SOME RESULTS ABOUT A POSITIVE DEFINITE MATRIX TIMES A
NEGATIVE SEMIDEFINITE MATRIX

JACOB SUBOSITS

Lemma 17 (definiteness and trace) If A = (a;;) is a real symmetric positive definite matrix
and H = (b;;) is a real symmetric negative semidefinite matrix, then

tI‘(AH) = Z aijbij S 0.

]

[ offer two proofs, the first of which being similar (I think — although I do not remember the exact
details of the proof) to the one presented by Tyler in class. The second proof is similar to the one
I presented on the board in class on Tuesday, October 2274

Proof. Since A is symmetric, there is an orthogonal matrix ) and diagonal matrix A of eigenvalues
of A such that A = QTAQ. Note that the diagonal entries of A are all positive since A is positive
definite. Hence, the square root of A given by A2 = QTAY2(Q exists.

Thus,

tr(AH) = tr (AY2AV2H) .
By a property of the trace,
— tr (AV2HAY?)
= Z e;TFAl/QHAlﬂei

i=1
= Z (eZTAl/2) H (Al/QeZ-)
i=1
We have el A% = el (Al/Q)T = (Al/zei)T because

(AI/Q)T _ (QTAI/QQ)T _ (AI/QQ)TQ — Q7 (AI/Q)TQ _ QTAI/ZQ _ (A1/2).
Therefore,
tr(AH) =Y (AY2%,) H (A%,)
i=1
Letting, x; = A'/?e;,

n

T
= E x; Hx;
i=1
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and since H is negative semidefinite, it follows that x! Hx; < 0 for each i € {1,...,n}. Thus, the
summation above is non-positive:
tr(AH) <0.
O]

Proof. We have that —H is a positive semidefinite matrix by Lemma 1. Also, A is a positive
semidefinite matrix because x! Ax < 0 < 0 for all x € R". By Lemma 3, there exist matrices X
and Y such that A= XX and —H =Y7Y.

Therefore,

Calling C = Y X7 = (¢;),

Hence, tr(AH) < 0. O
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Lemma 1. If H is a n X n real symmetric negative semidefinite matrix, then B .= —H is a
positive semidefinite matrix.

Proof. Since H is negative semidefinite, for each x € R™, we have x? Hx < 0. Thus, x7 (—H)x > 0
for all x € R™. Hence, B := —H is positive semidefinite. U

Lemma 2. In the cases below, if A = (a;j) and B = (b;j) are n X n real symmetric
positive semidefinite matrices, then the diagonal entries of AB are non-negative. That is,
el ABe; > 0 for every i € {1,...,n}.

Note: These cases are by no means exhaustive (as far as I know), they are just cases I was
able to come up with which make this lemma true.

Case 1. (B = A) Note that if B = A, then Case 2 below automatically applies so this proof is not
really necessary.

Proof. Suppose for the sake of contradiction that there is a k € {1,...,n} such that el ABe; < 0.
Since A is positive semidefinite, it follows that A = QTAQ for some orthogonal matrix @) and

diagonal matrix A having the eigenvalues of A on its diagonal.
Thus,

el QTAQBe;, < 0
Now consider the special case where B = A. Then B = QTAQ, and so
0> e; QTAQQTAQe;
— e/ Q"AAQey
Letting v, = AQey, we have
0> V{Vk,

which is a contradiction because the squared norm of a vector in R" cannot be negative.

Thus, it must be the case that el ABe; > 0 for all i € {1,...,n}. O

Case 2. (sign(a;;) = sign(b;;) for each 4, j € {1,...,n}, where sign(z) is the signum function.)

Proof. For each i € {1,...,n}, we have

n

e;TFABei = (AB)“ = Z aijbji = Zai]‘bi]‘.
7j=1

Jj=1

Since we assumed sign(a;;) = sign(b;;), it follows that a;;b;; > 0. Hence Z?:1 a;;b;; > 0. That is,
each diagonal entry of the product AB is non-negative. O
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Non-Fact. (Exercise 3.2) If A = (a;;j) is an n x n real symmetric positive definite matrix
and H = (h;;) is an n x n real symmetric negative semidefinite matrix, then the diagonal
entries of AH are non-positive.

Note: There are certain conditions we can impose on A and H that make this statement
true. See below.

\. J

Counterezample. Consider the 2 x 2 matrices

1 3 -1 3
A:(s 10) and HZ(:& —10)'

The eigenvalues of A are %(11 + \/117) > %(11 — 121) = 0, Hence, A is positive definite.
The eigenvalues of H are i (—11 + \/117) < % (—11 +V 121) = 0 < 0. Hence, H is a negative

2
semidefinite matrix.

8 =27

Al = (27 —91)

However, we have that
so that the entry (AH);; is positive. Hence the statement is not true in general.

Cases where the statement is true. We have that A is a positive semidefinite matrix since A is a
positive definite matrix. This is clear because for all x € R”, we have x’ Ax > 0 > 0. We also
have that —H is a positive semidefinite matrix by Lemma 1.

For the first case, where A = —H, we can apply Case 1 of Lemma 2 to see that e A(—H)e; > 0.
Hence, e/ AHe; < 0.

For the second case, where sign(a;;) = —sign(h;;) for all 4,5 € {1,...,n}, we have that
sign (a;;) = sign(—h;;). Hence, we can apply Case 2 of Lemma 2 to see that el A(—H)e; > 0.
That is, e/ AHe; < 0.

Lemma 3. If A is a n X n real symmetric positive semidefinite matrix, then there is a
matrix X such that A = X7 X.

Proof. Writing A = QTAQ as before, the square root A'/? exists because the eigenvalues of A are
non-negative. Thus, A = (QTAI/Z) (A1/2Q) = (Al/QQ)T (Al/QQ). Calling X = A'Y2Q, we have
A=XTX. OJ



