expansion (the zero order expansion) centered
at t0 = x to get

tr+1 = xr+1 + (r + 1)tr∗(t− x).

Then we evaluate at t = x+ 1:

(x+ 1)r+1 = xr+1 + (r + 1)tr∗(1),

for some t∗ with x < t∗ < x + 1. This puts us right in the position we were in with
(8). So it all works just fine, but if we hadn’t used the mean value theorem first, it
might have been difficult to know Taylor’s formula needed to be centered at x and
applied at t = x+ 1.

Exercise 4 Complete the second step/second application of the mean value theorem
in the proof of Lemma 2 using Taylor’s formula with remainder again in place of the
mean value theorem.

With this exercise behind us, we can probably see what the author had in mind. Take
the first order Taylor formula for ψ(t) = tr+1 with center of expansion at x ≥ 1. If
we do this, we get

tr+1 = xr+1 + (r + 1)xr(t− x) +
r(r + 1)tr−1

∗

2
(t− x)2.

Evaluating at t = x+ 1 this becomes

f(x) = φ(x, r) = (x+ 1)r+1 − xr+1 − (r + 1)xr =
r(r + 1)tr−1

∗

2
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for some t∗ with x < t∗ < x+ 1. If x ≥ 1, then t∗ < x+ 1 ≤ 2x, so

0 < (x+ 1)r+1 − xr+1 − (r + 1)xr < r(r + 1)xr−1

as claimed. �

Exercise 5 Can you get the same estimate using the second order Taylor formula
(and the third order remainder term)?

With Lemma 2 in hand, the author of the second solution seems to want to apply
some version of the Moore-Osgood theorem:

Theorem 2 Let h = h(x, r) be a real valued function of two variables on on open
rectangle U = (a, x0)× (r0, b) with p0 = (x0, r0) the bottom right corner of U . If

lim
rցr0

h(x, r) = h1(x) exists and is real valued for each x ∈ (a, x0), (9)

lim
xրx0

h(x, r) = h2(r) exists and is real valued for each r ∈ (r0, b), (10)

and the convergence to the function h1 in (9) is uniform for a < x < x0, then the
three limits

lim
U∋(x,r)→(x0,r0)

h(x, r), lim
xրx0

lim
rցr0

h(x, r), and lim
rցr0

lim
xրx0

h(x, r)

all exist and are all equal (to one another).

This is about the most general form of the Moore-Osgood theorem I have been able to
find, and it is not a particularly easy theorem to prove either. There are several things
to note at this point. The first one is that the author of the second solution is wanting
to apply a version of the Moore-Osgood theorem stated above on an unbounded region
in the plane, namely for (x, r) ∈ (0,∞)× (0, 1). Thus, the “bottom right corner” is
not a point in the plane. In many instances, this kind of generalization is not too
difficult, but I’m not entirely sure it doesn’t cause some difficulty in this case.

Conjecture 1 Let h = h(x, r) be a real valued function of two variables on on open
strip U = (a,∞)× (r0, b). If

lim
rցr0

h(x, r) = h1(x) exists and is real valued for each x ∈ (a,∞), (11)

lim
xր∞

h(x, r) = h2(r) exists and is real valued for each r ∈ (r0, b), (12)

8



and the convergence to the function h1 in (11) is uniform for a < x < ∞, then the
limits

lim
xր∞

lim
rցr0

h(x, r), and lim
rցr0

lim
xր∞

h(x, r)

both exist and are all equal to each another.

The second thing to note is that even if this result is correct, the author of the second
solution has not verified the hypotheses. In order to apply the conjecture we would
have to go all the way back to the original statement of the problem and take

h(x, r) =
1

x

[

(x+ 1)r+1 − xr+1
]1/r

which we can write as

h(x, r) =

[

r + 1 +
φ(x, r)

xr

]1/r

where
φ(x, r) = (x+ 1)r+1 − xr+1 − (r + 1)xr

is defined as above. In view of Lemma 2, the limit as xր ∞ for r fixed exists:

lim
xր∞

h(x, r) = (r + 1)1/r.

Also, the limit as r ց 0 for x fixed exists:

lim
rց0

h(x, r) =
g(x)

x
. (13)

The limit g is more or less assumed to exist in the original statement of the problem,
but this is also shown in the first solution. But it is now required that we show the
convergence of (13) is uniform in x, that is,

lim
rց0

[

r + 1 +
φ(x, r)

xr

]1/r

=
g(x)

x

with the convergence being uniform in x. We have that

lim
rց0

[

r + 1 +
φ(x, r)

xr

]

= 1

with the convergence being uniform in x, but this does not seem to me to be the same
thing, and the power 1/r seems to quite obviously make a pretty big difference.
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Thus, my final evaluation is that the author of the second solution has made many
correct assertions, but has not given adequate justification for changing the order of
the limits.

Finally, there is no doubt that if one changes the order of the limits one gets

lim
rց0

lim
xր∞

h(x, r) = lim
rց0

(r + 1)1/r = e

which is the correct answer.

Exercise 6 Can you prove the Moore-Osgood theorem?

Exercise 7 Can you prove the generalized Moore-Osgood theorem stated as Conjec-
ture 1 above?

Exercise 8 Can you show the convergence in (13) is uniform in x?
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