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Original Statement: Determine all ordered pairs of real numbers (a, b) such that
the line y = ax+ b intersects the curve y = ln(1 + x2) in exactly one point.

Solution/discussion: One can offer some minor criticism of the statement, but
what is intended is pretty clear. The curve

G = {(x, ln(1 + x2)) ∈ R
2 : x ∈ R} (1)

is the graph of a function f : R → [0,∞) with values given by f(x) = ln(1+ x2), and
we can begin by using what we know from calculus to get some idea of the shape of
this graph/curve. In particular, the function f is smooth and even with f(0) = 0,
f(x) > 0 for x 6= 0 so that f ′(0) = 0 and more generally

f ′(x) =
2x

1 + x2
(2)

and

f ′′(x) =
2(1 + x2)− 2x(2x)

(1 + x2)2
= 2

1− x2

(1 + x2)2
. (3)

As should be expected we can see the first derivative is odd and the second derivative
is even. Also f ′′(0) = 2 > 0 corresponding to the absolute (and nondegenerate)
minimum value at x = 0.

The first derivative has only the one zero corresponding to the global minimum
at x = 0, and f is strictly decreasing for x < 0 and of course strictly increasing,
symmetrically with f ′(−x) = −f ′(x), for x > 0.

The second derivative has exactly two zeros at x = ±1. Thus, the graph of f is
“convex up” for −1 < x < 1, there are inflection points at x = ±1 corresponding to
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the points (±1, ln(2)) on the curve, and the graph of f is “convex down” or “concave”
for x < −1 and x > 1. We note also that ln(2) < 1 since e ≈ 2.718 > 2.

With this information we can draw a rough picture (or a very precise one as the
case may be) of the curve as indicated in Figure 1.

Figure 1: The graph of the function f with values f(x) = ln(1 + x2).

With the precise determinate form of the derivative f ′ and the second derivative
f ′′, we know the local behavior of each tangent line to the graph. In particular, the
derivative decreases to a negative minimum of f ′(−1) = −1 at x = −1 and then
increases to a positive maximum of f ′(1) = 1 at x = 1. We assume all values strictly
between −1 and 0 are taken by f ′(x) uniquely for some x < −1, and indeed

lim
xց−∞

f ′(x) = 0.

Similarly,
lim
xր−1

f ′(x) = f(−1) = −1,

so all values strictly between 0 and −1 are taken by f ′(x) uniquely for some x < −1.
Starting with t < −1 the tangent line to the graph of f at (t, f(t)) = (t, ln(1+ t2))

is given as the graph of a function ℓ : R → R by

ℓ(x) =
2t

1 + t2
(x− t) + ln(1 + t2) =

2t

1 + t2
x+ ln(1 + t2)− 2t2

1 + t2
.

Thus, the line
L = {(x, ax+ b) ∈ R

2 : x ∈ R} (4)
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with

a = a(t) =
2t

1 + t2
and b = b(t) = ln(1 + t2)− 2t2

1 + t2
(5)

for t < −1 corresponds to a line that satisfies ℓ(x) ≥ f(x) for x ≤ −1 with strict
inequality except for x = t by the strict “downward convexity” of the graph of f . In
particular,

−1 = f ′(−1) < ℓ′(−1) = a(t) < 0

and

0 < f(−1) = ln(2) < ℓ(−1) = b(t)− a(t) = ln(1 + t2)− 2t
t+ 1

t2 + 1
.

Consequently there is some ǫ > 0 for which ℓ(x) > f(x) for −1 ≤ x < −1 + ǫ as well
and also for t < x < −1 + ǫ. Since

lim
xր∞

ℓ(x) = −∞

and f(x) ≥ 0 for all x, there is some least x1 > −1 for which ℓ(x1) = f(x1). Since
ℓ(x) > f(x) for t < x < x1 it must be the case that ℓ′(x1) = a(t) ≤ f ′(x1). If x1 < 0,
then by the monotonicity of f ′ there must hold

f ′(x) > ℓ′(x) = a(t) for x1 < x ≤ 0

and also for x1 < x ≤ 1. This implies f(x) > ℓ(x) for x1 < x ≤ 0 and for x1 < x ≤ 1
as well. In any case, for x > 0, we know f is increasing and ℓ is (still) decreasing, so
f(x) > ℓ(x) for x > x1.

In the case x1 ≥ 0, just the monotonicity of f implies the same conclusion:

f(x) > ℓ(x) for x > x1.

We have established that the particular tangent line L given in (4) with ℓ(t) = f(t)
and t < −1 intersects the graph of f in exactly two points, the point of tangency
(t, ln(1 + t2)) and one additional point (x1, ln(1 + x2

1)) for some x1 > −1. In fact, it
can be shown that f ′(x1) > ℓ′(x1) = a(t) so that the second point of intersection is a
transverse point of intersection, but we have not shown this yet.

Since there are two points of intersection, the line L determined by y = ℓ(x) =
a(t) x + b(t) in this particular case is not a line corresponding to a point (a, b) =
(a(t), b(t)) in the set

A =
{

(a, b) ∈ R
2 : #{(x, ln(1 + x2)) ∈ R

2 : x ∈ R, ln(1 + x2) = ax+ b} = 1
}
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we are asked to determine. Nevertheless, the points

T = {(a(t), b(t)) ∈ R
2 : t < −1} (6)

we have discussed and found are of interest, and we proceed to consider the nature
and geometry of the set T . Recall that we have T given as a parameterized curve
with

a = a(t) =
2t

1 + t2
and b = b(t) = ln(1 + t2)− 2t2

1 + t2

for t < −1. The first relation determines t as a function of the slope a:

at2 − 2t + a = 0 or t =
1 +

√
1− a2

a
< −1. (7)

Note that we take the “+” sign here in solving the quadratic equation because a < 0.
Notice furthermore that as t ranges over the interval (−∞,−1), the value a(t) = f ′(t)
is strictly decreasing with

a′(t) = f ′′(t) = 2
1− t2

(1 + x2)2
< 0

and takes on precisely the values in the interval (−1, 0) with

lim
tց−∞

a(t) = 0 and lim
tր−1

a(t) = −1.

Notice this same observation was mentioned/used above as applied directly to f ′(t) =
a(t).

It is perhaps convenient at this point to interrupt our discussion of the parame-
terized curve T defined in (6) with several interesting and useful observations. The
“other” solution

t = t− =
1−

√
1− a2

a
(8)

of the quadratic equation in (7) satisfies −1 < t− < 0 for −1 < a < 0. To see that
t− < 0 it is enough to observe that for −1 < a < 0 one has 1 −

√
1− a2 > 0. The

inequality

t− =
1−

√
1− a2

a
> −1

is equivalent in this case to

−a > 1−
√
1− a2 or

√
1− a2 > 1 + a.
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The last inequality holds because 1+ a > 0 and 1− a2 > (1 + a)2 = 1+ 2a+ a2 since
2a2 + 2a = 2a(a+ 1) < 0 when −1 < a < 0.

If we extend or adapt the discussion above to points (t, f(t)) = (t−, f(t−)) and
the tangent lines at these points with −1 < t < 0 most of the calculations and
formulas above apply without change. Specifically, for −1 < t < 1 the tangent line
L = L− given by the expression in (4) with a and b given as functions of t by the
same formulas in (5). Furthermore, since f ′′(t) > 0 for −1 < t ≤ 0, we see that
a(t) = f ′(t) increases from f ′(−1) = −1 to f ′(0) = 0 as t increases from t = −1 to
t = 0. Thus, for −1 < t < 1 the value of a(t) takes on precisely the same interval of
values −1 < t < 0 though as we have seen a(t) decreases through these values when
−∞ < t < −1.

Here the point of tangency (t, f(t)) = (t, ln(1+ t2)) has −1 < t < 0, and while we
can take the slope

a = f ′(t) =
2t

1 + t2

to have the same value a given in (5) for t < −1 precisely by taking t = t− to be the
“other” root given in (8), the value of b given by the same formula, namely,

b = ln(1 + t2)− 2t2

1 + t2

with t = t− will necessarily be different from b(t+) where

t = t+ =
1 +

√
1− a2

a

is given in (7) precisely because we have taken t = t−. From the plot in Figure 2 it
looks like there should hold

ℓ+(x) = a(t+) x+ b(t+) > a(t−) x+ b(t−) = ℓ−(x) for all x ∈ R

and hence
b(t−) < b(t+), (9)

but we should verify this assertion analytically (rather than rely on the illustration).
To this end, note that

t2± =
2− a2 ± 2

√
1− a2

a2

so that

1 + t2± = 2
1±

√
1− a2

a2
and

2t2±
1 + t2±

= at± = 1±
√
1− a2.
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Therefore, we can write

b(t±) = ln

(

2
1±

√
1− a2

a2

)

∓
√
1− a2 − 1. (10)

In particular,

b(t+)− b(t−) = ln

(

2
1 +

√
1− a2

a2

)

− ln

(

2
1−

√
1− a2

a2

)

− 2
√
1− a2

= ln

(

1 +
√
1− a2

1−
√
1− a2

)

− 2
√
1− a2.

Consider then φ : [0, 1) → R by

φ(ξ) = ln

(

1 + ξ

1− ξ

)

− 2ξ.

We have then φ(0) = 0 and
lim
ξր1

φ(ξ) = +∞.

Also,

φ′(ξ) =
1− ξ

1 + ξ

1− ξ + 1 + ξ

(1− ξ)2
− 2 = 2

(

1

1− ξ2
− 1

)

=
2ξ2

1− ξ2
> 0.

Thus, φ(ξ) ≥ 0 for 0 ≤ ξ < 1 with strict inequality only for ξ = 0. Since ξ =
√
1− a2

is a decreasing function of a taking the values on the interval 0 ≤ ξ ≤ 1 when
−1 < a < 0, we see

b(t+)− b(t−) = φ(
√
1− a2) > 0

as suggested by the illustration.
There is, in fact, another way to see this assertion which yields an additional

interesting and perhaps important piece of information. Recall that we have shown
the line

L = L+ = {(x, ax+ b) : x ∈ R},
given in (4) with a satisfying −1 < a < 0 and b = b(t+), contains (exactly) two points
of intersection with the graph G. These are the point of tangency at (t+, ln(1 + t2+))
with t+ < −1 and the point (x1, ln(1 + x2

1)) with x1 > −1. We also know

f(x) = ln(1 + x2) < ℓ+(x) = ax+ b(t+) for t+ < x < x1.
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By the mean value theorem, there is some point t∗ with t+ < t∗ < x1 for which

f ′(t∗) =
f(x1)− f(t+)

x1 − t+
=

ℓ+(x1)− ℓ+(t+)

x1 − t+
= a.

The only value t∗ for which this can hold is the unique value t− with −1 < t− < 0.
Thus, first of all, ℓ−(x) = ax+ b(t−) satisfies

ℓ−(t−) = f(t−) < ℓ+(t−) or at− + b(t−) < at− + b(t+)

and b(t+) > b(t−) as claimed. Furthermore, if x1 ≤ 0, then since f ′ is increasing for
t− ≤ x < 0, we know f ′(x1) > a = ℓ′+(x1). Thus, the intersection (x1, f(x1)) of the
tangent line at (t+, f(t+)) with the graph of f is a transverse intersection.

Our discussion above has established that the tangent lines corresponding to points
(t, f(t)) with t < 0 are as indicated in Figure 2. In view of this discussion, it is natural
to extend the notation involving “±” subscripts to the set of interest T given in (6)
and write

T+ = {(a(t), b(t)) ∈ R
2 : t < −1}

as well as
T− = {(a(t), b(t)) ∈ R

2 : −1 < t < 0}.
Before we continue with the effort to understand the set T+, and now the set T−
as well, let us attempt to establish that the points in T− also correspond to points
outside the set A of primary interest. Specifically, we wish to show there exists some
unique x2 < t+ such that

L− ∩G = {(x2, f(x2)), (t−, f(t−))} (11)

and the intersection at (x2, f(x2)) is a transverse intersection with f ′(x2) > a =
ℓ′−(x2). The key is the growth rate of f(x) = ln(1 + x2) as x ց −∞. In fact,

lim
xց−∞

[ln(1 + x2)− ℓ−(x)] = lim
xց−∞

[ln(1 + x2)− ax− b(t−)] = −∞

because

eln(1+x2)−ax =
1 + x2

eax
,

and by L’Hopital’s rule this ∞/∞ indeterminate form is comparable to

2x

aeax
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Figure 2: Tangent lines to the graph of the function f with values f(x) = ln(1 + x2).
The two parallel lines are the only two lines tangent to the graph sharing a fixed slope
−1 < a < 0. We have labeled the points of tangency (t±, ℓ±(t±)). The unique tangent line
with slope a = −1 and passing through (−1, ln(2)) is also shown.

which tends to zero from the right as x ց −∞ either because one knows the ex-
ponential denominator outpaces the linear numerator or by a second application of
L’Hopital’s rule yielding

lim
xց−∞

1 + x2

eax
= lim

xց−∞

2x

aeax
= lim

xց−∞

2

a2eax
= 0.
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Thus,

lim
xց−∞

[ln(1 + x2)− ℓ−(x)] = b(t−) + lim
xց−∞

ln
(

eln(1+x2)−ax
)

= b(t−) + lim
vց0

ln v

= −∞.

We conclude that for large negative values of x there holds ℓ−(x) > f(x). On the
other hand, since f ′′(t−) > 0 and f ′′(x) > 0 for −1 < x < 1 we know

ℓ−(x) ≤ f(x) for − 1 ≤ x ≤ 1

with strict inequality except for x = t−. Thus, there is at least one value x2 with
x2 < −1 and ℓ−(x2) = f(x2). That is, (x2, ln(1 + x2

2)) is a second intersection point
of the tangent line L− with the graph G, and (a, b(t−)) /∈ A for −1 < a < 0.

In fact, since ℓ−(−1) < f(−1) and f ′(x) < a = ℓ′−(x) for t+ < x < −1, we know

ℓ−(x) < f(x) for t+ < x < t−.

Furthermore, ℓ′−(x) = a < f ′(x) for −∞ < x < t+. Therefore, there can be only
one point x2 with −∞ < x2 < t+ and ℓ−(x2) = f(x2). Since there also holds
ℓ′−(x2) = a < f ′(x2), we know the intersection of L− with G at (x2, f(x2)) is a
transverse intersection. Finally, since ℓ−(0) < f(0), or alternatively ℓ−(1) < f(1) and
f ′(x) > 0 for x > 0 while ℓ′−(x) ≡ a < 0, we know there are no intersection points
(x, f(x)) of L− with G satisfying x ≥ 0. This is a convenient time to include the
details of the little calculus argument upon which this last assertion relies: For x > 0

ℓ−(x) =

∫ x

0

a dξ <

∫ x

0

f ′(ξ) dξ = f(x).

We have established (11) and all the associated assertions.

We return now to the direct consideration of T±. Perhaps the direct consideration
of γ(t) = (a(t), b(t)) with a(t) = f ′(t) and b(t) = f(t)− tf ′(t) as a parametric curve
with domain the appropriate interval is the easiest way to do this. For T+, we consider
−∞ < t < 1, and we have

γ′(t) = (f ′′(t),−tf ′′(t)) = f ′′(t)(1,−t).

Since f ′′(t) < 0 for −∞ < t < 1, this tells us right away that the first component
function a(t) of γ is decreasing, and T+ is a graph over the interval −1 < a < 0. We
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know furthermore that b′(t) = −tf ′′(t) < 0, so the curve T+ is the graph of a smooth
increasing function b = b+(a) of a (in the a, b-plane). Note next that

lim
tց−∞

a(t) = lim
tց−∞

2t

1 + t2
= 0.

Also,

lim
tց−∞

f(t) = lim
tց−∞

ln(1 + t2) = +∞, and lim
tց−∞

tf ′(t) = lim
tց−∞

2t2

1 + t2
= 2.

Therefore,
lim

tց−∞
b(t) = +∞,

and the function b+(a) increases to +∞ as a ր 0. At the other end of the interval(s)

lim
tց−1

a(t) = lim
tց−1

2t

1 + t2
= −1, and lim

tց−1
b(t) = lim

tց−1
[f(t)−tf ′(t)] = ln 2−1 < 0.

Thus, at the left endpoint a = −1, the parametric curve has a finite limit

lim
tր−1

γ(t) = γ(−1) = (a(−1), b(−1)) = (−1, ln 2− 1)

as indicated in Figure 3. We have also drawn in Figure 3 the unit tangent vector in
the direction of parameterization of the curve at the point γ(−1) = (−1, ln 2 − 1).
Notice that this vector must be obtained as a limit because the nominal velocity
vector

γ′(t) = f ′′(t)(1,−t)

satisfies γ′(−1) = (0, 0) since f ′′(−1) = 0. Specifically, for −∞ < t < −1 we can
define

u(t) =
γ′(t)

|γ′(t)| =
f ′′(t)(1,−t)

√

f ′′(t)2
√
1 + t2

=
(−1, t)√
1 + t2

. (12)

Notice that f ′′(t) < 0 for −∞ < t < −1 so that

√

f ′′(t)2 = −f ′′(t).

Let me pause at this point to specify carefully the two functions currently under
consideration and specifically their domains. First we have a parameterization γ :
(−∞,−1] → R

2 of T+ where γ is smooth up to the endpoint t = −1 but has vanishing
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Figure 3: The curve of interest T+ in the a, b-plane.

derivative there. As a parameterized curve, the vanishing of the derivative γ′(−1) is
considered to be a singularity or to distinguish t = −1 as a singular point for the
parameterization. This singular behavior was evidenced in the extra effort required
to extract the tangent direction at γ(−1) = (−1, ln 2 − 1). On the other hand, we
have a real valued function b+ : [−1, 0) → R with b+(a) = b(t+(a)) whose graph is T+.
While the parameterization traces T+ from right to left with a = a(t) and b = b(t)
both decreasing as indicated by the arrows in Figure 3, the function b+ is increasing
from b(−1) = ln 2− 1 < 0 to +∞.

In order to understand/see analytically the convexity of the curve T+ one can
consider the changing values of the unit tangent vector (or unit tangent field) along
T+. This is probably one of the easiest ways to proceed because of the very simple form
of the unit tangent field u : (−∞,−1] → R

2 given in (12). The necessary calculation
can be made even simpler by introducing an angle θ : (−∞,−1] → (0, π/4] given by

θ = cot−1

(

b′(t)

a′(t)

)

= − cot−1 t

as indicated in Figure 4. In this particular illustration we have zoomed in slightly,
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and the particular point we have used for the illustration is γ(t) = γ(−3).

Figure 4: An angle θ associated with the unit tangent along T+. Curvature/convexity is
determined by how the angle θ changes along the curve.

Since
dθ

dt
=

1

1 + t2
> 0,

we see the curve T+ is convex. An alternative approach would be to consider the
function b+ : [−1, 0) → R directly with

b+(a) = b(t+) = ln

(

2
1 +

√
1− a2

a2

)

−
√
1− a2 − 1.
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as given in (10). Then we can try to differentiate:

b′+ =
a2

1 +
√
1− a2

−a2 a√
1−a2

− 2a
(

1 +
√
1− a2

)

)

a4
+

a√
1− a2

= − 1

a
(

1 +
√
1− a2

)

a2 + 2
√
1− a2 + 2 +−2a2√

1− a2
+

a√
1− a2

= −2
√
1− a2 + 2− a2 − a2 − a2

√
1− a2

a
(

1 +
√
1− a2

)√
1− a2

= −(2− a2)
√
1− a2 + 2(1− a2)

a
(

1 +
√
1− a2

)√
1− a2

= −(2− a2) + 2
√
1− a2

a
(

1 +
√
1− a2

) (13)

> 0.

We can also check that

b′+(−1) = 1 and lim
aր0

b′+(a) = +∞.

This is all in agreement with what we expect, so this is at least some indication that
the formula (13) may be correct. For the convexity we should compute the second
derivative b′′+ which looks not so pleasant to compute at least with b′+(a) in the form
we have given in (13). As an alternative, let us write

b′+(a) =
a

1 +
√
1− a2

− 2

a
.

Then we can compute

b′′+ =
1 +

√
1− a2 + a2/

√
1− a2

(

1 +
√
1− a2

)2 +
2

a2
> 0.

That was aapparently a lot easier than it looked at first, and it may even be correct.
Given that this seems to have gone so well, perhaps we can go with the same non-
parametric approach to understanding the set T− consisting of points (a, b) with
−1 < a < 0 corresponding to tangent lines

L− = {(x, ax+ b) : x ∈ R}
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with points of tangency (t, ln(1 + t2)) having −1 < t < 0. In this case,

T− = {(a, b−(a)) : −1 < a < 0}

where according to (5) and (8)

b−(a) = b(t−(a))

= ln(1 + t2−)−
2t2−

1 + t2−

= ln

(

2
1−

√
1− a2

a2

)

− 1 +
√
1− a2

since

1 + t2− = 1 +
2− a2 − 2

√
1− a2

a2
= 2

1−
√
1− a2

a2

and
2t2−

1 + t2−
= t−f

′(t−) = at− = a
1−

√
1− a2

a
.

The left endpoint (limiting) value in this case may be obtained by direct evaluation
with

b−(−1) = ln 2− 1.

Note that this matches the left endpoint value b+(−1). At a = 0, we observe

lim
aր0

1−
√
1− a2

a2
= lim

aր0

a/
√
1− a2

2a
=

1

2
,

so
lim
aր0

b−(a) = ln 1 = 0.
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For the derivative we find

b′−(a) =
a2

1−
√
1− a2

a3/
√
1− a2 − 2a+ 2a

√
1− a2

a4
− a√

1− a2

=
a2 − 2

√
1− a2 + 2− 2a2

a
(

1−
√
1− a2

)√
1− a2

− a√
1− a2

=
2− a2 − 2

√
1− a2 − a2 + a2

√
1− a2

a
(

1−
√
1− a2

)√
1− a2

=
2(1− a2)− (2− a2)

√
1− a2

a
(

1−
√
1− a2

)√
1− a2

=
2
√
1− a2 − (2− a2)

a
(

1−
√
1− a2

) (14)

=
a

1−
√
1− a2

− 2

a
. (15)

Again, at the left endpoint we have by evaluation

b′−(−1) = −1 + 2 = 1.

At the right endpoint a = 0 we take a limit starting with the expression (14):

b′−(0) = lim
aր0

−2a/
√
1− a2 + 2a

1−
√
1− a2 + a2/

√
1− a2

= lim
aր0

2a

√
1− a2 − 1√

1− a2 − 1 + 2a2

= 0

since

lim
aր0

√
1− a2 − 1√

1− a2 − 1 + 2a2
= lim

aր0

−2a/
√
1− a2

−2a/
√
1− a2 + 4a

= −1.

Notice that alternatively (for computing the last limit), we can write
√
1− a2 − 1√

1− a2 − 1 + 2a2
=

(

1 +
2a2√

1− a2 − 1

)−1

and

lim
aր0

2a2√
1− a2 − 1

= lim
aր0

4a

−2a/
√
1− a2

= −2.
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At any rate, with a little more work we can show b− is differentiable (at least from
the left) at a = 0 with b′−(0) = 0. Finally, we have the expression (15) from which we
can compute

b′′−(a) =
1−

√
1− a2 − a2/

√
1− a2

(

1−
√
1− a2

)2 +
2

a2

=

√
1− a2 − 1

(

1−
√
1− a2

)2√
1− a2

+
2

a2

= − 1
(

1−
√
1− a2

)√
1− a2

+
2

a2

=
1

1− a2 −
√
1− a2

+
2

a2

=
a2 + 2− 2a2 − 2

√
1− a2

a2
(

1− a2 −
√
1− a2

)

=
2− a2 − 2

√
1− a2

a2
(

1− a2 −
√
1− a2

)

< 0

because
1− a2 −

√
1− a2 = −

(

1−
√
1− a2

)√
1− a2 < 0

and (we claim)
a2 + 2

√
1− a2 < 2.

To see the last assertion note that 2− a2 > 0, so the last inequality is equivalent to

4(1− a2) < 4− 4a2 + a4 or a4 > 0.

This completes the analysis (or at least some analysis) of T− which is a “convex down”
curve connecting (a, b) = (−1, ln 2− 1) to (a, b) = (0, 0) as indicated in Figure 5.

Since f is even, a symmetric situation prevails for tangent lines to G at points
(t, ln(1 + t2)) with t > 0 and t 6= 1. Thus, it is natural to extend the sets/curves T±
to include slope-intercept pairs (a, b) corresponding to these tangent lines:

T+ =

{(

a, ln

(

2
1 +

√
1− a2

a2

)

− 1−
√
1− a2

)

: 0 < |a| < 1

}
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T− =

{(

a, ln

(

2
1−

√
1− a2

a2

)

− 1 +
√
1− a2

)

: 0 < |a| < 1

}

This extension is also indicated in Figure 5. It would be a good exercise to go through
the analysis associated with “determining” these curves for 0 < a < 1 independently
and see if what we have done above for −1 < a < 0 can be streamlined. Of course,
it is a little ambiguous in the statement of the problem what exactly it means to
“determine” the set A. I am relatively satisfied to have checked the monotonicity and
convexity of the curves T±. Of course (also) these curves are not in A, but having
“determined” them, we are in a pretty good position to complete the problem. Let’s
consider some slope-intercept pairs (a, b) which are actually in A.

First of all, if we take (t, ln(1 + t2)) ∈ T+ with −∞ < t < −1, then we know the
tangent line determined by ℓ(x) = ax+ b with a = f ′(t) and b = b(t+(a)) = b+(f

′(t))
satisfies























ℓ(x) > f(x), −∞ < x < t
ℓ(t) = f(t),
ℓ(x) > f(x), t < x < x1

ℓ(x1) = f(x1),
ℓ(x) < f(x), x1 < x < ∞.

(16)

Furthermore, we know ℓ′(x1) = a < f ′(x1) and x1 > −1. Based on this information,
we can show

{(a, β) : β > b} ⊂ A.

That is, the line {(x, ax + β) : x ∈ R} intersects the graph G in exactly one point.
Let µ(x) = ax+ β. Then immediately we have

µ(x) = ax+ b+ (β − b) > ℓ(x) ≥ f(x) for x ≥ x1.

Because limxր+∞ µ(x) = −∞ we know by the intermediate value theorem that there
is some xβ > x1 with µ(xβ) = f(xβ). Thus, (xβ , f(xβ)) is one point of intersection of

Lβ = {(a, ax+ β) : x ∈ R}

with G. Furthermore, we can take

xβ = min{x ∈ R : µ(x) = f(x)}.

Then






µ(x) > f(x), −∞ < x < xβ

µ(xβ) = f(xβ),
µ(x) < f(x), xβ < x < ∞.
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To see the last inequality note that if x1 < xβ < 1, then

µ′(xβ) = a = ℓ′(x1) < f ′(x1) < f ′(xβ).

Thus for xβ < x ≤ 1 we have

µ(x) = µ(xβ) +

∫ x

xβ

a dξ < f(xβ) +

∫ x

xβ

f ′(ξ) dξ = f(x).

In particular µ(1) < f(1). For x > 1, the function f is increasing while the affine
function µ is decreasing. Consequently

µ(x) = µ(1) +

∫ x

xβ

a dξ < µ(1) < f(1) < f(x).

If xβ ≥ 1, then the last string of inequalities can be modified to give

µ(x) = µ(xβ) +

∫ x

xβ

a dξ < µ(xβ) ≤ f(xβ) < f(x) for x > xβ.

A similar argument applies to the points

{(a, β) : β > b}

when (a, b) ∈ T+ with 0 < a < 1 and β > b. These points are all in the set A.
Next consider (a, b−) ∈ T− with −1 < a < 0 and a = f ′(t−). In this case we have

shown






















ℓ−(x) > f(x), −∞ < x < x2

ℓ−(x2) = f(x2),
ℓ−(x) < f(x), x2 < x < t−
ℓ−(t−) = f(t−),
ℓ−(x) < f(x), t− < x < ∞

(17)

with ℓ′−(x2) = a < f ′(x2) and x2 < t−. Arguments similar to those used in the case
a = f ′(t) with t < −1 give

{(a, β) : β < b−} ⊂ A.

Symmetrically we have also

{(a, β) : β < b−} ⊂ A

when 0 < a < 1 and (a, b−) ∈ T−.
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Considering and comparing (16) and (17) we see that the points (a, β) with b− <
β < b are not in A. In fact, if µ(x) = ax+ β for such a point, then















µ(x2) > f(x2),
µ(t) < f(t),
µ(t−) > f(t−),
µ(x1) < f(x1).

It follows from the intermediate value theorem that Lµ = {(a, µ(x)) = (a, ax + β) :
x ∈ R} intersects the graph G at some point (x+, f(x∗)) with x2 < x∗ < t and at
another point (x∗∗, f(x∗∗)) with t < x∗∗ < t−. In fact, there must be at least three
points of intersection of the line Lµ with G. See Figure 2. I believe there should be
exactly three. In any case, (a, β) /∈ A for b− < β < b.

Overall, we conclude the set of points directly below and including T+ and directly
above and including T− is not in A. This set may be seen in Figure 5.

The points (a, b) with a = 0 and |a| ≥ 1 should be considered separately.
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Figure 5: The curves T+ and T− determined by tangent lines at the points (t, ln(1 + t2))
to the graph of f where f(x) = ln(1 + x2) and t 6= ±1. Each such line intersects the graph
G in exactly two points, so these curves are not in the set A of slope-intercept pairs (a, b)
corresponding to lines that intersect the graph exactly once.
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