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Abstract

Mollification is a remarkable procedure for approximating real valued func-
tions with smooth C∞ functions. We describe a geometric adaptation of this
procedure for approximating certain planar curves. For C1 curves with a weak
curvature vector we give a mollification procedure leaving curves of constant
curvature invariant in anology to mollifications of functions leaving solutions of
Laplace’s equation (harmonic functions) invariant.

Let Γ be a C1 planar curve parameterized by arclength on an open interval
(−L,M) for some positive numbers L and M . Specifically, we begin with

γ = (γ1, γ2) ∈ C1((−L,M) → R
2) (1)

for which

γ̇ =
dγ

ds
satisfies γ̇21 + γ̇22 = 1. (2)

We restrict attention further to curves admitting a weak curvature vector in the
following sense: There exist functions D1γ̇1, D1γ̇2 ∈ L1

loc(−L,M) with
∫

(−L,M)

γ̇j
dφ

ds
= −

∫

(−L,M)

D1γ̇j φ, φ ∈ C∞
c (−L,M), j = 1, 2. (3)

Examples of such curves are the following:

Example 1 Given a > 0, consider γ : (−πa/2, πa/2) → R2 by

γ(s) =

{

(a, 0) + a(− cos(s/a), sin(s/a)), −πa/2 < s ≤ 0
(−a, 0) + a(cos(s/a), sin(s/a)), 0 ≤ s < πa/2.

(4)
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Figure 1: Example 1: A curve that follows two tangent circles of the same radius

Example 2 Given a, c > 0 with c < a < 2c so that b = 2c − a > 0, consider
γ : (−πa/2, πb/2) → R2 by

γ(s) =

{

(c, 0) + a(− cos(s/a), sin(s/a), −πa/2 < s ≤ 0
(−c, 0) + b(cos(s/b), sin(s/b)), 0 ≤ s < πb/2.

(5)

Figure 2: Example 2: A curve that follows two tangent circles of different radii

Given an open set Ω ⊂ Rn, the mollification procedure familiar from the theory of
partial differential equations provides a remarkable way to associate with a function
u ∈ L1

loc(Ω) for each σ > 0 an approximating function in C∞(Ωσ) where

Ωσ = {x ∈ Ω : dist(x, ∂Ω) > σ}

2



is a slightly smaller domain. Specifically, we extend u to a real valued function on Rn

(in any manner) and consider µσ ∗ u : Ωσ → R by

µσ ∗ u(x) =
∫

ξ∈Rn
µσ(x− ξ) u(ξ) (6)

where

µσ(x) =
1

σnI
φ
(x

σ

)

; I =

∫

Rn

φ (7)

and φ ∈ C∞
c (Rn) is given by

φ(x) =

{

e−1/(1−|x|2), x ∈ B1(0)
0, x ∈ Rn\B1(0).

Here we have used the notation Br(p) = {x ∈ Rn : |x−p| < r} for the ball of radius
r > 0 centered at p ∈ Rn. Among the remarkable properties of the mollification
µσ ∗ u, it may be recalled that mollification respects the partial differential equation
of Laplace in the sense that if

∆u =

n
∑

j=1

∂2u

∂x2j
= 0 on Ω,

then
µσ ∗ u ≡ u∣

∣

Ωσ

.

See for example Theorem 6 in Section 2.2 of [Eva10].
The objective of this paper is to adapt the mollification procedure for application

to certain planar curves in a manner that takes into account the local geometry of
the curve and the curvature of the curve in particular. One may simply mollify the
coordinate functions γ1 and γ2 of a curve or even any pair of L1

loc functions defined on
an interval (−L,M) ⊂ R to obtain a smooth function µσ∗γ ∈ C∞((−L+σ,M−σ) →
R2). It is not surprising that applying this procedure to a parameterization of a
circular arc γ(s) = a(cos(s/a), sin(s/a)) results in a parameterization of a circular arc
of (smaller) radius

ã = a

∫ σ

−σ

µσ(t) cos t dt < a (8)

at least for σ small. There is in fact a unique value σ0
.
= 4.997a of σ for which ã

decreases to zero as a function of σ with

lim
σց0

ã = a and lim
σցσ0

ã = 0.
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That the mollified curve is a (smaller) circle is to be expected because

µσ ∗ γ(t) =
∫ t+σ

t−σ

µσ(t− s) γ(s) ds (9)

is a weighted average, symmetric with respect to the arclength parameter s in the
integration.

With the curve in Example 1 this simple pointwise mollification results in a C∞

parameterization µσ ∗ γ for σ < πa/4 consisting of portions of circles parameterized
as

µσ ∗ γ(t) = (a, 0) + ã(− cos t, sin t) for − πa/2 + σ ≤ t ≤ −σ and

µσ ∗ γ(t) = (−a, 0) + ã(cos t, sin t) for σ ≤ t ≤ πa/2− σ

with a smooth C∞ transition occurring for −σ < t < σ with

µσ ∗ γ(−t) = −µσ ∗ γ(t)

by the symmetry of the original concatenated tangent circular arcs. In particular, the
central point γ(0) = (0, 0) = µσ ∗ γ(0) is preserved.

Since mollification commutes with taking (weak) derivatives a tangent vector to
the mollified curve is given by

(µσ ∗ γ)′(t) =
∫ t+σ

t−σ

µσ(t− s) γ̇(s) ds = µσ ∗ γ̇(t). (10)

Since the tangent indicatrix

γ̇ : (−π/2, π/2) → S
1 = {x ∈ R

2 : |x| = 1}

lies entirely in the closed second quadrant, the tangent vector (µσ∗γ)′ is biased toward
the second quadrant during the transition with (µσ ∗γ1)′(0) < 0 = γ̇1(0) in particular.
A close up of the transition region corresponding to mollification parameter σ = πa/5
is shown in Figure 3.

Note finally that the invariance of harmonic functions under mollification results
in the predictable property that a portion of a curve that is locally a straight line
is invariant on some interior segment under this basic mollification. This is because
harmonic functions in one dimension are affine.

The discussion so far illustrates the basic idea of how mollification incorporates
weighted averaging to modify the pointwise values of a given function to deter-
mine a C∞ approximation and how this basic idea may be applied to the coordinate
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Figure 3: Example 1: Simple pointwise mollification of a curve along two tangent
circles of radius 1 (left). Here the mollification parameter is σ = π/5. Circular arcs
of smaller radius are shown in green; the transition interval is in red. On the right
is a close up of essentially the same geometry though to display the tangent vectors
accurately, the radius has been taken larger. In this case a = 5 and σ = π.

functions of a curve to essentially mollify position. In order to mollify the geometry
of the curve rather than the merely pointwise positions of points on the curve, or to
express what we even mean by mollifying geometry, we proceed to consider weighted
averages of different quantities.

1 Tangent mollification

The new idea introduced here may be understood to consist of the following two
steps:

(i) Given γ(s0) and an arclength s 6= s0, say s < s0, consider a position α(s0)
obtained by starting at γ(s) and proceeding along a curve with “homogeneous
geometry” in the direction of γ̇(s) for an arclength s0 − s.

(ii) As the new mollification of γ take a weighted average ν(s0) of the values α(s0)
with respect to the arclength s.
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Step (i) contemplates a well-defined auxiliary curve determined by the pointwise
geometric information at γ(s); we give one example presently.

Take σ > 0 as usual. For each s0 ∈ (−L+σ,M−σ) and s with s0−σ < s < s0+σ
consider the straight line curve along the directed tangent to Γ at γ(s). That is,
consider β : R → R2 given by

β(t) = γ(s) + tγ̇(s).

Take α(s0) = β(s0 − s) = γ(s) + (s0 − s)γ̇(s) and

ν(s0) =

∫ s0+σ

s0−σ

µσ(s0 − s)α(s0) ds =

∫ s0+σ

s0−σ

µσ(s0 − s)β(s0 − s) ds.

In simpler notation somewhat obscuring the basic idea this new mollification is given
by

ν(t) =

∫ t+σ

t−σ

µσ(t− s)γ(s) ds+

∫ t+σ

t−σ

(t− s)µσ(t− s)γ̇(s) ds

= µσ ∗ γ(t) +
∫ t+σ

t−σ

(t− s)µσ(t− s)γ̇(s) ds. (11)

In this formula the new element appears as an addition to the basic mollification of
γ considered in the previous discussion. Furthermore, when γ̇(s) = v is a constant
(unit) vector for t− σ < s < t+ σ, then the addional term vanishes because

∫ t+σ

t−σ

(t− s)µσ(t− s) ds =

∫ σ

−σ

ηµσ(η) dη = 0

is the integral of an odd function, and ν(t) = µσ ∗ γ(t) = γ(t) as before.
On the other hand, mollification of a circular arc is now somewhat different.

Again one obtains for small enough σ > 0 a circular arc parameterized by ν(t) =
ã(cos t, sin t) for t ∈ R, but in this instance the radius

ã = a

∫ σ

−σ

µσ(s) cos(s/a) ds+

∫ σ

−σ

s µσ(s) sin(s/a) ds

=

∫ σ

−σ

µσ(s)[a cos(s/a) + s sin(s/a)] ds (12)

satisfies ã > a at least for σ small enough. Figure 4 illustrates this inequality for
σ < πa/2. Notice the points α(s0) = α(s0; s) averaged to obtain ν(s0) lie outside
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Figure 4: Tangent mollification of a circular curve. Here the particular circle has
radius a = 4/3 as indicated by the length of the unit tangent vectors γ̇(s1) and γ̇s2
and the mollification parameter is σ = π/2.

the domain enclosed by the circle and project to points |α(s0)|γ(s0)/|γ(s0)| with
|α(s0)| > a. Analytically, the inequality ã > a for the integral quantity in (12) is
not entirely obvious. It is relatively straightforward however to show the integrand
a cos(s/a) + s sin(s/a) satisfies

a cos(s/a) + s sin(s/a) > a for 0 < s ≤ πa

2
.

Thus, the inequality certainly holds for σ ≤ πa/2. In fact, the integral expression
ã given in (12) increases with σ for 0 < σ < σmax

.
= 2.83a to a maximum value

ãmax
.
= 1.29 a and then decreases to zero for σmax < σ < σ0

.
= 6.30 a.

After this initial observation it should perhaps be noted that the new geometric
tangent mollification ν : (−L+ σ,M − σ) → R2 given in (11) satisfies

ν ∈ C∞((−L+ σ,M − σ) → R
2).

This is not quite for the usual reason that a standard mollification µσ ∗ u or µσ ∗ γ
is smooth. The difference is explained in the proof of the following theorem stated
under somewhat more general assumptions and allowing also for a space curve

γ : (−L,M) → R
n,
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for some n ∈ {2, 3, 4, . . .}.
Theorem 1 (regularity of tangent mollification) If γ ∈ C0((−L,M) → Rn) admits
a weak tangent indicatrix D1γ : (−L,M) → S

n−1 in the sense that there exist

D1γ1, D1γ2, . . . , D1γn ∈ L1
loc(−L,M) (13)

for which
∫

(−L,M)

γj
dφ

ds
= −

∫

(−L,M)

D1γj φ, for all φ ∈ C∞
c (−L,M), j = 1, 2 (14)

and

[D1γ1(s)]
2 + [D2γ2(s)]

2 + · · ·+ [D2γn(s)]
2 = 1 for almost every s ∈ (−L,M)

then for σ > 0 the tangent mollification ν : (−L+ σ,M − σ) → Rn given by

ν(t) = µσ ∗ γ(t) +
∫

s∈(−L,M)

(t− s)µσ(t− s)(D1γ1(s), D1γ2(s), . . . , D2γn(s)) (15)

satisfies ν ∈ C∞((−L+ σ,M − σ) → Rn).

Note: In (3), (13), (14), and (15) we have used the notation D1γ and D1γ̇ to distin-
guish weak derivatives from the corresponding classical derivatives γ̇ and γ̈. Since the
existence of certain classical derivatives are assumed generally in the constructions
presented here along with and in contrast to weak derivatives, we wil continue to
maintain this notational distinction.

Proof of Theorem 1: The first term µσ ∗ γ in (15) is C∞ regular for the usual
basic reason that the derivatives with respect to t fall only on the mollifier µσ in
the integrand. Technically, one considers difference quotients and applies the domi-
nated convergence theorem. See for example Theorem 7 in Appendix C of [Eva10] or
Chapter 4 of [EG92].

As mentioned above, this reasoning does not apply precisely the same way to the
second term

T(t) =

∫

s∈(−L,M)

(t− s)µσ(t− s)(D1γ1(s), D1γ2(s), . . . , D1γn(s)).

Setting T = (T1, T2, . . . , Tn) so that for j = 1, 2, . . . , n

Tj(t) =

∫

s∈(−L,M)

(t− s)µσ(t− s)D1γj(s),
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one finds in this case

dTj
dt

=

∫

s∈(−L,M)

µσ(t− s) D1γj(s) +

∫

s∈(−L,M)

(t− s)
dµσ

ds
(t− s) D1γj(s).

The integral expressions on the right are easily seen to be continuous in t and since
µ′
σ ∈ C∞

c (R) with supp(µ′
σ) = supp(µσ), the expressions are again differentiable with

respect to t with

dkTj
dtk

= k

∫

s∈(−L,M)

dk−1µσ

dsk−1
(t− s) D1γj(s)

+

∫

s∈(−L,M)

(t− s)
dkµσ

dsk
(t− s) D1γj(s)

and

dkν

dtk
(t) = (µσ ∗ γj)(k)(t) + k

∫

s∈(−L,M)

dk−1µσ

dsk−1
(t− s) D1γj(s)

+

∫

s∈(−L,M)

(t− s)
dkµσ

dsk
(t− s) D1γj(s). (16)

for k = 2, 3, . . .. �

A mollified function µσ∗u approximates the function u ∈ L1
loc(Ω) in various senses,

and it is natural to ask if the tangent mollification ν converges to γ in the same ways
and under the same or similar assumptions. Note first the following:

(i) If K is a compact subset of (−L,M), then for each j = 1, 2, . . . , n

lim
σց0

‖µσ ∗ γj − γj‖L1(K) = 0.

(ii) For almost every t ∈ (−L,M)

lim
σց0

µσ ∗ γ(t) = γ(t). (17)

(iii) If γ ∈ C0((−L,M) → R
n), then µσ ∗ γ converges uniformly to γ on every

compact subset of (−L,M) and (17) holds at every point t ∈ (−L,M).
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(iv) If γj ∈ Ck(−L,M) for some k ∈ N and j ∈ {1, 2, . . . , n}, then for each compact
set K with K ⊂ (−L,M)

lim
σց0

‖µσ ∗ γj − γj‖Ck(K) = 0.

(v) If γj ∈ W k,p(−L,M) for some k ∈ N and j ∈ {1, 2, . . . , n}, then for each open
set U with U ⊂⊂(−L,M)

lim
σց0

k
∑

ℓ=0

∥

∥

∥

∥

dℓµσ ∗ γj
dtk

−Dℓ
1γj

∥

∥

∥

∥

Lp(U)

= 0.

Good references for these assertions are [EG92] and [Fol76].
We now seek to obtain some analogous results for the tangent mollification ν ∈

C∞((−L + σ,M − σ) → Rn). We begin with a result analogous to the pointwise
convergence of (iii) above.

Theorem 2 (pointwise convergence of the tangent mollification) If

γ ∈ C1((−L,M) → R
n),

then ν ∈ C∞((−L+σ,M −σ) → Rn) given by (15) converges pointwise uniformly to
γ on every compact subset of (−L,M) and pointwise at every point in particular.

Notice the “additional” regularity required here in the sense that standard pointwise
mollification µσ ∗ γ converges uniformly on compact subsets to γ whenever

γ ∈ C0((−L,M) → R
n).

Proof of Theorem 2: Since the first term µσ∗γ(t) in (15) converges to γ(t) uniformly
on compact subsets, the convergence claimed in the theorem follows if the remaining
term T (t) tends to zero. Also, in this case, the weak derivative D1γj = γ̇j is a classical
derivative for j = 1, 2, . . . , n. In fact, for j = 1, 2, . . . , n

|Tj(t)| =
∣

∣

∣

∣

∫

s∈(−L,M)

(t− s)µσ(t− s) γ̇j(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

s∈(t−σ,t+σ)

(t− s)µσ(t− s) γ̇j(s)

∣

∣

∣

∣

≤ σ|µσ ∗ γ̇j(t)|. (18)
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IfK is a compact subset of (−L,M), then under the assumptions here µσ∗γ̇j converges
uniformly on K to γ̇j. In particular for t ∈ K there holds

|Tj(t)| ≤ σ ‖µσ ∗ γ̇j‖C0(K)

and ‖µσ ∗ γ̇j‖C0(K) remains bounded as σ tends to zero. �

The estimate (18) does not depend on the existence of the classical derivative γ̇j
and can be written in the form

|Tj(t)| ≤
∣

∣

∣

∣

∫

s∈(−L,M)

(t− s)µσ(t− s) D1γj(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

s∈(t−σ,t+σ)

(t− s)µσ(t− s) D1γj(s)

∣

∣

∣

∣

≤ σ|µσ ∗D1γj(t)|. (19)

under the initial assumptions on γ given in Theorem 1. As a result the various
convergence results considered presently are basically obtained by simply showing
the function G ∈ C∞(−L+ σ,M − σ) given by

G(t) = µσ ∗D1γj(t)

remains bounded in some norm uniformly in σ as σ tends to zero.
Pointwise almost everywhere convergence of the tangent mollification ν analogous

to (ii) holds whenever ν is defined:

Theorem 3 (almost everywhere convergence of the tangent mollification) If γ ∈
C0((−L,M) → Rn) has a weak unit tangent indacatrix according to the conditions
of Theorem 1, then ν = ν ∈ C∞((−L + σ,M − σ) → Rn) given by (15) converges
pointwise to γ at almost every point t ∈ (−L,M).

Note: “Additional” regularity is also required here in the sense that γ is required,
for example, to have weak first order derivatives while (ii) only requires

γ ∈ L1
loc((−L,M) → R

n).

On the other hand, this additional regularity may be viewed as primarilly required
in order to make sense of the tangent mollification ν itself rather than for the conver-
gence.
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Proof of Theorem 3: Let Aj denote the collection of Lebesgue points

Aj =

{

t ∈ (−L,M) : lim
rց0

1

r

∫

s∈(t−r,t+r)

|D1γj(s)−D1γj(t)| = 0

}

of D1γj in (−L,M). Taking t ∈ Aj we have

lim
σց0

µσ ∗D1γj(t) = D1γj(t).

Therefore, |µσ ∗D1γj(t)| remains bounded as σ tends to zero, and starting with (19)
we have

lim
σց0

∣

∣

∣

∣

∫

s∈(−L,M)

(t− s)µσ(t− s) D1γj(s)

∣

∣

∣

∣

≤ lim
σց0

σ|µσ ∗D1γj(t)| = 0. �

If γ admits classical derivatives of higher orders, then a formula for the higher
order derivatives of the tangent mollification ν is available which is somewhat simpler
than the one given in (16). Specifically, if γ ∈ C1((−L,M) → Rn), then (15) can be
written as

ν(t) = µσ ∗ γ(t) +
∫

s∈(−L,M)

(t− s)µσ(t− s) γ̇(s)

= µσ ∗ γ(t) +
∫

η∈(−σ,σ)

η µσ(η) γ̇(t− η)

in terms of the classical derivative γ̇. If γ ∈ Ck+1((−L,M) → Rn) for k ≥ 1, then
additional derivatives may fall on the classical derivative in the integrand of the second
term to yield

dkν

dtk
(t) = (µσ ∗ γ)(k)(t) +

∫

η∈(−σ,σ)

η µσ(η)
dk+1γ

dsk+1
(t− η)

= µσ ∗
dkγ

dsk
(t) +

∫

η∈(−σ,σ)

η µσ(η)
dk+1γ

dsk+1
(t− η)

= µσ ∗ (γ −w) (t) + t µσ ∗
dk+1γ

dsk+1
(t) (20)

where w ∈ C0((−L,M) → R2) is given by

w(s) = s
dk+1γ

dsk+1
(s).
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Notice that given a compact set K ⊂ (−L,M) one has in this case for t ∈ K and
j = 1, 2, . . . , n the estimate

∣

∣

∣

∣

dkTj
dtk

(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

η∈(−σ,σ)

η µσ(η)
dk+1γj
dsk+1

(t− η)

∣

∣

∣

∣

≤ σ

∥

∥

∥

∥

dk+1γj
dsk+1

∥

∥

∥

∥

C0(K)

. (21)

Consequently, one obtains a simple convergence result for the higher order derivatives
of the tangent mollification:

Theorem 4 (convergence of higher order derivatives; tangent mollification) If γ ∈
Ck+1((−L,M) → Rn) for some k ≥ 1, then the tangent mollification ν converges to
γ as σ tends to zero in Ck([−L+ δ,M − δ] → Rn) for every δ > 0.

If γ ∈ Lp
loc((−L,M) → Rn) for some p with 1 ≤ p <∞ in the sense that for each

compact set K with K ⊂ (−L,M)

n
∑

j=1

∫

K

|γj|p <∞,

then it is well known that for each K ⊂⊂(−L,M) and j = 1, 2, . . . , n there holds

lim
σց0

‖µσ ∗ γj − γj‖Lp(K) = 0.

Starting again from (19)

|T (t)| =
∣

∣

∣

∣

∫

s∈(−L,M)

(t− s)µσ(t− s) D1γj(s)

∣

∣

∣

∣

≤ σ

∣

∣

∣

∣

∫

s∈(−σ,σ)

µσ(s) D1γj(t− s)

∣

∣

∣

∣

= σ

∣

∣

∣

∣

∫

r∈(−1,1)

µ1(r) D1γj(t− rσ)

∣

∣

∣

∣

≤ σ

∫

r∈(−1,1)

µ1(r) |D1γj(t− rσ)|. (22)

Therefore, taking K ⊂⊂(−L,M) and δ > 0 small enough so that

K ⊂⊂(−L+ 2δ,M − 2δ)
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we find for σ < δ
∫

K

|Tj| =
∫

t∈K

∣

∣

∣

∣

∫

s∈(−L,M)

(t− s)µσ(t− s) D1γj(s)

∣

∣

∣

∣

≤ σ

∫

r∈(−1,1)

∫

t∈K

µ1(r) |D1γj(t− rσ)|

≤ σ

∫

r∈(−1,1)

µ1(r) ‖D1γj‖L1(−L+δ,M−δ)

= σ‖D1γj‖L1(−L+δ,M−δ). (23)

We conclude the following under the hypothesis of Theorem 3:

Theorem 5 (local L1 convergence of the tangent mollification) If γ ∈ C0((−L,M) →
Rn) has a weak unit tangent indacatrix according to the conditions of Theorem 1,
then ν = ν ∈ C∞((−L+ σ,M − σ) → Rn) given by (15) satisfies

lim
σց0

n
∑

j=1

‖νj − γj‖L1(K) = 0

for every compact set K with K ⊂ (−L,M).

Proof: Again since ‖νj − γj‖L1(K) ≤ ‖µσ ∗ γj − γj‖L1(K) + ‖Tj‖L1(K) it is enough
to show the latter term tends to zero. Since δ > 0 is fixed in the estimate (23)
and ‖D1γj‖L1(−L+δ,M−δ) remains bounded accordingly (as a fixed constant) we have
immediately that

lim
σց0

‖Tj‖L1(K) = 0. �

Notice that in the inequalities leading to (23) we have essentially obtained a fixed
bound for the quantity

‖ µσ ∗ |D1γj| ‖L1(K).

Theorem 5 then essentially follows from the observation that

‖Tj‖L1(K) ≤ σ‖ µσ ∗ |D1γj| ‖L1(K).

For convenience, let us denote by H ∈ C∞(−L+ δ,M − δ) the function with values

H(t) = (µσ ∗ |D1γj|)(t)

and recall the basic pointwise estimate (22) according to which |Tj(t)| ≤ σH(t).
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We follow the approach of [EG92] to find an appropriate bound to show Lp con-
vergence of ν to γ for 1 < p <∞:

H(t) =

∫

s∈(t−σ,t+σ)

µσ(t− s) |D1γj(s)|

=

∫

η∈(−σ,σ)

µσ(η) |D1γj(t− η)|

=

∫

r∈(−1,1)

µ1(r)
1−1/p µ1(r)

1/p |D1γj(t− σr)|

≤
∫

r∈(−1,1)

µ1(r)
1−1/p µ1(r)

1/p |D1γj(t− σr)|

≤
(
∫

r∈(−1,1)

µ1(r)

)1−1/p (∫

r∈(−1,1)

µ1(r) |D1γj(t− σr)|p
)1/p

=

(
∫

r∈(−1,1)

µ1(r) |D1γj(t− σr)|p
)1/p

.

Thus, for any K ⊂⊂(−L+ 2δ,M − 2δ) as above and σ < δ

‖H‖pLp(K) ≤
∫

t∈K

∫

r∈(−1,1)

µ1(r) |D1γj(t− σr)|p

=

∫

r∈(−1,1)

µ1(r)

∫

t∈K

|D1γj(t− σr)|p

≤
∫

r∈(−1,1)

µ1(r) ‖D1γj‖pLp(−L+δ,M−δ)

= ‖D1γj‖pLp(−L+δ,M−δ).

The quantity on the right is now a fixed non-negative constant independent of σ.

Theorem 6 (local Lp convergence of the tangent mollification) If γ ∈ C0((−L,M) →
Rn) has a weak unit tangent indacatrix according to the conditions of Theorem 1
satisfying

D1γj ∈ Lp
loc(−L,M)

for j = 1, 2, . . . , n and some p with 1 < p <∞, then

ν = ν ∈ C∞((−L+ σ,M − σ) → R
n)
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given by (15) satisfies

lim
σց0

n
∑

j=1

‖νj − γj‖Lp(K) = 0

for every compact set K with K ⊂ (−L,M).

Proof: As before fix δ > 0 with K ⊂⊂(−L + 2δ,M − 2δ) and consider σ < δ. Since
‖νj − γj‖Lp(K) ≤ ‖µσ ∗ γj − γj‖Lp(K) + ‖Tj‖Lp(K) it is enough to show

lim
σց0

‖Tj‖Lp(K) = 0. (24)

In fact, the basic pointwise estimate (22) gives |Tj(t)| ≤ σH , so

‖Tj‖Lp(K) ≤ σ‖H‖Lp(K) ≤ σ‖D1γj‖Lp(−L+δ,M−δ).

Therefore, (24) holds. �

It perhaps remains to discuss the convergence of weak derivatives of higher order
in Lp(K) where K is a compact subset of (−L,M) when γ admits higher order weak
derivatives. We postpone discussion of this topic to another occasion.

Because tangent mollification has been formulated for curves with lower regularity
than those in Example 1 and Example 2, there is a natural lower regularity example
to consider.

Example 3 (tangent mollification of a curve with a corner) Consider the graph Γ of
the function u : R → R with values u(x) = a|x| for some constant a > 0. This curve
is parameterized by arclength with γ : R → R2 given by

γ(s) =
1√

1 + a2
(s, a|s|). (25)

Since the curve is given as a graph one may consider three mollifcations. The first is
obtained by mollifying the function u and considering the graph Γσ of µσ ∗u : R → R.
The formula and properties of this graph are well-known:

µσ ∗ u(x) =
∫ x+σ

x−σ

µσ(ξ − x)u(ξ) dξ

=























a|x|, |x| ≥ σ

a
[(

∫ x

−σ
µσ(η) dη −

∫ σ

x
µσ(η) dη

)

x

−
∫ x

−σ
η µσ(η) dη +

∫ σ

x
η µσ(η) dη

]

, |x| ≤ σ.
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The function µσ ∗ u in this case is positive, even, and convex for |x| < σ as indicated
on the left in Figure 5.

Figure 5: Mollifications of a curve with a corner. Mollification of the graph and basic
coordinate mollification (left); tangent mollification (right).

The basic coordinate mollification is given by

µσ ∗ γ(t) =
∫ t+σ

t−σ

µσ(s− t)γ(s) ds

=



































1√
1 + a2

(t, a|t|) |t| ≥ σ

1√
1 + a2

(

t,

[(
∫ t

−σ

µσ(η) dη −
∫ σ

t

µσ(η) dη

)

t

−
∫ t

−σ
η µσ(η) dη +

∫ σ

t
η µσ(η) dη

] )

, |t| ≤ σ.

Comparison of the formulas for µσ ∗ u and µσ ∗ γ reveals that these mollifications
are giving essentially the same curve/graph though the geometric significance of the
mollification parameter σ is distinct relative to a scaling. Specifically the graph of
µσ ∗ u and the curve parameterized by µτ ∗ γ are identical if

σ =
τ√

1 + a2
.

It may also be remarked that the equivalence of the graph mollification of a curve
with a corner and the coordinate mollification depends also on the fact that I have
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chosen coordinates so that the function u is even. To see this, consider a case when
a < 1 and the coordinates are rotated so that the same curve with an angle at the
origin is given by the graph of a function u : R → R with

u(x) = x tanψ χ[0,∞)(x) =

{

0, x ≤ 0
x tanψ, x ≥ 0

and ψ = 2 tan−1 a satisfying 0 < ψ < π/2. In this case, coordinate mollification
will produce geometrically the same result as illustrated on the left in Figure 5. The
function µσ ∗ u however has a graph with transition nontrivially modifying the value
of u for −σ < x < σ and corresponding to the nonsymmetric interval of arclengths
−L < s < M with −L = −σ < 0 < σ secψ = M . Thus, one sees the mollification of
this graph with an angle is not the same as the coordinate mollification.

The tangent mollification is quite different from the graph mollification and the co-
ordinate mollification considered above. One does have again ν(t) ≡ (t, a|t|)/

√
1 + a2

for |t| ≥ σ simply because one is averaging a constant value α(t; s) ≡ γ(t) for each t
in these intervals. For |t| < σ, say −σ < t < 0, we find

α(t; s) =

{

γ(t), t− σ ≤ s < 0
(γ1(t),−γ2(t)), 0 < s ≤ t+ σ

as indicated in Figure 6. When 0 < t < σ one finds in contrast

α(t; s) =

{

(γ1(t),−γ2(t)), t− σ ≤ s < 0
γ(t), 0 < s ≤ t+ σ

The consequent averaging gives

ν(t) =
1√

1 + a2

(
∫ t+σ

t−σ

µσ(t− s) s ds,

∫ 0

t−σ

µσ(t− s) (−at) ds +
∫ t+σ

0

µσ(t− s) at ds

)

=
1√

1 + a2

(

t, a

(
∫ t

−σ

µσ(η) dη −
∫ σ

t

µσ(η) dη

)

t

)

.

Notice that for t < 0 one has

−1 <

∫ t

−σ

µσ(η) dη −
∫ σ

t

µσ(η) dη < 0.
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Figure 6: Tangent mollification of a curve with a corner: Averaged values. Consider
a point γ(t) with t fixed as indicated in the illustration. A tangent mollified point
ν(t) is obtained as a weighted average with respect to s ∈ (t − σ, t + σ) of points
α(t; s). Given s1 with t − σ < s1 < t, we associate with the point γ(s1) the point
α(t; s1) = γ(s1)+(t−s1)γ̇(s1) ≡ γ(t). Likewise α(t; s2) = γ(s2)+(t−s2)γ̇(s2) ≡ γ(t)
when t < s2 < 0. For 0 < s3 < t+ σ the point α(t, s3) = γ(s3) + (t− s3)γ̇(s2) 6= γ(t).

Consequently

0 < ν2(t) <
a√

1 + a2
|t| = |ν1(t)|

for −σ < t < 0. On the other hand, for t > 0 there holds

0 <

∫ t

−σ

µσ(η) dη −
∫ σ

t

µσ(η) dη < 1

so that
0 < ν2(t) <

a√
1 + a2

t = ν1(t)

for 0 < t < σ. Remarkably then ν(0) = (0, 0) as indicated on the right in Figure 5.
It would be interesting to compute the tangent ν ′ : (−σ, σ) → R2 and curvature

vector associated with ν ∈ C∞((−σ, σ) → R2) in this example. As indicated on the

19



right in Figure 5 there are certainly points of vanishing curvature. We leave these
calculations and the associated analysis to the ambitious reader.

Let us finally examine briefly the application of tangent mollification to the curve
of Example 1. As mentioned above the tangent mollification parameterizes circles of
larger radius with

ν(t) = (±1, 0) + ã(∓ cos t, sin t) for σ ≤ |t| ≤ πa

2
− σ

with

ã =

∫ σ

−σ

µσ(s)[a cos(s/a) + s sin(s/a)] ds > a

as indicated in the close up on the left in Figure 7.

Figure 7: Tangent mollification of the two tangent circular arcs from Example 1. In
the close up on the left we have taken a = 1 and mollification parameter σ = π/5.
The axes are shown at the same scale, and the detail near γ(0) = ν(0) = (0, 0) is
not clearly visible. In the close up on the right we have taken the circular radius
a = 100, mollification parameter σ = 20π, and the horizontal axis is scaled by a
factor of approximately 100 relative to the vertical axis.

In order to understand the C∞ transition occurring for −σ < t < σ it is useful to
consider a result applying to a somewhat more general class of curves.
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Lemma 1 If γ ∈ C1((−L, L) → Rn) satisfies γ(−s) = −γ(s), then ν(−t) = −ν(t)
for −σ < t < σ and

dν

dt
(0) = 2

∫ σ

0

[2µσ(η) + ηµ′(η)] γ̇(η) dη. (26)

Proof: These assertions follow directly from computation(s): Notice that differenti-
ating the relation γ(−s) = −γ(s) one obtains γ̇(−s) = γ̇(−s). Therefore,

ν(−t) =
∫

s∈(t−σ,t+σ)

µσ(−t− s) γ(s) +

∫

s∈(t−σ,t+σ)

(−t− s)µσ(−t− s) γ̇(s)

=

∫

η∈(−σ,σ)

µσ(η) γ(−t− η) +

∫

η∈(−σ,σ)

η µσ(η) γ̇(−t− η)

= −
∫

η∈(−σ,σ)

µσ(η) γ(t+ η) +

∫

η∈(−σ,σ)

η µσ(η) γ̇(t+ η)

= −
∫

s∈(t−σ,t+σ)

µσ(s− t) γ(s) +

∫

s∈(t−σ,t+σ)

(s− t)µσ(s− t) γ̇(s)

= −
∫

s∈(t−σ,t+σ)

µσ(t− s) γ(s)−
∫

s∈(t−σ,t+σ)

(t− s)µσ(t− s) γ̇(s)

= −ν(t).

For the derivative

ν ′(t) = 2

∫

s∈(t−σ,t+σ)

µσ(t− s) γ̇(s) +

∫

s∈(t−σ,t+σ)

(t− s)µ′
σ(t− s) γ̇(s)

= 2

∫

η∈(−σ,σ)

µσ(η) γ̇(t− η) +

∫

η∈(−σ,σ)

η µ′
σ(η) γ̇(t− η).

Therefore,

ν ′(0) = 2

∫

η∈(−σ,σ)

µσ(η) γ̇(−η) +
∫

η∈(−σ,σ)

η µ′
σ(η) γ̇(−η)

=

∫

η∈(−σ,σ)

[2µσ(η) + η µ′
σ(η)]γ̇(η)

=

∫ 0

−σ

[2µσ(η) + η µ′
σ(η)]γ̇(η) dη +

∫ σ

0

[2µσ(η) + η µ′
σ(η)]γ̇(η) dη

= 2

∫ σ

0

[2µσ(η) + η µ′
σ(η)]γ̇(η) dη. �
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Lemma 1 applies to the curve of Example 1 and yields immediately that ν(0) =
(0, 0) = γ(0). In cases like this one where γ ∈ C2((0, L) → Rn) the formula for ν ′(0)
may be further manipulated:

ν ′(0) = 4

∫ σ

0

µσ(s) γ̇(s) ds+ 2

∫ σ

0

s µ′
σ(s) γ̇(s) ds

= 4

∫ σ

0

µσ(s) γ̇(s) ds− 2

∫ σ

0

µσ(s)
d

ds
[s γ̇(s)] ds

= 2

∫ σ

0

µσ(s)[γ̇(s)− s γ̈(s)] ds. (27)

Referring back to (4) for the formula for γ in Example 1 we find

γ̇(s) =
(

− sin
(s

a

)

, cos
(s

a

))

γ̈(s) = −1

a

(

cos
(s

a

)

, sin
(s

a

))

for 0 ≤ s < L = πa/2. Taking the components separately

γ̇1(s)− s γ̈1(s) =
s

a
cos

(s

a

)

− sin
(s

a

)

≤ 0 (28)

for 0 ≤ s < πa/2 with equality only for s = 0. To see this note

d

ds
[γ̇1(s)− s γ̈1(s)] = − s

a2
sin

(s

a

)

.

For the second component

γ̇2(s)− s γ̈2(s) =
s

a
sin

(s

a

)

+ cos
(s

a

)

> 0.

Since µσ ≥ 0, this latter inequality means the vector ν ′(0) given in (27) points upward,
which is perhaps to be expected. Taking account of the inequality (28) for the first
component of ν ′(0) however gives that ν ′(0) points into the second quadrant, that
is, this tangent is biased toward the second quadrant like (µσ ∗ γ)′(0). This possibly
unexpected behavior means first of all that the tangent mollification curve intersects
the concatenated circular arcs at γ(0) = ν(0) = (0, 0) transversely and necessarily
intersects the curve Γ at (at least) two additional points in order to join smoothly
with the exterior circular arcs determined by ν(t) for |t| > σ (shown in green on
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the left in Figure 7). This transverse crossing is illustrated on the right in Figure 7
where it appears that in fact there are exactly three intersection points of the tangent
mollification curve with the original concatenated circles Γ. We have not verified this
detailed behavior with an explicit computation and/or estimates, but the numerical
indication is relatively persuasive. Another numerical calculation confirming the same
conclusion is indicated/illustrated in Figure tex1plotB.

Figure 8: Tangent mollification of the two tangent circular arcs from Example 1. On
the left we have again taken a = 1 and mollification parameter σ = π/5. Taking the
right center (1, 0) of the unit radius circular arc determined by Γ for −π/2 < s ≤ 0,
each point ν(t) for t ≤ 0 determines a polar radius |ν(t)−(1, 0)| and for t < 0 a (reverse
oriented) polar angle θ = arctan(ν2(t)/ν1(t)) (measured from the negative x2-axis)
with limtր0 θ(t) = 0. This polar angle is thus comparable to the arclength parameter
s for −π/2 < s ≤ 0 along the original circular arc, and we have plotted the new polar
radius as a function of the polar angle. The plot on the right shows a close up of the
circled region near the point (θ, |ν−(1, 0)|) = (0, 1) with some normalizations making
the detail visible. Aside from the vertical translation associated with the quantity
|ν − (1, 0)| − 1, the vertical axis has been scaled by 100.

Of additional significant interest is the behavior of the curvature

~k =
1

|ν ′(t)|
d

dt

(

ν ′(t)

|ν ′(t)|

)

=
1

|ν ′(t)|4
(

|ν ′(t)|2 ν ′′(t)− (ν ′(t) · ν ′′(t)) ν ′(t)
)

(29)

of the tangent mollification throughout the transition interval −σ < t < σ. The
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direct computation of the curvature vector in (29) is again complicated, and we
rely on a numerical calculation which is relatively persuasive and easily obtained.
Figure 9 shows the curvature vector plotted on the interval (−π/2+ σ, π/2− σ) with

σ = πa/5. The illustration indicates that the modulus |~k| of the curvature vector
is nowhere greater than 1/ã and decreases monotonically to zero as a function of t
for −π/2 + σ < t < 0 and then increases symmetrically for 0 < t < π/2 − σ. The
symmetry follows from the relation ν(−t) = −ν(t) from Lemma 1.

Figure 9: Tangent mollification of the two tangent circular arcs from Example 1.
Curvature vectors ~k associated with ν and γ̈. The path of ~k consists of two circular
arcs of radius 1/ã < 1/a indicated in green along with a transition curve plotted in red.

The transition of the curvature vector from ~k(−σ) = (a/ã)γ̈(−σ) to ~k(σ) = (a/ã)γ̈(σ)
mollifies the jump discontinuity in curvature present in Γ. Here σ = πa/5

The parameterization ~k ∈ C∞((−π/2 + σ, π/2− σ) → R2) of

Kν =
{

~k(t) : −π
2
+ σ ≤ t ≤ π

2
− σ

}

is singular with respect to arclength in the sense that

d~k

dt
(0) = (0, 0).

This follows from the fact that the unit tangent vector T(t) = ν ′(t)/|ν ′(t)| differen-
tiated in (29) satisfies T(−t) = T(t). Notice however, that the path Kν traced by
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the curvature vector and illustrated in Figure 9 appears to be geometrically nonsin-
gular with well-defined unit tangent u = u(0) at (0, 0). In fact, one might at first

be inclined to assume u(0) = (−1, 0) at ~k(0) = (0, 0). The nonsingularity with re-
spect to intrinsic arclength appears to be still indicated numerically also at smaller
scales. The unit tangent vector u(0) if it exists, however, appears to be of the form
u(0) = (−

√
1− ǫ2,−ǫ) for some ǫ > 0; see Figure 10.

Figure 10: Tangent mollification of the two tangent circular arcs from Example 1.
Plot of {(k1(t), 100k2(t)) : |t| ≤ 0.0001} where ~k = (k1, k2). Here the values indicated
on the axes and relevant for the parameter t are determined by the choice a = 1 and
σ = π/5, but gometrically the set Kν is independent of the radius a.

2 Mollification of curvature

Generalizing the idea of the previous section to the second order condition of ho-
mogeneity, that is constant curvature, is in principle straightforward. Given s0 ∈
(−L + σ,M − σ) and s with s0 − σ < s < s0 + σ, one considers the circle ∂Br(p)
passing through γ(s) and tangent to the curve Γ at γ(s) with

r =
1

|D1γ̇(s)|
and p = γ(s) +

D1γ̇(s)

|D1γ̇(s)|2

the radius and center of curvature respectively. Parameterizing this circle by arclength
t from γ(s) one obtains a function β ∈ C∞(R → R2) satisfying β(0) = γ(s) and
β̇(0) = γ̇(s). One then writes α(s0; s) = β(s0 − s) and considers the point β(s0 − s)
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in comparison with γ(s0) so that averaging with respect to a mollifier gives ν ∈
C∞((−L+ σ,M − σ) → R2 by

ν(s0) =

∫

s∈(s0−σ,s0+σ)

µσ(s0 − s)β(s0 − s)

which we call the curvature mollification of Γ. Of course, the regularity of ν
should be checked based on various assumptions about the curve Γ. The question of
regularity will be considered in detail below.

In practice perhaps the most natural, convenient, and practical way to carry out
this mollification procedure involves the introduction of a global inclination angle
along Γ. It is not surprising, and it may even be considered well-known, that a global
inclination angle ψ : (−L,M) → R exists satisfying

(cosψ, sinψ) = γ̇. (30)

In the case when γ ∈ C2((−L,M) → R2) the inclination angle can be used to define
the curvature of the curve γ. A discussion of this topic along with a proof and related
formulas may be found in [McC24]. The inclination angle as described here is not
unique, but in this instance we can take any convenient initial angle ψ0 satisfying

(cosψ0, sinψ0) = γ̇(0);

there is then a unique inclination angle along Γ satisfying ψ(0) = ψ0. In addition to
(30) we write

γ̇⊥ = (− sinψ, cosψ).

We may then write

β(t) = γ(s) +
D1γ̇(s)

|D1γ̇(s)|2
+

1

|D1γ̇(s)|
(cos θ(t), sin θ(t))

where

θ(t) = ψ(s)− D1γ̇(s) · γ̇(s)⊥
|D1γ̇(s)|

(π

2
− |D1γ̇(s)| t

)

= ψ(s) + [D1γ̇(s) · γ̇(s)⊥]
(

t− π

2|D1γ̇(s)|

)

.

Finally,

α(s0; s) = β(s0 − s) = γ(s) +
D1γ̇(s)

|D1γ̇(s)|2
+

1

|D1γ̇(s)|
(cos θ(s0 − s), sin θ(s0 − s))
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and we can write for −L+ σ ≤ t ≤M − σ

ν(t) = µσ ∗ γ(t) +
∫

s∈(t−σ,t+σ)

µσ(t− s)
D1γ̇(s)

|D1γ̇(s)|2

+

∫

s∈(t−σ,t+σ)

µσ(t− s)

|D1γ̇(s)|

(

cos

[

ψ(s) + [D1γ̇(s) · γ̇(s)⊥]
(

t− s− π

2|D1γ̇(s)|

)]

,

sin

[

ψ(s) + [D1γ̇(s) · γ̇(s)⊥]
(

t− s− π

2|D1γ̇(s)|

)])

For convenience we denote the argument of the trigonometric functions in the last
integral by

Θ(t; s) = ψ(s) + [D1γ̇(s) · γ̇(s)⊥]
(

t− s− π

2|D1γ̇(s)|

)

so that the curvature mollification takes the form

ν(t) = µσ ∗ γ(t)

+

∫

s∈(t−σ,t+σ)

µσ(t− s)

|D1γ̇(s)|

[

D1γ̇(s)

|D1γ̇(s)|
+

(

cosΘ(t; s), sinΘ(t; s)

)]

(31)

The geometric connection of the weak curvature vector D1γ̇ to the inclination angle
ψ can be strengthened with consequences for the expression (31) and for the angle
Θ(t; s) in particular. For each s0 ∈ (−L,M) there is some j ∈ {1, 2}, some δ > 0,
and some smooth function f ∈ C∞[s0 − δ, s0 + δ] such that

ψ(s) = f ◦ γ̇j(s) for s0 − δ < s < s0 + δ.

The function f is some local inverse of a trigonometric function; see [McC24]. By the
chain rule for weak derivatives (Lemma 7.5 in [GT83]) we have that

ψ0 = ψ∣
∣

(s0−δ,s0+δ)

has a weak derivative D1ψ0 ∈ L1
loc(s0−δ, s0+δ) given by D1ψ0(s) = f ′◦ γ̇j(s) D1γ̇j(s).

It is fairly straightforward to show that setting

D1ψ(s0) = D1ψ0(s0) for s0 ∈ (−L,M) (32)

one obtains a well-defined weak derivative D1ψ ∈ L1
loc(−L,M) for the inclination

angle ψ ∈ C0(−L,M). Applying the chain rule again to γ̇ = (cosψ, sinψ) we have

D1γ̇1 = − sinψ D1ψ

D1γ̇2 = cosψ D1ψ,
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that is, the weak curvature vector satisfies

D1γ̇ = D1ψ (− sinψ, cosψ) = D1ψ γ̇⊥.

Consequently, |D1γ̇| = |D1ψ| and D1γ̇ · γ̇⊥ = D1ψ. In particular,

D1γ̇ · γ̇⊥
|D1γ̇|

=
D1ψ

|D1ψ|
∈ {±1}.

Returning to (31) the angle Θ(t; s) now takes the form

Θ(t; s) = ψ(s) + (t− s)D1ψ(s)−
D1ψ(s)

|D1ψ(s)|
π

2

so that

cosΘ(t; s) =
D1ψ(s)

|D1ψ(s)|
sin[ψ(s) + (t− s)D1ψ(s)], (33)

sinΘ(t; s) = − D1ψ(s)

|D1ψ(s)|
cos[ψ(s) + (t− s)D1ψ(s)] (34)

and the curvature mollification (31) can also be written as

ν(t) = µσ ∗ γ(t)

+

∫

s∈(−L,M)

µσ(t− s)
1

D1ψ(s)

[(

sin[ψ(s) + (t− s)D1ψ(s)]− sinψ(s),

cosψ(s)− cos[ψ(s) + (t− s)D1ψ(s)]

)]

(35)

Having formally obtained the two equivalent forms of the curvature mollification
(31) and (35), we now impose two additional restrictions:

(RC) We assume the original curve Γ = {γ(s) : −L < s < M} has a locally
integrable radius of curvature, that is, the function ρ : (−L,M) → R given
by

ρ(s) =
1

|D1γ̇(s)|
=

1

|D1ψ(s)|
satisfies ρ ∈ L1

loc(−L,M).
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(MCB) We assume Γ has a locally bounded weak curvature modulus, that
is, the function κ : (−L,M) → R give by κ(s) = |D1γ̇(s)| satisfies κ ∈
L∞
loc(−L,M).

The form of the curvature mollification given in (31) suggests the first restriction
(RC) on the radius of curvature. The origin of the second restriction (MCB) on the
absolute value of the curvature will become clear in the proof of the following result.

Theorem 7 (regularity of curvature mollification) If γ ∈ C1((−L,M) → R2) admits
a weak curvature vector D1γ̇ : (−L,M) → S1 in the sense described by (1), (2), and
(3) in the introduction and in addition satisfies condition (RC) of having a locally
integrable radius of curvature ρ = 1/|D1γ̇| and condition (MCB) of having a locally
bounded weak curvature modulus κ = |D1γ̇| then, letting ψ ∈ C0(−L,M) denote the
inclination of Γ so that

γ̇(s) = (cosψ(s), sinψ(s)) for s ∈ (−L,M),

one has that for σ > 0 the curvature mollification ν : (−L+σ,M −σ) → R2 given by

ν(t) = µσ ∗ γ(t)

+

∫

s∈(−L,M)

µσ(t− s) ρ(s)

[

ρ(s) D1γ̇(s) + (cosΘ(t; s), sinΘ(t; s))

]

(36)

where

Θ(t; s) = ψ(s) + (t− s)D1ψ(s)−
D1ψ(s)

|D1ψ(s)|
π

2
(37)

satisfies ν ∈ C∞((−L+ σ,M − σ) → R2).

Note that in (37) we are using the implication that ψ is weakly differentiable with
D1ψ ∈ L1

loc(−L,M); see (32).
Proof of Theorem 7: As with tangent mollification the curvature mollification
takes the form of an additional term or terms added to the coordinate mollification
µσ ∗ γ, and we consider these as separate components setting

Sj(t) =

∫

s∈(−L,M)

µσ(t− s) ρ(s)2 D1γ̇j(s) for j = 1, 2, (38)

T1(t) =

∫

s∈(−L,M)

µσ(t− s) ρ(s) cosΘ(t; s), and

T2(t) =

∫

s∈(−L,M)

µσ(t− s) ρ(s) sin Θ(t; s). (39)
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Notice that

|ρ(s)2 D1γ̇j(s)| ≤ ρ(s)

∣

∣

∣

∣

D1γ̇(s)

|D1γ̇(s)|

∣

∣

∣

∣

= ρ(s).

Thus, Sj = µσ ∗ g is the mollification of the locally integrable function g = ρ2D1γ̇j,
and Sj ∈ C∞(−L+ σ,M − σ) for j = 1, 2 with the usual formula

dkSj

dtk
(t) =

∫

s∈(−L,M)

dkµσ

dsk
(t− s) ρ(s)2 D1γ̇j(s) for j = 1, 2

or
dkSj

dtk
(t) =

∫

s∈(−L,M)

µσ(t− s)
dk

dsk

(

γ̈j
|γ̈|2

)

(s) = µσ ∗
dk

dsk
(

ρ2 γ̈
)

(t) (40)

in case γ ∈ Ck+2((−L,M) → R2).
Consider next the regularity of T1. The function Θ is an affine function of t with

∂Θ

∂t
(t; s) = D1ψ(s)

independent of t. Thus for t fixed, h1 : (−L,M) → R by

h1(s) = −ρ(s) sinΘ(t; s)
∂Θ

∂t
(t; s)

satisfies
|h1(s)| ≤ ρ(s) |D1ψ(s)| = ρ(s) |D1γ̇(s)| = 1

and hence h1 ∈ L∞(−L,M). It follows that

dT1
dt

(t) =

∫

s∈(−L,M)

dµσ

ds
(t− s) ρ(s) cosΘ(t; s)

−
∫

s∈(−L,M)

µσ(t− s) ρ(s) sinΘ(t; s) D1ψ(s)

=

∫

s∈(−L,M)

dµσ

ds
(t− s) ρ(s) cosΘ(t; s)

−
∫

s∈(−L,M)

µσ(t− s) ρ(s) sinΘ(t; s)
∂Θ

∂t
(t; s).

The factor

ρ(s) sin Θ(t; s) D1ψ(s) = ρ(s) sinΘ(t; s)
∂Θ

∂t
(t; s)
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in the last integrand has

∣

∣

∣

∣

∂

∂t

(

ρ(s) sinΘ(t; s) D1ψ(s)

)
∣

∣

∣

∣

=
∣

∣

∣
ρ(s) cosΘ(t; s)

[

D1ψ(s)
]2
∣

∣

∣

≤ |D1ψ(s)|.

Since D1γ̇j ∈ L1
loc(−L,M) for j = 1, 2 and |D1ψ(s)| = |D1γ̇| ≤

√
2(|D1γ̇1|+ |D1γ̇2|),

we have for fixed t that h2 ∈ L1
loc(−L,M) where

h2(s) = −ρ(s) cosΘ(t; s)
[

D1ψ(s)
]2
,

and

d2T1
dt2

(t) =

∫

s∈(−L,M)

d2µσ

ds2
(t− s) ρ(s) cosΘ(t; s)

− 2

∫

s∈(−L,M)

dµσ

ds
(t− s) ρ(s) sin Θ(t; s)

∂Θ

∂t
(t; s)

−
∫

s∈(−L,M)

µσ(t− s) ρ(s) cosΘ(t; s)

[

∂Θ

∂t
(t; s)

]2

.

The higher order derivatives follow the same pattern except that for each j =
3, 4, 5, . . . we need an estimate on

∣

∣

∣

∣

∂

∂t

(

ρ(s)

(

1 + (−1)j

2
sinΘ(t; s) +

1− (−1)j

2
cosΘ(t; s)

)

[

D1ψ(s)
]j−1

)
∣

∣

∣

∣

=

∣

∣

∣

∣

ρ(s)

(

1 + (−1)j

2
cosΘ(t; s)− 1− (−1)j

2
sinΘ(t; s)

)

[

D1ψ(s)
]j
∣

∣

∣

∣

≤ |D1ψ(s)|j−1

= |D1γ̇(s)|j−1. (41)

The appearance of the power in (41) is the reason for assumption (MCB). With
the value in (41) bounded by a constant, we conclude that for fixed t we have hj ∈
L∞
loc(−L,M) ⊂ L1

loc(−L,M) where

hj(s) = ρ(s)

(

1 + (−1)j

2
cosΘ(t; s)− 1− (−1)j

2
sinΘ(t; s)

)(

∂Θ

∂t
(t; s)

)j

,
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and by induction

dkT1
dtk

(t) =

k
∑

j=0

(

k
j

)
∫

s∈(−L,M)

dk−jµσ

dsk−j
(t−s)ρ(s) dj

dΘj
[cosΘ](t; s)

[

∂Θ

∂t
(t; s)

]j

. (42)

Similarly,

dkT2
dtk

(t) =
k

∑

j=0

(

k
j

)
∫

s∈(−L,M)

dk−jµσ

dsk−j
(t− s)ρ(s)

dj

dΘj
[sinΘ](t; s)

[

∂Θ

∂t
(t; s)

]j

. (43)

Since νj(t) = µσ ∗ γj(t) + Sj(t) + Tj(t), this completes the proof that ν is infinitely
differentiable. �

In retrospect it is not entirely surprising the curvature mollification

ν ∈ C2((−L,M) → R
2)

may not have additional regularity in situations where there are points of arbi-
trarily large curvature on Γ, though this is not a problem with either the point-
wise mollification of γ or the tangent mollification for that matter. In any case,
γ ∈ C2((−L,M) → R2) is definitely adequate to ensure the curvature mollification
satisfies ν ∈ C∞((−L,M) → R2).

Perhaps it is somewhat more surprising, or troubling, that the condition (RC) on
the radius of curvature is required. One might suspect points of zero curvature (infi-
nite radius of curvature) could or should be included with a pointwise transition to
something like the averaged values of the tangent mollification. The current construc-
tion, however, definitely uses integrals involving the radius of curvature and center of
curvature in a fundamental way, and it is not clear how to construct such a natural
generalization for curves with vanishing curvature. Thus, curvature mollification as
presented so far applies essentially to curves with curvature bounded away from zero,
which is a standard assumption in the structure theory for curves in differential ge-
ometry. In the last section we do offer an approach to obtaining such a generalization
but without proofs of regularity or convergence properties.

Before we attempt to address questions of convergence for the curvature mollifi-
cation, we consider a simple explicit example giving one of the key properties of the
construction.
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2.1 Curvature mollification of a circular arc

Consider the circular arc Γ = {a(cos(s/a), sin(s/a)) : s ∈ R} parameterized by
arclength as above. Here ρ(s) ≡ a and D1γ̇(s) = γ̈(s) = −(cos(s/a), sin(s/a))/a. We
may take ψ(s) = s/a+ π/2 so that

Θ(t; s) =
s

a
+
π

2
+

1

a

[

cos2
(s

a

)

+ sin2
(s

a

)](

t− s− aπ

2

)

=
t

a
.

Consequently,

β(t− s) = γ(s) + ρ(s)2γ̈(s) + ρ(s)(cosΘ(t; s), sinΘ(t; s))

= a(cos(s/a), sin(s/a))− a(cos(s/a), sin(s/a)) + a(cos(t/a), sin(t/a))

≡ γ(t). (44)

Thus, we have for the average ν : R → R2

ν(t) =

∫

s∈R

µσ(t− s)β(t− s) =

∫

s∈R

µσ(t− s)γ(t) ≡ γ(t), (45)

and the circle is invariant under curvature mollification.
Conceptually the result of the computations (44) and (45) is essentialy obvious

if we have obtained the correct formula for the curvature mollification. At each
point γ(t) one averages values obtained by moving a particular arclength s along the
curve, finding the tangent circle at the point γ(t + s) of the appropriate curvature,
parameterizing this circle by arclength, and then following that circle in the reverse
direction an arclength s. If the original curve is a circle, this procedure leads one
precisely back to the point γ(t), and the average of such values is of course also γ(t).
When the curve is not a circle, however, the construction leads to something rather
more interesting.

2.2 Convergence

We now examine convergence for curvature mollification. Since the formula (36) has
the form ν = µσ ∗ γ + S + T and the pointwise mollification µσ ∗ γ converges to
γ in various senses, the proofs of convergence, like those for tangent mollification,
primarily consist of showing the additional quantity S+T = (S1, S2)+ (T1, T2) tends
to zero.
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Here we will use more explicitly the geometric significance of the weak curvature
relation D1γ̇ = D1ψ(− sinψ, cosψ) associated with the form (35). Accordingly we
write S1(t) + T1(t) as

(S1 + T1)(t) =

∫

s∈(−L,M)

µσ(t− s) ρ(s)

[

ρ(s) D1γ̇1(s) + cosΘ(t; s)

]

=

∫

s∈(−L,M)

µσ(t− s)
1

D1ψ(s)

[

sin[ψ(s) + (t− s)D1ψ(s)]− sinψ(s)

]

.

In this way we obtain a pointwise estimate

|(S1 + T1)(t)| ≤
∫

s∈(−L,M)

|t− s|µσ(t− s) < σ. (46)

Similarly, we find

|(S2 + T2)(t)| < σ for − L+ σ < t < M − σ. (47)

We conclude the following:

Theorem 8 (pointwise convergence of the curvature mollification) If

γ ∈ C1((−L,M) → R
n)

satisfies the conditions of Theorem 7 then ν ∈ C∞((−L + σ,M − σ) → Rn) given
by (36) converges pointwise uniformly to γ on every compact subset of (−L,M) and
pointwise at every point in particular as σ tends to zero.

Since we have assumed no additional regularity in Theorem 8, that is in addition
to the regularity required to construct the curvature mollification, there is no re-
sult concerning almost everywhere pointwise convergence for curvature mollification
analogous to Theorem 3 for tangent mollification.

Notice finally the comparison of the main zero order pointwise estimates (46)
and (46) for the curvature mollification with the corresponding estimates (22) for
the tangent mollification. Though the curvature mollification has nominally a much
more complicated structure and formula, these pointwise estimates for the curvature
mollification are surprisingly simple.
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2.3 Higher order derivatives for curvature mollification

In situations when γ enjoys higher regularity, the derivatives of ν can also be written
in a “mollification form” analogous to µσ ∗ γ and the expression in (20) for the
tangent mollification excluding derivatives of the mollifier µσ. This has already been
accomplished for the component functions S1 and S2 in (40). We proceed to find a
similar form for T1 and T2.

If γ ∈ Ck+2((−L,M) → R
2) for some k ∈ {1, 2, 3, . . .}, then we write γ̇, γ̈, . . . ,

γ(k+2) for the classical derivatives and note that the reasoning leading to (32) applies
to show the inclination angle ψ has classical derivatives ψ̇, . . . , ψ(k+1). Furthermore,
the condition (MCB) that the modulus of curvature κ = |D1γ̇| = |γ̈| is locally
bounded yields for each set K ⊂⊂(−L,M) an inequality

|ψ̇(s)| = |γ̈(s)| ≤ ‖γ̈‖C0(K) <∞

holding for every s ∈ K. We strengthen the assumption (RC) that the radius of
curvature is locally integrable to the following:

(RCB) The curve Γ = {γ(s) : −L < s < M} has a locally bounded radius of
curvature, that is, the function ρ : (−L,M) → R given by

ρ(s) =
1

|γ̈(s)| =
1

|ψ̇(s)|
satisfies ρ ∈ L∞

loc(−L,M).

Again, this assumption implies for each compact set K ⊂⊂(−L,M) a pointwise in-
equality

0 <
1

‖ 1/|γ̈| ‖C0(K)

≤ κ(s) = |ψ̇(s)| = |γ̈(s)| for s ∈ K.

With these comments in mind and the central role played by the classical derivatives
of the inclination angle in particular, we may start with the form (35) for the curvature
mollification ν and write it as

ν(t) = µσ ∗ γ(t)

+

∫

s∈(−L,M)

µσ(t− s)
1

ψ̇(s)

[(

sin[ψ(s) + (t− s)ψ̇(s)]− sinψ(s),

cosψ(s)− cos[ψ(s) + (t− s)ψ̇(s)]

)]
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with

S1(t) = −
∫

s∈(−L,M)

µσ(t− s)
1

ψ̇(s)
sinψ(s)

S2(t) =

∫

s∈(−L,M)

µσ(t− s)
1

ψ̇(s)
cosψ(s)

T1(t) =

∫

s∈(−L,M)

µσ(t− s)
1

ψ̇(s)
sin[ψ(s) + (t− s)ψ̇(s)], and

T2(t) = −
∫

s∈(−L,M)

µσ(t− s)
1

ψ̇(s)
cos[ψ(s) + (t− s)ψ̇(s)].

Here we have taken account of the expressions (33) and (34) as well as the additional
regularity of ψ. As noted above, the components S1 and S2 take the form of a simple
mollification, and we focus on the components T1 and T2.

Changing variables in T, we can write

ν(t) = µσ ∗ γ(t) + µσ ∗ (ρ2γ̈)(t) +
∫

η∈(−L,M)

µσ(η)ρ(t− η)2w(t− η, η)

where w ∈ Ck((−L,M)2 → R
2) with

ρ(s)2w(s, η) = − 1

ψ̇(s)

(

− sin[ψ(s) + η ψ̇(s)], cos[ψ(s) + η ψ̇(s)]

)

= −ρ(s)2ψ̇(s)
(

− sin[ψ(s) + η ψ̇(s)], cos[ψ(s) + η ψ̇(s)]

)

. (48)

In this form we can differentiate with the derivatives falling on factors multiplied by
the mollifier µσ = µσ(η) under the integral rather than on the mollifier to obtain

dkν

dtk
(t) = µσ ∗

dk

dsk
(γ + ρ2γ̈)(t) +

∫

η∈(−σ,σ)

µσ(η)
∂k

∂sk
(ρ2w)(t− η, η) (49)

= µσ ∗
dk

dsk
(γ + ρ2γ̈)(t) +

∫

s∈(−L,M)

µσ(t− s)
∂k

∂sk
(ρ2w)(s, t− s).

Notice the factors involving

dk

dsk
(ρ2γ̈) and

∂k

∂sk
(ρ2w) (50)
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in the mollification and the last integrand in (49). These derivatives involve deriva-
tives of the radius of curvature ρ(s) = 1/|γ̈(s)| = 1/|ψ̇(s)|, and for the integrals to
be well-defined one needs powers of ρ to be locally integrable. This is the reason for
the assumption (RCB). Notice further the components of w = w(s, η) in (48) are
products involving compositions of simple trigonometric functions.

We now apply the generalized Leibniz rule and the Faà di Bruno formula for
derivatives of compositions to obtain explicit expressions for the derivatives of ρ2w =
ρ2(w1, w2) appearing in (49) and (50). Suppressing the dependence on s in ρ = ρ(s)
and ψ(k) = ψ(k)(s) for k = 0, 1, 2, 3, . . ., we find

∂k

∂sk
(ρ2w1)(s, η) =

k
∑

ℓ=0

(

k
ℓ

)

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

dℓ

dsℓ
sin(ψ + ηψ̇) (51)

∂k

∂sk
(ρ2w2)(s, η) = −

k
∑

ℓ=0

(

k
ℓ

)

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

dℓ

dsℓ
cos(ψ + ηψ̇) (52)

with

dℓ

dsℓ
sin(ψ + ηψ̇) =

ℓ
∑

m=1

Bℓ,m(ζ)
dm

dθm
sin θ∣

∣

θ=ψ+ηψ̇

(53)

dℓ

dsℓ
cos(ψ + ηψ̇) =

ℓ
∑

m=1

Bℓ,m(ζ)
dm

dθm
cos θ∣

∣

θ=ψ+ηψ̇

(54)

for ℓ ≥ 1 where Bℓ,m : Rℓ−m+1 → R is the (multivariable) Bell polynomial discussed
below and

ζ =

(

ψ̇ + ηψ̈, ψ̈ + ηψ(3), . . . , ψ(ℓ−m+1) + ηψ(ℓ−m+2)

)

∈ R
ℓ−m+1.

We apply the same expansion to the derivatives of ρ2γ̈ = ρ2ψ̇(− sinψ, cosψ) appearing
in (49) and (50):

dk

dsk
(ρ2ψ̇ sinψ) =

k
∑

ℓ=0

(

k
ℓ

)

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

dℓ

dsℓ
sin(ψ) (55)

dk

dsk
(ρ2ψ̇ cosψ) =

k
∑

ℓ=0

(

k
ℓ

)

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

dℓ

dsℓ
cos(ψ) (56)

37



with

dℓ

dsℓ
sin(ψ) =

ℓ
∑

m=1

Bℓ,m(ζ0)
dm

dθm
sin θ∣

∣

θ=ψ

(57)

dℓ

dsℓ
cos(ψ) =

ℓ
∑

m=1

Bℓ,m(ζ0)
dm

dθm
cos θ∣

∣

θ=ψ

(58)

and

ζ0 =

(

ψ̇, ψ̈, . . . , ψ(ℓ−m+1)

)

∈ R
ℓ−m+1.

To complete these expansion formulas, for each k ∈ N0 = {0, 1, 2, 3, . . .} and each
ℓ,m ∈ N = {1, 2, 3, . . .} with m ≤ ℓ ≤ k consider the multiindex set

Γℓ,m =

{

β ∈ N
ℓ−m+1
0 : |β| =

ℓ−m+1
∑

j−1

βj = m and

ℓ−m+1
∑

j−1

jβj = ℓ

}

.

The Bell polynomials referenced above are then given by

Bℓ,m(z) = ℓ!
∑

β∈Γℓ,m

1

β! (m!1)β
zβ

where






β! = β1!β2! · · ·βℓ−m+1!
1 = (1, 1, . . . , 1) ∈ Rℓ−m+1, and

zβ = zβ1
1 z

β2
2 · · · zβℓ−m+1

ℓ−,+1

for a multiindex β ∈ N
ℓ−m+1
0 and z = (z1, z2, . . . , zℓ−m+1) ∈ Rℓ−m+1.

As in the proof of Theorem 8 it is crucial to consider the cancellation occurring
in the sum S+T rather than in either S or T separately; see for example (46). For
the higher order derivatives the situation is of course rather more complicated. We
start with (49) from which we have

∣

∣

∣

∣

dk

dtk
(S+T)(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

η∈(−σ,σ)

µσ(η)

[

dk

dsk
(ρ2γ̈)(t− η)− ∂k

∂sk
(ρ2w)(t− η, η)

]
∣

∣

∣

∣

≤
∫

η∈(−σ,σ)

µσ(η)

∣

∣

∣

∣

dk

dsk
(ρ2γ̈)(t− η)− ∂k

∂sk
(ρ2w)(t− η, η)

∣

∣

∣

∣

(59)
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Using (51) and (55) we estimate (at least the second component in) the second factor
in the integrand in (59) where the suppressed arguments are s = t− η:

∣

∣

∣

∣

∣

dk(−ρ2ψ̇ sinψ)

dsk
(t− η)− ∂kw1

∂sk
(t− η, η)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

ℓ=0

(

k
ℓ

)

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

(

dℓ

dsℓ
sin(ψ + ηψ̇)− dℓ

dsℓ
sin(ψ)

)

∣

∣

∣

∣

∣

≤
k

∑

ℓ=0

(

k
ℓ

)
∣

∣

∣

∣

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

∣

∣

∣

∣

∣

∣

∣

∣

dℓ

dsℓ
sin(ψ + ηψ̇)− dℓ

dsℓ
sin(ψ)

∣

∣

∣

∣

. (60)

Under the current assumptions (RCB) and (MCB) the nonnegative functions fkℓ ∈
C0(−L,M) with values

fkℓ(s) =

∣

∣

∣

∣

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

∣

∣

∣

∣

=

∣

∣

∣

∣

dk−ℓ

dsk−ℓ

(

1

ψ̇

)
∣

∣

∣

∣

are locally bounded, and we can also use (53) and (57) for 1 ≤ ℓ ≤ k to obtain
∣

∣

∣

∣

dℓ

dsℓ
sin(ψ + ηψ̇)− dℓ

dsℓ
sin(ψ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ℓ
∑

m=1

[

Bℓ,m(ζ)
dm

dθm
sin θ∣

∣

θ=ψ+ηψ̇

− Bℓ,m(ζ0)
dm

dθm
sin θ∣

∣

θ=ψ

]

∣

∣

∣

∣

∣

≤
ℓ

∑

m=1

|Bℓ,m(ζ)|
∣

∣

∣

∣

dm

dθm
sin θ∣

∣

θ=ψ+ηψ̇

− dm

dθm
sin θ∣

∣

θ=ψ

∣

∣

∣

∣

+

ℓ
∑

m=1

|Bℓ,m(ζ)− Bℓ,m(ζ0)|
∣

∣

∣

∣

dm

dθm
sin θ∣

∣

θ=ψ

∣

∣

∣

∣

=
ℓ

∑

m=1

|Bℓ,m(ζ)|
∣

∣

∣

∣

dm

dθm
sin θ∣

∣

θ=ψ∗

∣

∣

∣

∣

|η| |ψ̇|

+

ℓ
∑

m=1

|Bℓ,m(ζ)− Bℓ,m(ζ0)|
∣

∣

∣

∣

dm

dθm
sin θ∣

∣

θ=ψ

∣

∣

∣

∣

(61)

where ψ∗ is some value between ψ(s) and ψ(s)+ηψ̇(s). Continuing with the terms in
the first summation of the expression (61) we have for −σ < η < σ as in the integrand
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of (59)

|Bℓ,m(ζ)|
∣

∣

∣

∣

dm

dθm
sin θ∣

∣

θ=ψ∗

∣

∣

∣

∣

|η| |ψ̇| ≤ σ
∣

∣

∣
ψ̇ Bℓ,m(ζ)

∣

∣

∣
,

and again the nonnegative functions gℓ,m ∈ C0((−L,M)× R) with values

gℓ,m(s, η) =
∣

∣

∣
ψ̇(s) Bℓ,m(ζ)

∣

∣

∣

where

ζ = ζ(s, η) =

(

ψ̇(s) + ηψ̈(s), ψ̈(s) + ηψ(3)(s), . . . , ψ(ℓ−m+1)(s) + ηψ(ℓ−m+2)(s)

)

are locally bounded.
The terms in the second summation of the expression (61) are evidently bounded

by

|Bℓ,m(ζ)− Bℓ,m(ζ0)| =
∣

∣

∣

∣

∣

ℓ−m+1
∑

j=1

(
∫ 1

0

∂Bℓ,m

∂zj
(ζ∗) dt

)

η ψ(j+1)

∣

∣

∣

∣

∣

≤ σ

∣

∣

∣

∣

∣

ℓ−m+1
∑

j=1

ψ(j+1)

(
∫ 1

0

∂Bℓ,m

∂zj
(ζ∗) dt

)

∣

∣

∣

∣

∣

where

ζ∗ = ζ0 + t(ζ − ζ0)

=

(

ψ̇ + tηψ̈, ψ̈ + tηψ(3), . . . , ψ(ℓ−m+1) + tηψ(ℓ−m+2)

)

.

Here we have used a multivariable mean value theorem.
Assuming without loss of generality that |η| ≤ σ < 1, we observe that given a

compact set K ⊂ (−L,M) all possible values of

ζ∗ = ζ∗(s, η) =

(

ψ̇(s) + tηψ̈(s), ψ̈(s) + tηψ(3)(s), . . . , ψ(ℓ−m+1)(s) + tηψ(ℓ−m+2)(s)

)

for all s ∈ K, all |η| ≤ σ, and all 0 ≤ t ≤ 1 fall into some compact subset Kℓ,m of
Rℓ−m+1. Consequently, given δ > 0 and t ∈ (−L+ δ,M − δ), there is a fixed constant
Cδ > 0 independent of σ (and of ℓ and of m) such that

|Bℓ,m(ζ(t− η, η)−Bℓ,m(ζ0(t− η))| ≤ Cδ σ (62)
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for σ < δ/2. Taking K = (−L+ δ/2,M − δ/2) and returning to (61) we can estimate

∣

∣

∣

∣

dℓ

dsℓ
sin(ψ + ηψ̇)− dℓ

dsℓ
sin(ψ)

∣

∣

∣

∣

≤ σ

(

max
ℓ,m

‖gl,m‖C0(K×[−δ/2,δ/2]) + ℓCδ

)

. (63)

We are now in a position to state and prove a result analogous to Theorem 4 for
the curvature mollification:

Theorem 9 (convergence of higher order derivatives; curvature mollification) If γ ∈
Ck+2((−L,M) → R2) for some k ≥ 1 satisfies (RCB) and (MCB), then the curva-
ture mollification ν converges to γ as σ tends to zero in Ck([−L + δ,M − δ] → R2)
for every δ > 0.

Proof: Recalling the estimates associated with (59) and (60) we start with δ > 0
fixed and take t ∈ (−L + δ,M − δ) and 0 < σ < δ/2. Then if |η| < σ we know
t− η ∈ K = (−L+ δ/2,M − δ/2) and

∣

∣

∣

∣

dk

dtk
(S1 + T1)(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

η∈(−σ,σ)

µσ(η)

[

dk(−ρ2ψ̇ sinψ)

dsk
(t− η)− ∂k

∂sk
(ρ2w1)(t− η, η)

]
∣

∣

∣

∣

∣

≤
∫

η∈(−σ,σ)

µσ(η)

∣

∣

∣

∣

∣

dk(−ρ2ψ̇ sinψ)

dsk
(t− η)− ∂k

∂sk
(ρ2w1)(t− η, η)

∣

∣

∣

∣

∣

≤
∫

η∈(−σ,σ)

µσ(η)
k

∑

ℓ=0

(

k
ℓ

)
∣

∣

∣

∣

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

∣

∣

∣

∣

∣

∣

∣

∣

dℓ

dsℓ
sin(ψ + ηψ̇)− dℓ

dsℓ
sin(ψ)

∣

∣

∣

∣

(64)

≤ k(k!) max
k,ℓ

∥

∥

∥

∥

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

∥

∥

∥

∥

C0(K)
∫

η∈(−σ,σ)

µσ(η)

∣

∣

∣

∣

dℓ

dsℓ
sin(ψ + ηψ̇)− dℓ

dsℓ
sin(ψ)

∣

∣

∣

∣

≤ k(k!) max
k,ℓ

∥

∥

∥

∥

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

∥

∥

∥

∥

C0(K)

(

max
ℓ,m

‖gl,m‖C0(K×[−δ/2,δ/2]) + kCδ

)

σ.

The estimate (64) follows from (60). The last estimate uses (59). Since the constant

k(k!) max
k,ℓ

∥

∥

∥

∥

dk−ℓ

dsk−ℓ
(ρ2ψ̇)

∥

∥

∥

∥

C0(K)

(

max
ℓ,m

‖gl,m‖C0(K×[−δ/2,δ/2]) + kCδ

)
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is bounded independent of σ and t we conclude

∣

∣

∣

∣

dk

dtk
(S1 + T1)(t)

∣

∣

∣

∣

tends to zero uniformly for t ∈ (−L+ δ,M − δ) as σ tends to zero. Similar estimates
apply to the second component value

∣

∣

∣

∣

dk

dtk
(S2 + T2)(t)

∣

∣

∣

∣

so that, at length,

lim
σց0

‖S+T‖Ck([−L+δ,L−δ]→R2) = 0. �

2.4 Lp convergence

Starting again with the surprisingly simple pointwise estimates (46) and (47) the proof
of results analogous to Theorem 5 and Theorem 6 is also correspondingly simple.

Theorem 10 (local Lp convergence of the curvature mollification) If γ ∈ C1((−L,M) →
R2) admits a weak curvature vector D1γ̇ : (−L,M) → R2 satisfying the conditions of
Theorem 7 and

D1γ̇j ∈ Lp
loc(−L,M)

for j = 1, 2, . . . , n and some p with 1 ≤ p <∞, then ν = ν ∈ C∞((−L+σ,M −σ) →
R2) given by (36) satisfies

lim
σց0

2
∑

j=1

‖νj − γj‖Lp(K) = 0

for every compact set K with K ⊂ (−L,M).

Proof: Fix δ > 0 with K ⊂⊂(−L + 2δ,M − 2δ) and consider σ < δ and j ∈ {1, 2}.
Then

‖νj − γj‖Lp(K) = ‖µσ ∗ γj − γj + Sj + Tj‖Lp(K)

≤ ‖µσ ∗ γj − γj‖Lp(K) + ‖Sj + Tj‖Lp(K)
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where Sj and Tj are given in (38-39) and

lim
σց0

‖µσ ∗ γj − γj‖Lp(K) = 0.

Thus, it is enough to show

lim
σց0

‖Sj + Tj‖Lp(K) = 0. (65)

We have the surprisingly simple pointwise estimate

|(Sj + Tj)(t)| ≤ σ.

Therefore,
‖Sj + Tj‖Lp(K) ≤ σ(L+M),

and
lim
σց0

‖Sj + Tj‖Lp(K) = 0. �

2.5 Examples of curvature mollification

Example 1: Starting with γ having values given in (4) the inclination angle ψ ∈
C0(−πa/2, πa/2) may be assumed to have values

ψ(s) =

{

π/2− s/a, −πa/2 < s ≤ 0
π/2 + s/a, 0 ≤ s < πa/2.

(66)

Formula (49) for the higher order derivatives does not apply in this case because Γ
is not a C2 curve. It is still useful, especially for computational purposes, to have
a formula for the higher order derivatives of ν without derivatives on the mollifier
in the integration. Accordingly, we consider the general case of a curve satisfying
the conditions of Theorem 7 and the additional condition that for some arclength
s0 ∈ (−L,M) the parameterization γ satisfies

γ∣
∣

(−L,s0]

∈ C∞(−L, s0] and γ∣
∣

[s0,M)

∈ C∞[s0,M).

Since we still have γ ∈ C1(−L,M), the first derivative of the basic pointwise mollifi-
cation satisfies

d

dt
(µσ ∗ γ)(t) = µσ ∗ γ̇(t)
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as usual, though higher order derivatives will require more care. The integrands in the
additional terms S and T, however, already lack enough regularity to give a formula
differing from (49) in some cases. Let us assume for simplicity that t−σ < s0 < t+σ.
Then

dS

dt
(t) =

d

dt

[

µσ ∗ (ρ2D1γ̇)
]

(t)

=

∫

s∈(−L,s0)

dµσ

ds
(t− s)(ρ2γ̈)(s) +

∫

s∈(s0,M)

dµσ

ds
(t− s)(ρ2γ̈)(s) (67)

=

∫

η∈(t−s0,σ)

dµσ

ds
(η)(ρ2γ̈)(t− η) +

∫

η∈(−σ,t−s0)

dµσ

ds
(η)(ρ2γ̈)(t− η) (68)

= −µσ(t− s0)(ρ
2γ̈)(s−0 ) +

∫

η∈(t−s0,σ)

µσ(η)
d

ds
(ρ2γ̈)(t− η)

+ µσ(t− s0)(ρ
2γ̈)(s+0 ) +

∫

η∈(−σ,t−s0)

µσ(η)
d

ds
(ρ2γ̈)(t− η) (69)

= µσ ∗
d

ds
(ρ2D1γ̇)(t) + µσ(t− s0)

(

(ρ2γ̈)(s+0 )− (ρ2γ̈)(s−0 )

)

. (70)

Instead of integrating by parts in (68) we may change variables directly in the molli-
fication integral µσ ∗ (ρ2γ̈) and replace (67) and (68) with

d

dt

(
∫

η∈(t−s0,σ)

µσ(η)(ρ
2γ̈)(t− η) +

∫

η∈(−σ,t−s0)

µσ(η)(ρ
2γ̈)(t− η)

)

.

Then the derivatives under the integral fall directly on the factor ρ2γ̈, but there are
also t dependencies in the limits of integration which must be differentiated and these
differentiations lead to the additional “jump” terms and the same formula given in
(70). The derivative of ρ2γ̈ should not be understood as any kind of weak derivative
on the entire interval (−L,M) but simply as the values of an L1

loc function determined
pointwise classically almost everywhere, namely on (−L,M)\{s0}. Thus, the function

d

ds
(ρ2D1γ̇)

might be considered a “strong derivative” in the sense of the strong solutions of
Chapter 9 of [GT83]. In this sense, the final result may be also written as

dS

dt
(t) = µσ ∗

d

ds
(ρ2γ̈)(t) + µσ(t− s0)

(

(ρ2γ̈)(s+0 )− (ρ2γ̈)(s−0 )

)
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and compared to the value

dS

dt
(t) = µσ ∗

d

ds
(ρ2γ̈)(t) (71)

expressed in (49) and valid in the smooth case. Notice than that when either s0 /∈
(t − σ, t + σ) or (ρ2γ̈)(s+0 ) = (ρ2γ̈)(s−0 ), the “jump” terms vanish. Thus, (70) is a
direct generalization of (71).

We next turn to the differentiation of

T(t) =

∫

η∈(−σ,σ)

µσ(η)(ρ
2w)(t− η, η).

The same approach applied to S above yields

dT

dt
(t) =

d

dt

∫

η∈(−σ,σ)

µσ(η)(ρ
2w)(t− η, η)

=

∫

η∈(−σ,t−s0)

µσ(η)
∂

∂s
(ρ2w)(t− η, η) + µσ(t− s0)(ρ

2w)(s+0 , t− s0)

+

∫

η∈(t−s0,σ)

µσ(η)
∂

∂s
(ρ2w)(t− η, η)− µσ(t− s0)(ρ

2w)(s−0 , t− s0)

=

∫

s∈(−L,M)

µσ(t− s)
∂

∂s
(ρ2w)(s, t− s)

+ µσ(t− s0)

(

(ρ2w)(s+0 , t− s0)− (ρ2w)(s−0 , t− s0)

)

. (72)

Again the value
∂

∂s
(ρ2w)(s, t− s)

should be understood as a kind of “strong derivative” defined classically except for
s = s0, and (72) generalizes directly the formula

dT

dt
(t) =

∫

s∈(−L,M)

µσ(t− s)
∂

∂s
(ρ2w)(s, t− s)

valid when γ ∈ C3(−L,M) and appearing in (49).
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A similar approach may be applied to the second derivative of the basic pointwise
mollification:

d2

dt2
(µσ ∗ γ)(t) =

d

dt

∫

η∈(−σ,t−s0)

µσ(η)γ̇(t− η) +
d

dt

∫

η∈(t−s0,σ)

µσ(η)γ̇(t− η)

=

∫

η∈(−σ,σ)

µσ(η)D1γ̇(t− η) + µσ(t− s0)

(

γ̇(s+0 )− γ̇(s−0 )

)

= µσ ∗D1γ̇(t).

Here we have used the fact that the weak curvature vector D1γ̇ agrees with the
“strong” curvature vector γ̈ at all points except s = s0 where the latter is not defined.
We have also used the assumption γ ∈ C1((−L,M) → R

2) according to which the
“jump” terms vanish.

Starting with (69) we find

d2S

dt2
(t) =

dµσ

ds
(t− s0)

(

(ρ2γ̈)(s+0 )− ρ2γ̈)(s−0 )

)

(73)

+
d

dt

∫

η∈(t−s0,σ)

µσ(η)
d

ds
(ρ2γ̈)(t− η)

+
d

dt

∫

η∈(−σ,t−s0)

µσ(η)
d

ds
(ρ2γ̈)(t− η)

=
dµσ

ds
(t− s0)

(

(ρ2γ̈)(s+0 )− ρ2γ̈)(s−0 )

)

+ µσ ∗
d2

ds2
(ρ2D1γ̇)(t)

+ µσ(t− s0)

(

d

ds
(ρ2γ̈)(s+0 )−

d

ds
(ρ2γ̈)(s−0 )

)

= µσ ∗
d2

ds2
(ρ2D1γ̇)(t) +

1
∑

j=0

d1−jµσ

ds1−j
(t− s0)

(

dj

dsj
(ρ2γ̈)(s+0 )−

dj

dsj
(ρ2γ̈)(s−0 )

)

.

Here the generalization of

d2S

dt2
(t) = µσ ∗

d2

ds2
(ρ2D1γ̇)(t)

which applies when γ ∈ C4((−L,M) → R2 and features in (49) involves a sum of
“jump” terms involving lower order derivatives and pointwise values of derivatives of
the mollifier.
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Similarly,

d2T

dt2
(t) =

∫

η∈(−σ,t−s0)

µσ(η)
∂2

∂s2
(ρ2w)(t− η, η)

+

1
∑

j=0

d1−jµσ

ds1−j
(t− s0)

(

∂j

∂sj
(ρ2w)(s+0 , t− s0)−

∂j

∂sj
(ρ2w)(s−0 , t− s0)

)

+ µσ(t− s0)

(

∂

∂η
(ρ2w)(s+0 , t− s0)−

∂

∂η
(ρ2w)(s−0 , t− s0)

)

=

∫

s∈(−L,M)

µσ(t− s)
∂2

∂s2
(ρ2w)(s, t− s)

+

1
∑

j=0

d1−jµσ

ds1−j
(t− s0)

(

∂j

∂sj
(ρ2w)(s+0 , t− s0)−

∂j

∂sj
(ρ2w)(s−0 , t− s0)

)

+ µσ(t− s0)

(

∂

∂η
(ρ2w)(s+0 , t− s0)−

∂

∂η
(ρ2w)(s−0 , t− s0)

)

.

Adding the results obtained so far we have formulas for the velocity and acceler-
ation vectors associated with the curvature mollification applicable to the curve of
Example 1:

ν ′(t) = µσ ∗
(

γ̇ +
d

ds
(ρ2D1γ̇)

)

(t) +

∫

s∈(−L,M)

µσ(t− s)
∂

∂s
(ρ2w)(s, t− s)

+ µσ(t− s0)

(

(ρ2γ̈)(s+0 )− (ρ2γ̈)(s−0 )

)

+ µσ(t− s0)

(

(ρ2w)(s+0 , t− s0)− (ρ2w)(s−0 , t− s0)

)

,
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and

ν ′′(t) = µσ ∗
(

D1γ̇ +
d2

ds2
(ρ2D1γ̇)

)

(t) +

∫

s∈(−L,M)

µσ(t− s)
∂2

∂s2
(ρ2w)(s, t− s)

+
1

∑

j=0

d1−jµσ

ds1−j
(t− s0)

(

dj

dsj
(ρ2γ̈)(s+0 )−

dj

dsj
(ρ2γ̈)(s−0 )

)

+

1
∑

j=0

d1−jµσ

ds1−j
(t− s0)

(

∂j

∂sj
(ρ2w)(s+0 , t− s0)−

∂j

∂sj
(ρ2w)(s−0 , t− s0)

)

+ µσ(t− s0)

(

∂

∂η
(ρ2w)(s+0 , t− s0)−

∂

∂η
(ρ2w)(s−0 , t− s0)

)

.

From these we can construct, for example, the tangent indacatrix and curvature
vector associated with the curvature mollification in Example 1. In particular, these
formulas are particularly useful for numerical calculation.

The result of induction giving the full generalization of (49) for k ≥ 3 is now clear:

dkν

dtk
(t) = µσ ∗

dk

dsk
(γ + ρ2D1γ̇)(t) +

∫

s∈(−L,M)

µσ(t− s)
∂k

∂sk
(ρ2w)(s, t− s)

+

k
∑

j=3

dk−jµσ

dsk−j
(t− s0)

(

dj−1γ

dsj−1
(s+0 )−

dj−1γ

dsj−1
(s−0 )

)

(74)

+

k−1
∑

j=0

dk−jµσ

dsk−j
(t− s0)

(

dj

dsj
(ρ2γ̈)(s+0 )−

dj

dsj
(ρ2γ̈)(s−0 )

)

+

k
∑

j=0

dk−jµσ

dsk−j
(t− s0)

(

∂j

∂sj
(ρ2w)(s+0 , t− s0)−

∂j

∂sj
(ρ2w)(s−0 , t− s0)

)

+

k
∑

j=2

dk−jµσ

dsk−j
(t− s0)

(

∂j−1

∂ηj−1
(ρ2w)(s+0 , t− s0)−

∂j−1

∂ηj−1
(ρ2w)(s−0 , t− s0)

)

.

The only significant new terms appearing for k ≥ 3 are in the summation in (74) which
is a linear combination of “jumps” in the higher derivatives of γ with coefficients given
by pointwise values of complementary derivatives of the mollifier. These accumulate
of course due to the possible singularity of γ at s = s0 for derivatives of order greater
than one, starting with the weak curvature vector, but do not appear in the velocity
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and acceleration vectors of the curvature mollification ν, so play no role in the tangent
indacatrix ν ′/|ν ′| or curvature vector ~k = ν ′′/|ν ′|2 − (ν ′ · ν ′′)ν/|ν ′|4.

The values of ν, ν ′, ν ′′, and ~k associated with Example 1 may also be calculated
directly in a much simpler form as follows:

ν(t) = a

∫ 0

t−σ

µσ(t− s)

(

1− cos

(

t

a

)

, sin

(

t

a

))

ds

+ a

∫ t+σ

0

µσ(t− s)

(

−1 + cos

(

t

a

)

, sin

(

t

a

))

ds

= a

([
∫ 0

t−σ

µσ(t− s) ds−
∫ t+σ

0

µσ(t− s) ds

](

1− cos

(

t

a

))

, sin

(

t

a

))

.

= a

([
∫ σ

t

µσ(η) dη −
∫ t

−σ

µσ(η) dη

](

1− cos

(

t

a

))

, sin

(

t

a

))

.

ν ′(t) =

([
∫ σ

t

µσ(η) dη −
∫ t

−σ

µσ(η) dη

]

sin

(

t

a

)

− 2aµσ(t)

(

1− cos

(

t

a

))

,

cos

(

t

a

))

.

ν ′′(t) =
1

a

([
∫ σ

t

µσ(η) dη −
∫ t

−σ

µσ(η) dη

]

cos

(

t

a

)

− 4aµσ(t) sin

(

t

a

)

− 2aµ′
σ(t)

(

1− cos

(

t

a

))

,− sin

(

t

a

))

.

These values are relatively easy to approximate computationally as illustrated in
Figure 11 and Figure 12 for the case a = 1. The only delicate point is the apparent
singularity in the mollifier µσ near the boundary of the support at s = ±σ.

Continuing with the assumption a = 1, one sees immediately from the formulas
that ν(0) = γ(0) and ν ′(0) = γ′(0) = (0, 1). It may be observed also that ν = (ν1, ν2)
for −σ ≤ s, t ≤ 0 has first coordinate

ν1(t) =

[
∫ 0

t−σ

µσ(t− s) ds−
∫ t+σ

0

µσ(t− s) ds

]

(1− cos t)

=

[
∫ σ

t

µσ(η) dη −
∫ t

−σ

µσ(η) dη

]

(1− cos t)
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Figure 11: The curvature mollification of two concatenated circles of the same radius
as given in Example 1. Here the radius of the circular arcs is a = 1 and the mol-
lification parameter is σ = π/5. The green arcs are portions of the mollified curve
agreeing identically, both geometrically and in parameterization, with the circular
arcs of Example 1 for −π/2 + σ ≤ s = t ≤ −σ and σ < s = t ≤ π/2 − σ. The
thin black circular arcs of Example 1 are shown in comparison to the red arc of the
curvature mollification corresponding to −σ < s, t < σ though t is not an arclength
parameter for the curvature mollification on this interval.
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Figure 12: Example 1: Curvature associated with curvature mollification. On the
left is shown the entire plot of the curvature vector ~k associated with the curvature
mollification ν of Example 1. On the right a portion of the curvature mollification
is shown featuring the image of the parameter interval −σ < t < 0 along with the
evolute given by ν+~k. Certain curvature vectors ~k(t) are also indicated in the tangent
space of R2 at ν(t). Notice the evolute of the circular arc {ν(t) : −π/2+σ < t < −σ}
indicated in green is the single center of curvature {(1, 0)} where the nonsingular
evolute of ν emerges.

satisfying 0 < ν1 < 1− cos t and second component ν2 ≡ sin t. From this one can see
the point ν lies outside the circle {(x, y) : (x− 1)2 + y2 = 1} as well as in the fourth
quadrant. Consequently, the polar radius of the curvature mollification with respect
to the center (1, 0) of the initial circular arc of Example 1 for −σ ≤ s, t ≤ 0, gibven
by

q(t) = |ν(t)− (1, 0)|
satisfies q(−σ) = q(0) = 1 and q(t) > 1 for −σ < t < 0. In particular, there are

points ν(t) for t < 0 close to both q(0) and q(−σ) with numerical curvature |~k| < 1

and points ν(t) for some t < 0 with |~k| > 1. This observation is verifiable both
analytically and numerically; an illustration is given in Figure 12.

It is usual to assume a planar curve is given by a “regular” parameterization in
differential geometry in several senses by requiring

1. The coordinate functions are differentiable (at least two or three times).

2. The tangent vector does not vanish (thus allowing reparameterization by ar-
clength).
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3. The curvature vector does not vanish (so that among other things an orientation
is induced).

The parameterization of the curvature mollification in this case is interesting because,
while the original example curve γ is apriori parameterized by arclength and satis-
fies the other two usual regularity conditions piecewise with smooth non-vanishing
curvature except at the singular point γ(0) = (0, 0), the curvature mollification ν is
infinitely differentiable and regular in the second sense, but has vanishing curvature
at ν(0) = (0, 0). The fact that ~k(0) = (0, 0) also follows directly from the formulas
because, as one easily checks, ν ′′(0) = (0, 0).

Example 2: Starting with the curve Γ illustrated in Figure 2 for which γ has values

γ(s) =

{

(c, 0) + a(− cos(s/a), sin(s/a), −πa/2 < s ≤ 0
(−c, 0) + b(cos(s/b), sin(s/b)), 0 ≤ s < πb/2,

the curvature mollification ν : [−πa/2 + σ, πb/2− σ] → R2 satisfies

ν(t) ≡ γ(t) for −πa/2 + σ ≤ t ≤ −σ and σ < t < πb/2.

For t satisfying −σ < t < σ one finds

ν(t) =

∫ 0

t−σ

µσ(t− s)

[

(c, 0) + a

(

− cos
t

a
, sin

t

a

)]

ds

+

∫ t+σ

0

µσ(t− s)

[

(−c, 0) + b

(

cos
t

b
, sin

t

b

)]

ds

= (1− λ)

(

c− a cos
t

a
, a sin

t

a

)

+ λ

(

−c+ b cos
t

b
, b sin

t

b

)

where

λ = λ(t, σ) =

∫ t+σ

0

µσ(t− s) ds =

∫ t

−σ

µ(η) dη.

Noting that
∂λ

∂t
= µσ(t),

we see

ν ′(t) = (1− λ)

(

sin
t

a
, cos

t

a

)

+ λ

(

− sin
t

b
, cos

t

b

)

− µσ(t)

(

2c− a cos
t

a
− b cos

t

b
, a sin

t

a
− b− sin

t

b

)

(75)
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and

ν ′′(t) =
1− λ

a

(

cos
t

a
,− sin

t

a

)

− λ

b

(

cos
t

b
, sin

t

b

)

− 2µσ(t)

(

sin
t

a
+ sin

t

b
, cos

t

a
− cos

t

b

)

− µ′
σ(t)

(

2c− a cos
t

a
− b cos

t

b
, a sin

t

a
− b sin

t

b

)

. (76)

With the help of these explicit formulas it is relatively easy to examine the curvature
mollification of the curve in Example 2 numerically and to some extent analytically.
In particular, we can consider the curvature vector ~k(t) = ν ′′(t)/|ν ′(t)|2 − (ν ′(t) ·
ν ′′(t))ν ′(t)/|ν ′(t)|4. See Figure 13-Figure 14.

Figure 13: Curvature mollification for Example 2. Here we have chosen σ so the angle
subtended on the smaller circular arc at γ(σ) is π/5. The curvature mollification
appears to follow the original curve Γ very closely, though the curvature plot in
Figure 14 shows the curvature is actually fluctuating substantially. The two plots on
the right give successively closer views of the curves near the common point ν(0) =
γ(0) indicating the distinction between the image of ν and the image of γ.

Since a+ b = 2c, it is clear from the formula (75) for ν ′(0) that ν ′(0) = (0, 1). We
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also see from (76) that

ν ′′(0) =

(

1− λ

a
− λ

b
, 0

)

=

(

1

a
−

(

1

a
+

1

b

)

λ, 0

)

=

(

1

a
−

(

1

a
+

1

b

)
∫ σ

0

µσ(s) ds, 0

)

=

(

1

a
− 1

2

(

1

a
+

1

b

)

, 0

)

=

(

−1

2

(

1

b
− 1

a

)

, 0

)

with the first coordinate satisfying

−1

b
< −1

2

(

1

b
− 1

a

)

< 0

when b < a. In the special case a = b, we have Example 1 and ~k(0) = (0, 0), and the
numerical calculation suggests

lim
t→0

k2(t)

t
= 0

where ~k = (k1, k2). In fact, . . .
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Figure 14: Example 2: Curvature associated with curvature mollification. In the
middle is shown the plot of the curvature vector ~k associated with the curvature
mollification ν of Example 2. The curvature vector associated with the original curve
Γ is shown dashed. The values lie along a circle for −πa/2 < s < 0 and 0 < s < πb/2;
there is a jump discontinuity in the curvature of Γ at s = 0 from the circled point
(1/a, 0) to the circled point (−1/b, 0). Four additional points of nominal interest are
circled and close-up images are given on the left and right of the main plot. The points
~k(−σ) and ~k(σ) are the points at which the curvature of the curvature mollification

first deviates from the circular curvature image of Γ. The points ~k1 and ~k2 are near
points appearing to be singular in the initial plot. The close-up images at ~k1 and ~k2
illustrate the fact that the curvature vector depends smoothly on the parameter t.
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3 Generalizations

It should be emphasized that the construction of the curvature mollification above
depends essentially on the inclination angle ψ and is therefore, as it stands, a con-
struction only for planar curves. Furthermore, I do not know a natural generalization
of the inclination angle to curves of lower regularity than γ ∈ C1((−L,M) → R2),
so at least on the face of it, one is somewhat restricted in lowering the regularity
assumed above. On the other hand, there is an interesting example to which both
tangent mollification and curvature mollification apply.

Example 4 Consider the concatenated circles of the same radius parameterized by
γ : (−πa/2, πa/2) → R

2 with

γ(s) =

{

(a, 0) + a(− cos(s/a),− sin(s/a)), −πa/2 < s ≤ 0
(−a, 0) + a(cos(s/a), sin(s/a)), 0 ≤ s < πa/2.

(77)

This is a parameterization by arclength, and there is only one isolated point for
which the values averaged in the tangent and curvature mollifications cannot be
constructed. Consequently, the integrals defining those geometric mollifications are
well-defined. On the other hand, the natural class into which this parameterization
falls and with respect to which one can prove some kind of convergence is not entirely
clear. The mollifications in this case are easily seen to be singular at the singular point
of the original curve by elementary considerations. These remarks are illustrated in
Figure 15 and Figure 16.

Figure 15: Tangent mollification of a cusp determined by concatenated circles as given
by Example 4. The mollification itself preserves a cusp at ν(0) = (0, 0).
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Figure 16: Curvature mollification of a cusp determined by concatenated circles as
given by Example 4. This mollification also preserves a cusp at ν(0) = (0, 0) as
indicated in the close-up on the right.

We finally return to the observation that the constructions of tangent mollifica-
tion and curvature mollification are fundamentally distinct as presented above. In
principle, tangent mollification is defined for a larger class of curves, and curvature
mollification is not well-defined on curves of vanishing curvature in particular. On
the other hand, tangent mollification does not give the same result or represent any
kind of special case of curvature mollification with respect to curves where both are
defined. Nevertheless, it is natural to look for a kind of blending of the two geometric
mollifications which is well-defined on curves with vanishing curvature, reduces to
tangent mollification on straight lines, and gives curvature mollification on circular
arcs. This is possible using a variation on the Frenet formula(s) for planar curves.
We note however the the basic structure theorem for planar curves (essentially that
a curve is determined up to rigid motion using the Frenet formula by the curvature
function k = k(s)) does require non-vanishing curvature, and we are not using the
Frenet formula proper below.

Assume γ ∈ C2((−L,M) → R2 is an arclength parameterization. As outlined
above such a parameterization determines an inclination angle ψ ∈ C1(−L,M) nor-
malized without loss of generality by an initial condition ψ(0) = ψ0. Recall the
structure theorem for planar curves; see for example [dC76].

Theorem 11 Given k ∈ C2((−L,M) → (0,∞)), p0 ∈ R
2, and v0 ∈ S

1, there exists
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a unique γ ∈ C2((−L,M) → R2) satisfying







γ(0) = p0, γ̇(0) = v0

γ̈ = kN, Ṅ = −κγ̇
|γ̇| = |N| = 1.

When we have an apriori inclination angle, an alternative formulation suitable to our
geometric mollifications is possible.

Theorem 12 For each fixed s ∈ (−L,M) the system of equations











































dα
dη

= v, α(0) = γ(s)

dv
dη

= ψ̇(s) N, v(0) = γ̇(s)

dN
dη

= −ψ̇(s) v, N(0) = (− sinψ(s), cosψ(s))

|v| = |N| = 1

(78)

has a unique solution α ∈ C∞(R → R
2).

If γ̈(s) 6= 0 then ψ̇(s) 6= 0, and the unique solution of (78) parameterizes a circle and
is given explicitly by

α(η) = γ(s)+
1

ψ̇(s)
(− sinψ(s), cosψ(s))− 1

ψ̇(s)
(− sin[ψ(s)+ηψ̇(s)], cos[ψ(s)+ηψ̇(s)]).

If γ̈(s) = 0, the unique solution of (78) parameterizes a straight line and is given
explicitly by

α(η) = γ(s) + η(cosψ(s)), sinψ(s)).

Our construction blending tangent mollification and curvature mollification is given
by

ν(t) =

∫

s∈(−L,M)

µσ(t− s)α(s, t− s)

where α = α(η) = α(s, η) is the unique solution of (78). Again I will not state a
regularity theorem or consider the convergence of this kind of geometric mollification,
though in this case there are natural hypotheses leading to such theorems. Certainly
the construction applies to the curve with a corner of Example 3 and agrees identically
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with the tangent mollification in this case as illustrated on the right in Figure 5. Also,
this kind of geometric mollification leaves some interior portion of a long enough cir-
cular arc invariant. One final example suggests itself for application of this “blended”
geometric mollification.

Example 5 Given a > 0 consider γ : (−π/2,∞) → R2 by

γ(s) =

{

(0, a) + a(sin(s/a),− cos(s/a)), −πa/2 < s ≤ 0
(s, 0), s ≥ 0.

A third general construction we offer without proof involves adapting the “blended”
geometric mollification just described to curves in a higher dimensional ambient Rn.
We can take as a starting point what we will call the Frenet equations by which
we mean the collection of conditions































γ̇ = v, γ(0) = p0

v̇ = kN, v(0) = v0

Ṅ = −kv − τB, N(0) = N0

Ḃ = τN, B(0) = B0

B = v×N
|v| = |N| = 1.

(79)

In order to more or less clearly set the context we assume here the following:

1. γ ∈ C2((−L,M) → Rn) is either a given curve or a curve to be constructed
according to a structure theorem.

2. p0 ∈ R
n and v0,N0,B0 ∈ N

n−1 are fixed and given and {v0,N0,B0} is an
orthonormal set.

3. k, τ ∈ C0(−L,M).

If n = 3 and k > 0, the structure theorem for space curves [dC76], or what do Carmo
calls the fundamental theorem of the local theory of curves, asserts (79) has a unique
solution γ ∈ C2((−L,M) → R3). If n = 2 and one takes τ ≡ 0 and B ≡ 0 ∈ R2,
then a similar assertion holds as mentioned above. In certain constructions below,
we will use a variant of (79), namely (80) in Theorem 13 below, in order to construct
a geometric mollification of a given curve. It should be noted that in the context of
the ideas below the relevant variant of (79) is not properly the Frenet equations as
considered in the context of the structure theorem(s). To emphasize this point we note
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the condition k > 0 is included in the structure theorem for the simple reason that
uniqueness fails without it. The condition k > 0 also makes certain considerations
more straightforward, e.g., the definition of the principal normal vector, and is usually
presented as an aspect of the regularity of the curve. This condition, however, is set
aside in our variant (80) of (79). This allows the consideration of more general curves
but also entails some technical complication(s).

When n > 3 some additional assumption is required to make sense of the product
in the relation B = v × N. Though this situation is not our primary focus, one
possibility is the following: We assume a curve Γ ⊂ Rn is parameterized by a func-
tion γ ∈ C1((−L,M) → Rn) satisfying |γ̇| = 1 and endowed with a differentiable
frame field, denoted symbolically by F, so that {γ̇(s),N(s),F(s)} is an orthonormal
collection of vectors in Tγ(s)R

n satisfying the equations







γ̈ = kN

Ṅ = −kγ̇ − τF

Ḟ = τN.

In this case the ordered orthonormal basis {γ̇(s),N(s),F(s)} spans a three-dimensional
subsapce Vγ(s) of R

n and defines a cross product

(x1γ̇(s) + x2N(s) + x3F(s)) ×F (y1γ̇(s) + y2N(s) + y3F(s))

= (x2y3 − x3y2)γ̇(s)− (x1y3 − x3y1)N(s) + (x1y2 − x2y1)F(s)

on Vγ(s). For n ≥ 3 we take the relation B = v ×N of (79) to mean B = F and

F = v ×F N.

This interpretation/approach is also possible when n = 3, but one should be aware
that the frame basis {γ̇(s),N(s),F(s)} may induce a cross-product on R3 different
from the standard cross product.

Putting the construction below in the context of the mollification above, it may be
said that we are introducing essentially four different kinds of mollification to which
we can give the following names:

1. positional mollification,

2. tangent mollification,

3. curvature mollification, and
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4. helical mollification.

Positional mollification, though applicable to parametric curves componentwise, is
not properly a geometric mollification in the sense that the remaining three are. The
first two kinds of mollification are moreoever essentially different from the last two.
Curvature mollification as presented above is our primary subject of interest but will
be extended to a more general setting below and will also be presented as a special case
of helical mollification which is the main subject of the discussion below. Helical
mollification, moreover, does admit certain relations to positional mollification and
tangent mollification, and we will point out some of these relations. Finally, our
primary interest is restricted to the mollification of planar curves, i.e., the case n = 2,
and specifically Example 1-Example 4 and certain other examples with n = 2 arising
more or less incidentally.

Theorem 13 Let γ ∈ C1((−L,M) → Rn) parameterize a curve

Γ = {γ(s) : −L < s < M}

with |γ̇| ≡ 1. Given s0 ∈ (−L,M) and an orthonormal frame {γ̇(s0),N0,B0} and
constants k, τ ∈ R, the relations































α̇ = v, α(0) = γ(s0)
v̇ = kN, v(0) = γ̇(s0)

Ṅ = −kv − τB, N(0) = N0

Ḃ = τN, B(0) = B0

B = v ×N
|v| = |N| = 1

(80)

admit a unique solution α ∈ C∞(R → Rn).

We say the solution α from Theorem 13 parameterizes an adapted helix at γ(s0).
Such a solution depends on many parameters, but we will primarly be interested in
dependence on the arclength parameter η with respect to which the derivatives α̇, v̇,
Ṅ and Ḃ are computed and the starting arclength parameter s0 in relation to the
given curve Γ. Accordingly, we write α = α(s0, η) with

α̇(s0, η) =
∂

∂η
α(s0, η).

For n = 2 and n = 3, the proof of Theorem 13 is essentially a special case of the
proof of the structure theorem associated with (79). Furthermore, since our primary
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interest is in the case n = 2, we omit the details in all cases and simply give formulas
for the unique solution(s) in various cases. These will be useful for defining helical
mollification.

If k = 0, then the unique solution satisfies

α(s0, η) = γ(s0) + η γ̇(s0)

and parameterizes the tangent line to Γ at γ(0). If k 6= 0 and τ = 0, then the solution
of Theorem 13 satisfies

α(s0, η) = γ(s0) +
1

k
N0 −

1

k
(− sin(kη) γ̇(s0) + cos(kη) N0)

and parameterizes the tangent circle to Γ with center γ(s0) +N0/k. Notice there is
no requirement that k > 0 here. If κ, τ 6= 0 (and n ≥ 3)

α(s0, η) =
1

k2 + τ 2

[(

k2√
k2 + τ 2

sin
(√

k2 + τ 2 η
)

+ τ 2 η

)

γ̇(s0)

+ k

(

1− cos
(√

k2 + τ 2 η
)

)

N0

+ κτ

(

1√
k2 + τ 2

sin
(√

k2 + τ 2 η
)

− η

)

B0

]

.

In this case α parameterizes a helix in a three-dimensional subspace of curvature |k|
and torsion ±τ determined by the interaction of the constants k and τ with the choice
of frame vectors N0 and B0.

We can now take the base curve Γ featured in the statement of Theorem 13 under
some additional assumptions, including the existence of a weak curvature vector

D1γ̇ = (D1γ̇1, D1γ̇2, . . . , D1γ̇n),

as the subject of geometric mollification. More precisely, we assume Γ is endowed
with a differentiable adapted frame so that

{γ̇(s),M(s),C(s)}

is an orthonormal collection in Tγ(s)R
n, and there exist functions κ, τ ∈ L1

loc(−L,M)
satisfying the relations















D1γ̇ = kM

Ṁ = −kγ̇ − τC

Ċ = τM
C = γ̇ ×M
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almost everywhere.
When n = 3, γ ∈ C2((−L,M) → R3) and k = |γ̈| > 0 the vectors M and C

are the uniquely determined principal normal and binormal respectively. In this case
the functions k and τ are the uniquely determined curvature and torsion, and there
is only one mollification parameter, namely σ > 0. In other cases, especially when
γ ∈ C2((−L,M) → Rn) for some n ≥ 3 with intervals on which |γ̈| = 0, the function
τ will not be uniquely determined at all points. To the extent that different choices of
τ are possible, formula (81) below gives distinct mollifications for which the function
τ should be considered an additional mollification parameter. We do not explore the
conceivable results of varying τ in such cases.

For σ > 0 we define the helical mollification ν ∈ C∞((−L+ σ,M − σ) → Rn) by

ν(t) =

∫

s∈(−L,M)

µσ(t− s) α(s, t− s) (81)

where α = α(s0, η) is the adapted local helix given by Theorem 13 determined as
stated in the theorem by taking the orthonormal frame with

N0 = M(s0) and

B0 = B(s0)

and the constants k = k(s0) and τ = τ(s0). Naturally the latter relations are assumed
to hold almost everywhere.
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