SOME RESULTS ABOUT A POSITIVE DEFINITE MATRIX TIMES A NEGATIVE SEMIDEFINITE MATRIX

JACOB SUBOSITS

Lemma 17 (definiteness and trace) If $A = (a_{ij})$ is a real symmetric positive definite matrix and $H = (b_{ij})$ is a real symmetric negative semidefinite matrix, then

$$
\text{tr}(AH) = \sum_{i,j} a_{ij} b_{ij} \leq 0.
$$

I offer two proofs, the first of which being similar $(I \text{ think } -$ although I do not remember the exact details of the proof) to the one presented by Tyler in class. The second proof is similar to the one I presented on the board in class on Tuesday, October 22nd.

Proof. Since A is symmetric, there is an orthogonal matrix Q and diagonal matrix Λ of eigenvalues of A such that $A = Q^T \Lambda Q$. Note that the diagonal entries of Λ are all positive since Λ is positive definite. Hence, the square root of A given by $A^{1/2} = Q^T \Lambda^{1/2} Q$ exists.

Thus,

$$
tr(AH) = tr(A^{1/2}A^{1/2}H).
$$

By a property of the trace,

$$
= \text{tr} (A^{1/2} H A^{1/2})
$$

= $\sum_{i=1}^{n} \mathbf{e}_i^T A^{1/2} H A^{1/2} \mathbf{e}_i$
= $\sum_{i=1}^{n} (\mathbf{e}_i^T A^{1/2}) H (A^{1/2} \mathbf{e}_i)$

We have ${\bf e}_i^T A^{1/2} = {\bf e}_i^T (A^{1/2})^T = (A^{1/2} {\bf e}_i)^T$ because

$$
(A^{1/2})^T = (Q^T \Lambda^{1/2} Q)^T = (\Lambda^{1/2} Q)^T Q = Q^T (\Lambda^{1/2})^T Q = Q^T \Lambda^{1/2} Q = (A^{1/2}).
$$

Therefore,

$$
\text{tr}(AH) = \sum_{i=1}^{n} \left(A^{1/2} \mathbf{e}_i\right)^{T} H\left(A^{1/2} \mathbf{e}_i\right)
$$

Letting, $\mathbf{x}_i = A^{1/2} \mathbf{e}_i$,

$$
= \sum_{i=1}^n \mathbf{x}_i^T H \mathbf{x}_i
$$

Date: October 2024.

 $\,$ 2 $\,$ $\,$ JACOB SUBOSITS

and since H is negative semidefinite, it follows that $\mathbf{x}_i^T H \mathbf{x}_i \leq 0$ for each $i \in \{1, ..., n\}$. Thus, the summation above is non-positive:

$$
\operatorname{tr}(AH) \leq 0.
$$

Proof. We have that $-H$ is a positive semidefinite matrix by Lemma 1. Also, A is a positive semidefinite matrix because $\mathbf{x}_i^T \mathbf{A} \mathbf{x} < 0 \leq 0$ for all $\mathbf{x} \in \mathbb{R}^n$. By Lemma 3, there exist matrices X and Y such that $A = X^T X$ and $-H = Y^T Y$.

Therefore,

$$
-tr(AH) = tr(A(-H))
$$

= tr($x^T XY^T Y$)
= tr(XY^TYX^T)
= tr((YX^T)^T(YX^T)).

Calling $C = YX^{T} = (c_{ij}),$

$$
-tr(AH) = \text{tr}(C^TC)
$$

$$
= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^2
$$

$$
\geq 0.
$$

Hence, $tr(AH) \leq 0$.

□

Lemma 1. If H is a $n \times n$ real symmetric negative semidefinite matrix, then $B = -H$ is a positive semidefinite matrix.

Proof. Since H is negative semidefinite, for each $\mathbf{x} \in \mathbb{R}^n$, we have $\mathbf{x}^T H \mathbf{x} \leq 0$. Thus, $\mathbf{x}^T (-H) \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$. Hence $B = -H$ is positive semidefinite for all $\mathbf{x} \in \mathbb{R}^n$. Hence, $B \coloneqq -H$ is positive semidefinite.

Lemma 2. In the cases below, if $A = (a_i j)$ and $B = (b_i j)$ are $n \times n$ real symmetric positive semidefinite matrices, then the diagonal entries of AB are non-negative. That is, $\mathbf{e}_i^T AB \mathbf{e}_i \geq 0$ for every $i \in \{1, \ldots, n\}.$

Note: These cases are by no means exhaustive (as far as I know), they are just cases I was able to come up with which make this lemma true.

Case 1. $(B = A)$ Note that if $B = A$, then Case 2 below automatically applies so this proof is not really necessary.

Proof. Suppose for the sake of contradiction that there is a $k \in \{1, ..., n\}$ such that $\mathbf{e}_k^T AB \mathbf{e}_k < 0$. Since A is positive semidefinite, it follows that $A = Q^T \Lambda Q$ for some orthogonal matrix Q and

diagonal matrix Λ having the eigenvalues of A on its diagonal. Thus,

$$
\mathbf{e}_k^T Q^T \Lambda Q B \mathbf{e}_k < 0
$$

Now consider the special case where $B = A$. Then $B = Q^T \Lambda Q$, and so

$$
0 > \mathbf{e}_k^T Q^T \Lambda Q Q^T \Lambda Q \mathbf{e}_k
$$

$$
= \mathbf{e}_k^T Q^T \Lambda \Lambda Q \mathbf{e}_k
$$

Letting $\mathbf{v}_k = \Lambda Q \mathbf{e}_k$, we have

 $0 > \mathbf{v}_k^T \mathbf{v}_k,$

which is a contradiction because the squared norm of a vector in \mathbb{R}^n cannot be negative.

Thus, it must be the case that $\mathbf{e}_i^T AB \mathbf{e}_i \geq 0$ for all $i \in \{1, ..., n\}$.

Case 2. (sign(a_{ij}) = sign(b_{ij}) for each $i, j \in \{1, ..., n\}$, where sign(x) is the signum function.) *Proof.* For each $i \in \{1, \ldots, n\}$, we have

$$
\mathbf{e}_i^T A B \mathbf{e}_i = (A B)_{ii} = \sum_{j=1}^n a_{ij} b_{ji} = \sum_{j=1}^n a_{ij} b_{ij}.
$$

Since we assumed $sign(a_{ij}) = sign(b_{ij})$, it follows that $a_{ij}b_{ij} \ge 0$. Hence $\sum_{j=1}^{n} a_{ij}b_{ij} \ge 0$. That is, each diagonal entry of the product AB is non-negative. \Box **Non-Fact.** (Exercise 3.2) If $A = (a_{ij})$ is an $n \times n$ real symmetric positive definite matrix and $H = (h_{ij})$ is an $n \times n$ real symmetric negative semidefinite matrix, then the diagonal entries of AH are non-positive.

Note: There are certain conditions we can impose on A and H that make this statement true. See below.

Counterexample. Consider the 2×2 matrices

$$
A = \begin{pmatrix} 1 & 3 \\ 3 & 10 \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} -1 & 3 \\ 3 & -10 \end{pmatrix}.
$$

The eigenvalues of A are $\frac{1}{2}$ $\left(11 \pm \sqrt{117}\right)$ $> \frac{1}{2}$ $\left(11 - \sqrt{121}\right) = 0$, Hence, A is positive definite. The eigenvalues of H are $\frac{1}{2}(-11 \pm \sqrt{117}) < \frac{1}{2}(-11 + \sqrt{121}) = 0 \le 0$. Hence, H is a negative semidefinite matrix.

However, we have that

$$
AH = \begin{pmatrix} 8 & -27 \\ 27 & -91 \end{pmatrix}
$$

so that the entry $(AH)_{11}$ is positive. Hence the statement is not true in general.

Cases where the statement is true. We have that A is a positive semidefinite matrix since A is a positive definite matrix. This is clear because for all $\mathbf{x} \in \mathbb{R}^n$, we have $\mathbf{x}^T A \mathbf{x} > 0 \geq 0$. We also have that $-H$ is a positive semidefinite matrix by Lemma 1.

For the first case, where $A = -H$, we can apply Case 1 of Lemma 2 to see that $\mathbf{e}_i^T A(-H)\mathbf{e}_i \geq 0$. Hence, $\mathbf{e}_i^T A H \mathbf{e}_i \leq 0$.

For the second case, where $sign(a_{ij}) = -sign(h_{ij})$ for all $i, j \in \{1, ..., n\}$, we have that $\text{sign}(a_{ij}) = \text{sign}(-h_{ij}).$ Hence, we can apply Case 2 of Lemma 2 to see that $\mathbf{e}_i^T A(-H)\mathbf{e}_i \geq 0.$ That is, $\mathbf{e}_i^T A H \mathbf{e}_i \leq 0$.

Lemma 3. If A is a $n \times n$ real symmetric positive semidefinite matrix, then there is a matrix X such that $A = X^T X$.

Proof. Writing $A = Q^T \Lambda Q$ as before, the square root $\Lambda^{1/2}$ exists because the eigenvalues of A are non-negative. Thus, $A = (Q^T \Lambda^{1/2})(\Lambda^{1/2} Q) = (\Lambda^{1/2} Q)^T (\Lambda^{1/2} Q)$. Calling $X = \Lambda^{1/2} Q$, we have $A = X^T X.$