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Chapter 1

The First Problem(s)

1.1 Mise en Scène: A List

We wish to model (mathematically) a volume of liquid in equilibrium, and
perhaps a place to start is by thinking about some everyday physical systems
typical of those we wish to model. One of the simplest would be a glass of
water sitting (vertically) on a table top. More generally, we could imagine
the glass is replaced with a more exotic shaped vessel, perhaps a flower vase.
The liquid could also be replaced with a different liquid, like mercury. Each
of these changes, it might be expected, will make a difference in our modeling.
In these cases we imagine the gravitational field of the earth should also play
an important role. It is natural to ask how the gravitational force/field will
be included in our mathematical model, and if we are being adventurous or
imaginative we might ask what would happen without it.

We start below to formally compile a list of mathematical structures rel-
evant to the modeling of these physical systems and many others. It may
come as no surprise that the observed surface of a volume of liquid in equilib-
rium can be modeled, at least to some degree of accuracy, by a mathematical
surface, and in some sense our primary interest will be in the shape of this
surface which we will generally denote by S. In technical language S is called
the free surface interface or free surface for short. Observation of even
the simple systems mentioned above suggests there is something nominally
mysterious about how the surface of the liquid “curves” or bends at the
edges. Eventually, we attempt to capture this mysterious behavior in terms
of various “energies” in our model. See conditions/properties 6 and 7 of the
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6 CHAPTER 1. THE FIRST PROBLEM(S)

list in section 1.3 below.
In the physical systems we have mentioned above the surface of the liquid

volume actually has at least two pieces or two different kinds of pieces. To
explain this more carefully, but still in rather general terms, let us imagine
that a volume of liquid is modeled by an open subset V of three dimensional
Euclidean space R3. The surface S, or free surface interface, mentioned above
is intended to model the surface separating the liquid of the volume from a
complementary volume modeled somewhere in R3\V. We might expect, at
least at first, this complementary volume to be empty.1 Careful consideration
of our environment here on the surface of planet Earth suggests that we
rarely encounter truly empty space. What passes for everyday empty space
on planet Earth is mostly some mixture of gasses we can conveniently, though
perhaps rather inaccurately, refer to as “the atmosphere.” The fact that this
region of physical space is not empty, consists of some kind of “vapor,” and
supports a vapor pressure in particular is actually crucial physically to the
appearance of the physical surface modeled by S. In our model however,
for most practical purposes, we can imagine this complementary set to be
empty.

The other piece of the “surface” of the water in a glass is the surface
separating the liquid of the volume from the glass itself. This surface is
“under the surface” of the liquid so to speak and might be imagined to have
a very different nature. Its shape, for example is not so mysterious: It is
determined by the shape of the glass or more generally the vessel. It turns
out that this wetted region on the vessel also plays an important role in the
modeling and should be included. In our model we will have the boundary
of V containing S and what we will refer to as the wetted region generally
denoted by W:

∂V = S ∪W ∪ Γ.

The set Γ models the set where the free surface S meets the wetted region
W and is called the contact line, though obviously Γ is usually not geomet-
rically an actual (straight) line. Hopefully, at least in some instances, the
region between the observed physical free surface and the wetted region can
be modeled by a (smooth) curve.

It may occur to you (and it certainly occurs to me) that the modeling of
a liquid volume in equilibrium might be substantially simpler if there were

1That is, we might expect some of the physical space outside the physical liquid volume
to contain no physical matter. (I’m not talking about the mathematical empty set here.)
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only free surface and liquid volume with

∂V = S.
Mathematicaly, of course, one always wishes to consider simple (and espe-
cially the absolute simplest) special cases. With gravity, on the earth, one
just doesn’t run into this case of a free floating liquid volume very often.
Free floating liquid volumes tend to drop down in the gravity field and hit
something, for example, the earth itself. In outer space (I hear) one can see a
pretty good approximation of a free floating drop in equilibrium. Eventually
when we have developed our mathematical model for equilibrium capillary
surfaces, we will be able to adapt our model pretty easily and directly to
this case with zero gravity and prove a theorem, called Alexandrov’s theo-
rem, which asserts S should be a spherical surface in this case. This is in
pretty good agreement with what people who might happen to live in an
environment with little or no gravity might see.

With this general introduction, I will attempt two final comments about
the list below before comencing with the details. First, the numbering is
purely for reference and is in no way canonical. In fact, very few people
approach the mathematical modeling of capillary surfaces even in the roughly
axiomatic manner I’ve taken up below. Each condition or property should
be considered individually and critically compared to observations with the
expectation that more accurate conditions and mathematical constructions
may be required for better modeling. In addition to that, I’ve chosen some
conditions specifically because they simplify the exposition. I do intend that
the result is a theory of mathematical capillarity which captures/models
reasonably well some physical systems, but it should also be kept in mind
that the list is not canonical in the sense that many equilibrium capillary
systems are modeled using slight modifications of the list below. This point
is also discussed in more detail below as the list takes shape.

First elements

In some generality one may model a physical liquid volume in equilibrium
by an open connected set V ⊂ R

3 satisfying the following conditions:

1. (compactness) The closure V is compact.

2. (nature) The boundary ∂V can be written as a disjoint union

∂V = S ∪ Γ ∪W
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with

a. S is a smooth surface embedded in R3 with smooth boundary Γ,

b. Γ is a smooth curve embedded in R3 with components

Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γk,

c. W can be written as a disjoint union

W = W0 ∪W1 ∪W2 ∪Wℓ ∪ Γk+1 ∪ Γk+2 ∪ · · · ∪ Γk+m

where each Wj is a smooth surface embedded in R
3 with smooth

boundary so that W is a piecewise smooth surface2 with boundary
Γ. Generally, the integers k, ℓ and m and the ordering of these
various pieces have no particular physical meaning, but should
be specified for each physical system being modeled. For flexibil-
ity, mathematical consistency, and convenience we generally allow
some (or many) of these sets to be empty, but in a particular
modeling application the nonempty representatives are obviously
those of interest. The physical points to keep in mind, however,
are that Γ, and hence Γ0, Γ1, . . . , Γk, models the contact line and
Γk+1, Γk+2,. . . Γk+m are used to model internal wetted singular
curves where smooth wetted regions meet.

3. (technical) The disjoint surfaces S and W each extend smoothly across Γ
to surfaces S̃ and W̃ intersecting transversally along

S̃ ∩ W̃ = Γ.

That is, for each P ∈ Γ = ∂S = ∂W there exists an open set VP ⊂ R3

and functions3

X, Y ∈ C∞(B1(0) → R
3), (1.1)

with

2Some technicalities of the definition of piecewise smooth surface with boundary we
have in mind here will be addressed below, and most importantly illustrative examples
will be given in detail.

3See Appendix A for some notes on the notation used here.
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a.

A =
∂X

∂x1
× ∂X

∂x2
6=




0
0
0


 , (1.2)

b.

B =
∂Y

∂x1
× ∂Y

∂x2
6=




0
0
0


 , (1.3)

c.

A× B 6=




0
0
0


 , (1.4)

d. X(0) = Y (0) = P ,

e. X(B1(0)) = S̃ ∩ VP , and

f. Y (B1(0)) = W̃ ∩ VP .

Note(s): The cross product appearing in (1.2), (1.3), and (1.4) is the usual
one so that if A = (a1, a2, a3)

T and B = (b1, b2, b3)
T as in (1.4) then

A× B =




a2b3 − a3b2
−(a1b3 − a3b1)
a1b2 − a2b1


 . (1.5)

Quite often we will ignore transposes and consider a particular vector as
a column vector or a row vector interchangeably without comment. For
example, as a general rule R

2 and R
3 denote the real vector spaces of row

vectors so that X and Y in (1.1) as well as the vectors ∂X/∂x1, ∂X/∂x2,
∂Y/∂x1, and ∂Y/∂x2 in (1.2) and (1.3) should nominally all be row vectors,
but the equalities in (1.2), (1.3), and (1.5) suggest the consideration of column
vectors. This may be viewed as a slight abuse of notation. Also when I write
A = (a1, a2, a3)

T and B = (b1, b2, b3)
T as I have done above, I am simply

emphasizing that A and B are considered as column vectors in the definition
(1.5).

The technical conditions given in (1.2) and (1.3) are associated with the
assumption that S and W are regular surfaces up to and including their
surface boundaries. Notice that surface boundaries are, in principle, slightly
different from topological boundaries like ∂V. If, however, S̃ is considered as
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a topological space, then ∂S is the topological boundary of S considered as
a topological subspace of S̃.

The technical condition (1.4) is associated with the assumption that S and
W meet at a nonzero and non-π angle, very often unambiguously measured
within the volume V modeling the liquid. See however Exercise 1.2 below.

Figure 1.1: Modeling a volume of liquid (blue) in a bowl.

Configurations

The surface W in the discussion above models the region on a physical rigid
object in contact with the liquid. We will model such objects, generally
considered rigid and fixed and often called “support structures,” in more
detail below. The surface S models the surface of the liquid not in contact
with any rigid support structure, and is variously known as the free surface
interface or the (generalized) meniscus. Figure 1.1 illustrates the kind of
situation we have in mind. Here we imagine a parabolic bowl with wetted
surface satisfying z = x2 + y2 < 1 with the volume of liquid capped above
by an axially symmetric meniscus S. Assuming the presence of a downward
gravity field, a primary objective in the study of mathematical capillarity is
to determine the shape and other properties of the surface S.

We refer to a volume V with designated boundary sets S and W satisfy-
ing the natural and technical conditions 1-3 above as a configuration. On
the one hand, the basic conditions 1-3 allow some “exotic” configurations
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one might wish to exclude. On the other hand, it is also natural to con-
sider certain more general configurations excluded by conditions 1-3. One
important direction of generalization is represented by the consideration of
configurations with less regularity. In a certain sense the main text on the
subject of mathematical capillarity [Fin86] showcases and is focused on situ-
ations where the contact line Γ is not a smooth curve. See comments at the
end of the next section below.

Another important generalization involves attempts to model liquids, like
helium at extremely low temperatures, which are inadequately modeled un-
der the transversality condition (1.4). On the other hand, the restrictive
conditions 1-3 provide a simple well-defined framework from which one can
attempt these more complicated generalizations as well as a generalization
which, in a certain sense, represents the focus of this text, namely attempt-
ing to model the configurations associated with the equilibrium of floating
bodies in which the natural assumption that the wetted region is on a fixed
rigid “support” structure must be relaxed or generalized.

1.2 Capillary Tube(s)

Conditions 1-3 do allow certain important configurations (or at least some
versions of them) including that associated with the insertion of a circular
tube into a bath of liquid under the influence of gravity. This may be called
the circular capillary tube problem, and it is chosen as a kind of starting
point (in some form) by Finn [Fin86]. Our version of the problem may be
more properly referred to as the circular capillary tubes problem or just
the capillary tubes problem if we happen to be restricting attention to a
circular container/tube geometry as we now describe.

We begin here with the rigid support structure referred to informally in
the previous section. Let a, R, d0, and t0 be positive real numbers with

0 < a < a+ t0 < R.

Let

C = {(x, y, z) : x2 + y2 ≥ R2, z ≥ 0} ∪ {(x, y, z) : z ≤ 0}

and

T = {(x, y, z) : a2 ≤ x2 + y2 ≤ (a + t0)
2, z ≥ d0}.
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Together R = C ∪ T represents an excluded region modeling the rigid sup-
port structure consisting of a solid cylindrical tube (modeled by T ) and a
container (modeled by C). The complementary open region

E = R
3\(C ∪ T )

provides an environment for the liquid volume V we wish to consider in this
elementary configuration. Figure 1.2 illustrates the rigid support structure
described above.

Figure 1.2: The environment for a capillary meniscus determined by a rigid
structure. Here we have a circular cylindrical outer container C of radius
R with closed bottom. Into the cavity (or bath region) determined by C
descends a solid circular cylinder with inner radius a and thickness t0. The
tube descends to a depth d0.

We consider then a model volume V satisfying conditions 1-3 above and

V ⊂ E, S ⊂ E, W ⊂ ∂(C ∪ T ).
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The technical condition 3 requires the free surface interface S and the wetted
region W to have extensions along their surface boundaries. It is often the
case that the rigid structure associated with the particular configuration
under consideration suggests a kind of natural extension of the wetted region
W. For example, taking S = S0 ∪ S1 where

S0 = {(x, y, u(x, y)) : (x, y) ∈ Ba(0)},
S1 =

{
(x, y, u(x, y)) : (x, y) ∈ BR(0)\Ba+t0(0)

}
,

and
u ∈ C∞(U), U = Ba(0) ∪ [BR(0)\Ba+t0(0)] (1.6)

is a positive function with

u∣∣
∂Ba(0)

> d0 and u∣∣
∂Ba+t0

(0)

> d0,

we may consider a volume V given by

V = {(x, y, z) : (x, y) ∈ U, 0 < z < u(x, y)}
∪ {(x, y, z) : a2 ≤ x2 + y2 ≤ (a+ t0)

2, 0 < z < d0}.
Notice that in this case we can write

Γ = ∂S = ∂S0 ∪ ∂S1 = Γ0 ∪ Γ1 ∪ Γ2

with Γ0 = ∂S0 = {(x, y, u(x, y)) : x2 + y2 = a2} and

Γ1 = {(x, y, u(x, y)) : x2 + y2 = (a+ t0)
2} and (1.7)

Γ2 = {(x, y, u(x, y)) : x2 + y2 = R2}; (1.8)

W = W0 ∪W1 ∪W2 ∪W3 ∪W4 ∪ Γ3 ∪ Γ4 ∪ Γ5

with

W0 = {(x, y, z) : x2 + y2 = a2, d0 < z < u(x, y)}, (1.9)

W1 = {(x, y, z) : x2 + y2 = (a+ t0)
2, d0 < z < u(x, y)}, (1.10)

W2 = {(x, y, z) : x2 + y2 = R2, 0 < z < u(x, y)}, (1.11)

W3 = {(x, y, d0) : a2 < x2 + y2 < (a + t0)
2}, (1.12)

W4 = {(x, y, 0) : x2 + y2 < R2}, (1.13)

Γ3 = {(x, y, d0) : x2 + y2 = a2}, (1.14)

Γ4 = {(x, y, d0) : x2 + y2 = (a + t0)
2}, and (1.15)

Γ5 = {(x, y, 0) : x2 + y2 = R2}. (1.16)
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Notice conditions 2b and 2c in relation to these sets. Note that k = 2, ℓ = 4,
and m = 3. See also Exercises 1.3-1.5.

Figure 1.3: The free surface interfaces associated with the insertion of a
capillary tube in a bath of liquid—the capillary tubes problem. In this case
the inner tube interface S0 is bounded by a circle, and the outer (bath)
interface S1 is bounded by two circles. A good question to ask at this point
might be: Do we know these interfaces must be axially symmetric? We will
encounter a theorem below giving the answer.

1.3 Energies

The previous section gives general geometric conditions defining what we
have called a “capillary configuration,” but naturally some additional crite-
rion is needed to pick out from among all possible capillary configurations
one corresponding to, or which can be reasonably considered to model, a
physical capillary configuration that is actually observed. The basic addi-
tional criteria was suggested by Carl Gauss in 1830, though Thomas Young
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and Pierre Simon Laplace had obtained a primary consequence of the basic
criterion without the benefit of having it to start what may be considered the
beginning of the study of mathematical capillarity in 1805 and 1806. Gauss’
idea was that the observed capillary configuration should be one minimizing
a certain “potential” energy, perhaps subject to some natural additional con-
straints as described below. In terms of our general geometric conditions the
energy associated to an elementary capillary configuration takes the form

E =

∫

S
σ −

∫

W
σβ +

∫

V
Υ (1.17)

where the last term is the conventional potential energy associated with the
position in space of the volume of liquid V subject to whatever potential fields
Υ, for example a potential field due to gravitational attractions perhaps,
happen to be present, and the first two integral terms are distinctive to
(mathematical) capillarity. The first is called the free surface energy and
is associated with the formation of an interface separating the liquid from its
vapor. Notice that if σ is a constant function on the surface, then the free
surface energy becomes

σ

∫

S
1 = σ area(S)

which is proportional to the area of the free surface. That is, the amount of
energy required to form a particular free surface interface is proportional to
the area of that free surface. The constant of proportionality σ in this case
is called surface tension, which of course has physical dimensions

energy

area
=

force × length

area
=

force

length

or symbolically (ML/T 2)/L = M/T 2. Consequently, it is also natural to
integrate σ along a curve Γ within the free surface S to obtain a force. If
one imagines the free surface as a kind of “membrane” holding in the volume
V and with a cut along Γ, then this calculated force may be imagined to be
that required to hold the membrane together along the cut. In this way also
we see that while the constant σ is called surface tension, it is more properly
a tension per length or a kind of tension/force density.

More generally, one may encounter a surface tension function in more
complicated (and potentially more accurate modeling). From the mathemat-
ical point of view, this function is most easily considered spatially dependent
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surface tension temperature

75.64 0
71.97 25
67.91 50
58.85 100

Table 1.1: The surface tension of water given in dynes per centimeter (or
equivalently millinewtons per meter). Temperatures are given in degrees
Celsius.

on the free surface so that we write σ : S → (0,∞) with values always
assumed to be positive. When the physical mechanism of the modeling is
contemplated, however, it is natural to imagine σ primarily dependent on
other (varying) physical parameters on the surface, most notably (or com-
monly) temperature and/or some kind of density but very likely some other
kind of varying molecular property like a chemical concentration for exam-
ple. For the presentation here we will essentially always make the assumption
that the surface tension σ is a constant function with physical origin, to the
extent we contemplate it, determined simply by the liquid one happens to be
modeling. Thus, water will have associated with it a different surface tension
“constant” than mercury, though if you look up these numbers in a table,
then at least a temperature dependence will usually be noted. For example,
one can find the values given in Tables 1.1 and 1.2. The values in such tables
should be taken as approximate, and in fact reported values of the surface
tension for a given liquid may be found to vary substantially. One possibility
is to view this diversity of opinion as resulting from the presence of various
unavoidable contaminants with significant effect on the value. This is the
usual explanation. It may be noted in addition, that the reported value is
always obtained indirectly through some “method,” and the reported value
may depend on the method or how it is applied. We will discuss some of the
relevant methods below. Finn certainly viewed the existence of a surface ten-
sion constant as phenomenological, that is representative of the possibility of
producing reasonable quantitative and qualitative prediction—suggestive of
actual physical existence but with the actual physical existence nevertheless
unverified—and perhaps impossible to verify directly.

The second term in the capillary energy (1.17) is also important in deriv-
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substance surface tension temperature

acetone 27.70 20
blood 55.89 22

ethyl alcohol 22.27 25
40% ethyl alcohol 29.63 25
11.1% ethyl alcohol 46.03 25
helium (superfluid) 0.37 -273
nitrogen (liquid) 8.85 -196
oxygen (liquid) 13.2 -182

mercury 487.00 15
55% sucrose 76.45 20

Table 1.2: The surface tension of various liquids given in dynes per centimeter
(or equivalently millinewtons per meter). Temperatures are given in degrees
Celsius. Percentages are relative to the indicated solute in water.

ing the main consequences related to the modeling of mathematical capillar-
ity as we will see below. This term, given in the case where σβ is a constant
by

−σβ area(W),

is called the wetting energy. When σ and β are both constant, β is called
the adhesion coefficient. As we will see below, it is at least somewhat
natural to assume −1 < β < 1 or at least −1 ≤ β ≤ 1 though certain
underlying mechanisms, both physical and mathematical, associated with
this assumption may be viewed as slightly obscure.

Even when the surface tension σ is considered constant, it is often nec-
essary to consider β : W → (−1, 1) to be some function with values varying
spatially with respect to various spatial, physical, and chemical (and whateer
other kind of) inhomogeneities. Roughly speaking, variations in the material
of the container (or rigid structures determining the modeling of the geomet-
ric environment E considered above) or variations in the attractions between
the molecules of the liquid and the molecules of the rigid structures may ne-
cessitate variations in the value of β. In practice, the adhesion coefficient is
generally considered to be piecewise constant and constant with respect to a
portion of the rigid structures of a given material in particular. For example
in the capillary tubes problem with initial geometric structure given above,
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substrate contact angle

glass 0◦-30◦

quartz 25◦-45◦

aluminum 15◦-25◦

copper 80◦-90◦

teflon 100◦-110◦

silicon 20◦-30◦

nylon 50◦-70◦

Table 1.3: The contact angle/adhesion coefficient of water given in degrees.
Note particularly that while all the data above is summarized from various
published values and quartz should be a particular kind of glass, e.g., a
typical labaroatory graduated cylinder is made of quartz, there is an obvious
inconsistency in the first two ranges of values.

if the portion of the container holding the liquid bath into which the tube is
dipped is plastic and the tube itself is glass, then the usual modeling assump-
tion is that β takes one constant value β1 on W2 and a different constant
value β0 on the surface W0 ∪ W1 modeling the wetted surface on the glass
tube.

Reported values of adhesion coefficients vary much more wildly than those
of surface tension with inevitable (and so far unmeasurable) issues of “con-
tamination” viewed as the main source of inaccessibility, though methods
of measurement certainly also play some role. From the simplistic (phe-
nomenological) point of view adopted here the surface tension “constant” β
is dependent on the liquid involved and the substance of the solid support
structures contacted by the liquid, usually referred to as the substrate. Re-
ported values are usually given in terms of the contact angle γ = cos−1 β
as indicated in Tables 1.3 and 1.4.

Before we attempt to derive some of the main consequences of energy
minimizaiton, consider a common form of the potential energy term and some
elementary observations about the capillary tubes problem. Let us model
the gravitational force near the surface of the earth as constant, that is, a
“point mass” of magnitude m > 0 experiences a vertical downward force mg
where g > 0 is taken to be approximately 9.8 m/s2. Under this assumption
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liquid substrate contact angle

ethanol copper 10◦-25◦

ethanol quartz 0◦-5◦

glycerine teflon 10◦-25◦

mercury glass 120◦-140◦

mercury quartz 130◦-140◦

acetone quartz 2◦-10◦

Table 1.4: Published contact angle ranges for various liquid/substrate com-
binations.

we partition the volume V associated with a capillary configuration4 into
volumes V1,V2, . . . ,VN with each Vj satisfying

Vj ⊂ Br(pj) = {x = (x1, x2, x3) : |x− pj| < r}

where r > 0 is some (small) constant and pj is a point in the capillary envi-
ronment E. We assume further the liquid under consideration has constant
density ρ. If coordinates are chosen so that U0 = {x = (x1, x2, x3) : x3 > 0}
models the region above the surface of the earth Σ = {x = (x1, x2, x3) : x3 =
0} with E ⊂ U0 and Σ taken to be at zero gravitational potential, then we
can associate to each volume Vj the approximate potential energy

ρ g vol(Vj) zj =

∫ zj

0

(∫

Vj

ρ

)
g dx3

where zj is the third component of the point pj since

∫

Vj

ρ = ρ vol(Vj)

is the mass associated with the volume Vj. An infinetesimally correct ap-
proximation of the gravitational energy in (1.17) is thus given by the sum

N∑

j=1

ρ g vol(Vj) zj = ρ g
N∑

j=1

zj vol(Vj)

4Recall basic conditions 1 and 2.
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in the sense that ∫

V
Υ = ρ g lim

‖P‖→0

N∑

j=1

zj vol(Vj)

where P = {V1,V2, . . . ,VN} denotes the partition of V and

‖P‖ = max
1≤j≤N

diam(Vj).

The limiting value, since the region V is an open set with well-behaved piece-
wise smooth boundary by assumption, is

∫

V
Υ = ρ g

∫

V
z (1.18)

where z now denotes the third component of the spatial variable within V.
See Exercise 1.6.

Thus specializing to capillary configurations modeling physical systems in
a vertical gravitational potential field of acceleration g and involving a single
connected liquid volume V of density ρ, the simple energy (1.17) becomes

E =

∫

S
σ −

∫

W
σβ + ρ g

∫

V
z. (1.19)

We assume also a constant surface tension σ so minimization of E is equivalent
to minimization of Eσ = E/σ or

Eσ = area(S)−
∫

W
β + κ

∫

V
(1.20)

where κ = ρg/σ is called the capillary constant and we are assuming β
may be spatially dependent primarily for the purpose of allowing β to be
piecewise constant corresponding to the various pieces of the wetted region
W on materially different portions of the container surface.

At this point also let us consider the special case of the capillary tubes
problem contemplated in section 1.2. It will be observed that essentially no
no notational changes are needed to adapt the designations of S, W, and
V in that case to a somewhat more general situation in which the inner
vertical wall of the tube, the outer wall of the tube and the vertical wall of
the container project onto the boundaries of three general simply connected
nested domains

Ω⊂⊂Ω1 ⊂⊂Ω2.



1.3. ENERGIES 21

In the case of a circular tube concentric with a circular container considered
in section 1.2 one has Ω = Ba(0), Ω1 = Ba+t0(0), and Ω2 = BR(0). In
general, the domains Ω and Ωout = Ω2\Ω1 will be of particular interest, and
we consider a pair of meniscus interfaces S0 and S1 determined as the graph
of a function u : U → R where U = Ω ∪ Ωout and u ∈ C∞(U).

Under this assumption the gravitational energy from (1.17) expressed in
a particular case in (1.18) may be further expressed in terms of u as

∫

V
Υ = ρ g

∫

Ω

(∫ u

0

z dz

)
+ ρ g

∫

Ω1\Ω

(∫ d0

0

z dz

)

+ ρ g

∫

Ωout

(∫ u

0

z dz

)

=
ρ g

2

∫

Ω

u2 +
ρ g

2

∫

Ωout

u2 +
ρ g

2
area(Ω1\Ω) d20.

Note that the last term

Cg =
ρ g

2
area(Ω1\Ω) d20

remains constant corresponding to a fixed volume of liquid in the container
directly under the rigid structure of the tube for all of these configurations.

Under the same assumptions, the free surface energy becomes
∫

S
σ = σ

∫

Ω

√
1 + |Du|2 + σ

∫

Ωout

√
1 + |Du|2

where

Du =

(
∂u

∂x
,
∂u

∂y

)

is the gradient of u and
√
1 + |Du|2 is the corresponding scaling factor for

area obtained, for example, as | det[(DX)TDX ] | from the parameterization
X(x, y) = (x, y, u(x, y)). Note that we have used the regularity assumption
(1.6) here or at least that u ∈ C1(U) where U = Ω ∪ Ωout.

Assuming the adhesion coefficient β is piecewise constant so that

β = β(x) =





β0, x ∈ W0

β1, x ∈ W1

β2, x ∈ W2,
β3, x ∈ W3,
β4, x ∈ W4,

(1.21)
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he wetting energy takes the form

−
∫

W
σβ = −σβ0

∫

∂Ω

(u− d0)− σβ3[area(Ω1)− area(Ω)]

− σβ1

∫

∂Ω1

(u− d0)− σβ4 area(Ω2)

− σβ2

∫

∂Ω2

u.

For the identification/organization of W = W0∪W2∪W1∪W4∪W3, labeling
Figure 1.2 based on (1.9)-(1.13) may be helpful; see Exercise 1.3.

As long as we remain within this family of two-graphical-meniscus config-
urations, the regions on the bottom of the tube and the floor of the container
remain entirely wetted for all configurations under consideration correspond-
ing to the simple additive constants

Ch = −σβ3[area(Ω1)− area(Ω)]− σβ4 area(Ω2).

Similarly, the integral terms

Cv = σβ0

∫

∂Ω

d0 + σβ1

∫

∂Ω1

d0 = σβ0d0 area(Ω) + σβ1d0 area(Ω1)

may be considered constant corresponding to always wetted “virtual vertical
cylinders” between z = 0 and z = d0 over ∂Ω and ∂Ω1. By these consider-
ations, the remaining variable terms (and hence the important terms in the
wetting energy) take the form

−σβ0
∫

∂Ω

u− σβ1

∫

∂Ω1

u− σβ2

∫

∂Ω2

u,

and only the piecewise constant values β(x) = βj for x ∈ Wj , j = 0, 1, 2 in
(1.21) play a role.

Collecting the various expressions for the energies in terms of the meniscus
functions u the total capillary energy becomes

E = σ

∫

Ω

√
1 + |Du|2 + σ

∫

Ωout

√
1 + |Du|2

− σβ0

∫

∂Ω

u− σβ1

∫

∂Ω1

u− σβ2

∫

∂Ω2

u

+
ρ g

2

∫

Ω

u2 +
ρ g

2

∫

Ωout

u2 + Cg + Ch + Cv. (1.22)
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Dividing by σ and subtracting the constants we arrive at a simpler energy
quantity

F = Eσ − (Cg + Ch + Cv)/σ

=

∫

Ω

√
1 + |Du|2 +

∫

Ωout

√
1 + |Du|2

− β0

∫

∂Ω

u− β1

∫

∂Ω1

u− β2

∫

∂Ω2

u

+
κ

2

∫

Ω

u2 +
κ

2

∫

Ωout

u2. (1.23)

the minimization of which is equivalent to the minimization of E .

================
Pause in updates Thursday September 12, 2024
================

In most cases, the capillary energy is augmented with a secondary con-
dition associated with the assumption that a given volume of liquid is under
consideration. In the capillary tubes problem as we have formulated it, such
a volume constraint condition can take the form

∫

V
1 =

∫

Ω

u+ d0[area(Ω1)− area(Ω)] +

∫

Ωout

u = V (1.24)

where V is a prescribed constant. As noted above the volume of liquid in
the container directly below the tube is fixed for all configurations under
consideration so that (1.24) may be expressed in the form

∫

Ω

u+

∫

Ωout

u = CV (1.25)

where
CV = V − d0[area(Ω1)− area(Ω)]

is a given constant. It is convenient to denote the admissible class of all
configurations C having the basic geometric properties described above and
satisfying (1.25) by A. It is also convenient to let

ṽol : A → R by ṽol[C] =
∫

Ω

u+

∫

Ωout

u
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give the quanity on the left in (1.25) for these particular configurations so

that ṽol[C] = CV is equivalent to vol[V] = V .
Thus, at the suggestion of Gauss, we seek to find a configuration C0 ∈ A

determining and determined by a meniscus function

u : U = Ω ∪ Ωout → (0,∞)

for which

E [C0] ≤ E [C] (1.26)

for all other configurations C ∈ A, that is

E [C0] = min
C∈A

E [C]. (1.27)

The family of configurations with prescribed volume is, generally speaking,
still very large, and in order to bring the techniques of calculus to bear
on a minimization condition like (1.26) or (1.27) one may focus on a finite
dimensional subfamily of admissible configurations.

As an illustration of a one parameter family, let us imagine a meniscus
function u0 : U = Ω∪Ωout → (0,∞) is given and is assumed to correspond to
(and determine) a minimizing configuration C0 ∈ A. For h a small number
satisfying an estimate |h| < ǫ consider the competing meniscus function
u : U = Ω ∪ Ωout → (0,∞) given by

u(x, y) =

{
u0(x, y) + h, (x, y) ∈ Ω
u0(x, y) + k, (x, y) ∈ Ωout

(1.28)

where k = k(h) is chosen so that (1.25) holds, that is

∫

Ω

(u0 + h) +

∫

Ωout

(u0 + k) = CV

or

k = − area(Ω)

area(Ωout)
h

since u0 ∈ A and consequently

∫

Ω

u0 +

∫

Ωout

u0 = CV .
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It follows that for ǫ > 0 small enough (see Exercise 1.7) one obtains for each
h with |h| < ǫ an admissible Ch ∈ A with

E [C0] ≤ f(h) = E [Ch] for − ǫ < h < ǫ.

If the function f : (−ǫ, ǫ) → R is differentiable, then there must hold

f ′(0) =
d

dh
E [Ch]∣∣

h=0

= 0

as a necessary condition of minimization from calculus. In fact, f is differ-
entiable, and

f ′(0) = σ

[
−β0 length(∂Ω)−

dk

dh
[β1 length(∂Ω1) + β2 length(∂Ω2)]

+κ

(∫

Ω

u0 +
dk

dh

∫

Ωout

u0

)]

= σ

[
−β0 length(∂Ω) +

area(Ω)

area(Ωout)
[β1 length(∂Ω1) + β2 length(∂Ω2)]

+κ

(∫

Ω

u0 −
area(Ω)

area(Ωout)

∫

Ωout

u0

)]
. (1.29)

See Exercise 1.8. Notice the derivatives of the free surface energy terms in
this calculation are zero.

The condition f ′(0) = 0 with f ′(0) calculated above yields an interesting
formula for the quantity ∫

Ω

u0

which is sometimes referred to as the lifted volume. Specifically, we find a
necessary condition on the lifted volume is given by
∫

Ω

u0 =
area(Ω)

area(Ωout)

(∫

Ωout

u0 −
1

κ
[β1 length(∂Ω1) + β2 length(∂Ω2)]

)
.

+
β0
κ

length(∂Ω) (1.30)

See Exercises 1.8, 1.9, and 1.10. Roughly speaking (1.30) determines the
lifted volume inside the capillary tube as a function of the adhesion (coef-
ficient) on the inner boundary of the tube relative to an “outer height” of
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the liquid u0 in Ωout outside the circular tube. We will make this expla-
nation more precise later, but notice that under what might be called the
Archimedean bath hypothesis that β1 = β2 = 0 and u0 ≡ uout (a positive
constant) on Ωout the term

area(Ω)

area(Ωout)

(∫

Ωout

u0 −
1

κ
[β1 length(∂Ω1) + β2 length(∂Ω2)]

)
.

of (1.30) becomes simply uout area(Ω) so that

∫

Ω

u0 − uout area(Ω)

may be immediately interpreted as the volume inside the tube above the level
uout.

As noted above, the condition

d

dh
E [Ch]∣∣

h=0

= 0

is equivalent to
d

dh
F [Ch]∣∣

h=0

= 0,

and in fact it may be observed that

f ′(0) =
d

dh
E [Ch]∣∣

h=0

= σ
d

dh
F [Ch]∣∣

h=0

.

================
Pause in updates Saturday September 14, 2024
================

1.4 First Variations

We now turn to what may be considered the main consequences of Gauss’
hypothesis concerning energy in our special case of the capillary tubes prob-
lem with a particular admissible configuration C0 ∈ A minimizing among
configurations determined by an inner meniscus and an outer meniscus given
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by the graph of a function u0 : U = Ω∪Ωout → (0,∞). The initial method is
again to seek a family of competing admissible configurations depending on
some finite number of parameters. In this case, the situation will be nomi-
nally a little more complicated, though we will again use two real parameters
h and k with k dependent on h so that effectively we have a one parameter
dependence. We concentrate first on the inner meniscus.

Let φ, ψ ∈ C∞
c (Ω) with φ otherwise arbitrary and ψ satisfying

∫

Ω

ψ 6= 0.

See Appendix A for the meaning and notation associated with C∞
c (Ω). For

small real numbers h and k with h satisfying an explicit estimate |h| < ǫ,
consider a potentially competing meniscus function

u = u0 + hφ+ kψ.

The volume

ṽol[C] =
∫

Ω

u+

∫

Ωout

u

relative to the constant CV = V − π [area(Ω1)− area(Ω)] associated to u is

ṽol[C] = CV + h

∫

Ω

φ+ k

∫

Ω

ψ.

Thus, taking

k = k(h) = −
∫
Ω
φ∫

Ω
ψ
h

we obtain for each fixed φ a one parameter family of admissible (volume
preserving) mensicus functions u0 + hφ+ k(h)ψ corresponding to admissible
configurations C ∈ A. In this context, the family of functions

{v = u0 + hφ+ k(h)ψ}|h|<ǫ

is called a variation of the unknown minimizer u0 of the functional E and
the difference

v − u0 = hφ+ k(h)ψ

is called for each h a perturbation. Again minimization of E is equivalent
to minimization of the simpler functional F , and the function f : (−ǫ, ǫ) → R

by
f(h) = F [C]
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has a minimum value F [C0] at h = 0, and if f is differentiable the usual
necessary condition from one-variable calculus tells us

f ′(0) =
d

dh
F [C]∣∣

h=0

= 0.

In order to calculate the derivative in question, we begin by writing the value
of the associated energy F [C] using the expression

F =

∫

Ω

√
1 + |Du|2 +

∫

Ωout

√
1 + |Du|2

− β0

∫

∂Ω

u− β1

∫

∂Ω1

u− β2

∫

∂Ω2

u

+
κ

2

∫

Ω

u2 +
κ

2

∫

Ωout

u2 (1.31)

in (1.23) where we recall κ = ρg/σ is the capillary constant. The particular
variation u0 + hφ+ kψ we have constructed leaves the terms associated with
anything in the closed exterior R

2\Ω constant, so setting f(h) = F [C] we
find

f ′(h) =
d

dh

(∫

Ω

√
1 + |Du|2 + κ

2

∫

Ω

u2
)
.

We take each derivative in turn: Note that Du = Du0+hDφ+kDψ. There-
fore

d

dh

∫

Ω

√
1 + |Du|2 = d

dh

∫

Ω

√
1 + |Du0 + hDφ+ kDψ|2

=

∫

Ω

(Du0 + hDφ+ kDψ) ·Dφ√
1 + |Du0 + hDφ+ kDψ|2

+

∫

Ω

(Du0 + hDφ+ kDψ) ·Dψ√
1 + |Du0 + hDφ+ kDψ|2

dk

dh

=

∫

Ω

(Du0 + hDφ+ kDψ) ·Dφ√
1 + |Du0 + hDφ+ kDψ|2

−
∫
Ω
φ∫

Ω
ψ

∫

Ω

(Du0 + hDφ+ kDψ) ·Dψ√
1 + |Du0 + hDφ+ kDψ|2

.

Note the differentiation under the integral sign here is justified because the
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difference quotient/integrand

1

v

(√
1 + |Du0 + (h+ v)Dφ+ k(h+ v) Dψ|2

−
√

1 + |Du0 + hDφ+ k(h) Dψ|2
)

converges pointwise uniformly to the derivative

(Du0 + hDφ+ kDψ) ·Dφ√
1 + |Du0 + hDφ+ kDψ|2

−
∫
Ω
φ∫

Ω
ψ

(Du0 + hDφ+ kDψ) ·Dψ√
1 + |Du0 + hDφ+ kDψ|2

as v tends to 0. This differentiation under the integral sign may also be
justified using the dominated convergence theorem; see Exercise 1.11.

The other integral is differentiated similarly:

d

dh

∫

Ω

u2 =
d

dh

∫

Ω

(u0 + hφ+ kψ)2

=

∫

Ω

2(u0 + hφ+ kψ)
∂

∂h
(hφ+ kψ)

= 2

∫

Ω

(u0 + hφ+ kψ) φ− 2

∫
Ω
φ∫

Ω
ψ

∫

Ω

(u0 + hφ+ kψ) ψ.

Evaluating at h = 0 (which gives also k = 0) and combining these expressions
we obtain the necessary condition

0 = f ′(0) =

∫

Ω

Du0√
1 + |Du0|2

·Dφ−
∫

Ω

λ φ+ κ

∫

Ω

u0 φ (1.32)

where

λ =
1∫
Ω
ψ

(∫

Ω

Du0 ·Dψ√
1 + |Du0|2

+ κ

∫

Ω

u0 ψ

)
. (1.33)

The condition (1.32) should hold for every φ ∈ C∞
c (Ba(0)). In order to obtain

more precise information about the minimizer u0, observe that in light of the
identity

div

(
φ

Du0√
1 + |Du0|2

)
= div

(
Du0√

1 + |Du0|2

)
φ+

Du0√
1 + |Du0|2

·Dφ
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and the divergence theorem according to which

∫

Ω

div

(
φ

Du0√
1 + |Du0|2

)
=

∫

∂Ω

φ
Du0√

1 + |Du0|2
· n = 0

where n = (x, y)/
√
x2 + y2 is the outward unit conormal to ∂Ω, one may

write the first term on the right of (1.32) as

∫

Ω

Du0√
1 + |Du0|2

·Dφ = −
∫

Ω

div

(
Du0√

1 + |Du0|2

)
φ

and (1.32) becomes

∫

Ω

[
div

(
Du0√

1 + |Du0|2

)
− (κu0 − λ)

]
φ = 0 (1.34)

for every φ ∈ C∞
c (Ba(0)). By the fundamental lemma of vanishing integrals5

we arrive at the first main consequence of Gauss’ suggestion:

Theorem 1 If u0 ∈ C∞(U) where U = Ω∪Ωout corresponds to an admissible
minimizing configuration C0 ∈ A for the capillary energy

E [C] = σ

(
area(S)−

∫

W
β +

ρ g

σ

∫

V
x3 dx3

)

= σ

(∫

U

√
1 + |Du|2 −

∫

∂U

βu+
κ

2

∫

U

u2
)
+ C,

for the capillary tubes problem (where κ = ρg/σ and C is a constant) then
there is some constant λ ∈ R such that on the inner tube region Ω the
function u0 satisfies the partial differential equation

div

(
Du0√

1 + |Du0|2

)
= κu0 − λ. (1.35)

The equation (1.35) is often referred to as the capillary equation. The
following may be evident at this point concerning solutions of (1.35):

5a.k.a. the fundamental lemma of the calculus of variations; see Exercise 1.12.
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1. Solutions of (1.35) should be considered as possible minimizers of the
capillary energy of Gauss and potential candidates for modeling the
actual physical meniscus observed in a vertical capillary tube.

2. It is worth studying solutions u ∈ C2(U) of the equation

div

(
Du√

1 + |Du|2

)
= κu− λ (1.36)

where U is an open connected subset of R2 (or perhaps even U ⊂ Rn)
in general and for all values of the constants κ and λ. As a corol-
lary, it is worth understanding the meaning of the second order partial
differential operator M : C2(U) → C0(U) given by

Mu = div

(
Du√

1 + |Du|2

)
. (1.37)

In short, (1.36) is an important PDE and the operator M given in
(1.37) is an important partial differential operator.

At any rate we will now take these two assertions as given. The operator M
is not linear like the (perhaps) familiar spatial Laplacian

∆u = div(Du) =
∂2u

∂x2
+
∂2u

∂y2
.

It is not necessarily expected that the reader is familiar with the properties
of the Laplace operator or PDEs like

∆u = 0 (Laplace’s equation) or
∆u = f (Poisson’s equation)

but certain aspects of the approach presented for consideration of the cap-
illary equation below are naturally considered (and even motivated by) the
extensive and in some ways simpler theory of these linear PDE. Accordingly,
we will not hesitate to digress and discuss the properties of these equations
in comparison with the main theory developed for (1.36). See Exercises 1.13
through 1.16 for some initial elementary comparisons. Note that in Poisson’s
equation f is a given function of the spatial variables, e.g., x and y in R2.
The equation

∆u = κu− λ (1.38)
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where κ and λ are constants may also be considered for comparison. In this
case, the constants κ and λ should not be connected to the physical meanings
(as the capillary constant and a Lagrange parameter for volume) but should
simply be taken as given constants. In fact, in the special case λ = 0, the
constant κ is often taken as an eigenvalue for the Laplace operator, and in this
case is considered an additional unknown in the problem. In this context, the
PDE ∆u = κu is sometimes called Helmholtz’ equation. Roughly speaking
the eigenvalue problem is of interest for the Laplace operator because the
operator is linear. Since the operatorM is not linear the eigenvalue problem
is not of particular interest, and in our comparison to the Laplace operator
we will simply consider κ a given and known constant.

The nonlinear operator M also has a name. M is called the mean cur-
vature operator and features in some other well-known PDE:

Mu = 0 (minimal surface equation)
Mu = 2H (constant) (constant mean curvature equation)
Mu = f (prescribed mean curvature equation)

The minimal surface equation is of course a special case of the equation of
constant mean curvature, which in turn may be thought of as a kind of
“zero gravity” special case of the capillary equation. The minimal surface
equation is also associated with soap films, and the equation of constant
mean curvature is also associated with soap bubbles, or soap films with a
nonzero pressure difference across the film. In fact, curved liquid interfaces
may be considered to model a differential in pressure across the interface,
and the capillary equation may be interpreted to express that the pressure
across the interface changes as an affine function of height.

Let us consider here for a moment the geometric meaning of the value

Mu = div

(
Du√

1 + |Du|2

)
.

We have called this expression a curvature. Indeed, if u(x, y) = u(x) is the
graph of a cylindrical surface, then

div

(
Du√

1 + |Du|2

)
=

d

dx

(
u′√

1 + u′2

)
. (1.39)

On the one hand, this expression may be recognized as the familiar formula

u′′

(1 + u′2)3/2
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for the curvature of the curve which is the graph of u = u(x). See Exer-
cise 1.17. On the other hand,

ψ = sin−1

(
u′√

1 + u′2

)
∈ (−π/2, π/2)

is the inclination angle of the graph of u. See Exercise 1.18. One definition
of the signed curvature of the graph of u ∈ C2(a, b) for a, b ∈ R with a < b is

k =
dψ

ds

where s is an arclength parameter. In particular, up to an additive constant

s =

∫ x

x0

√
1 + u′(ξ)2 dξ

so

dψ

ds
=
dψ

dx

dx

ds

=
dψ

dx

1

1 + u′(x)2

=
dψ

dx
cosψ

=
d

dx
sinψ

=Mu

for the cylindrical graph of u = u(x) by (1.39). Cylindrical capillary surfaces
of the form

{(x, y, u(x)) : x ∈ (a, b), y ∈ R}
are considered in more detail in Section 1.8 below. More complicated surfaces
can have more complicated curvature.

1.5 Digression on curvature of surfaces

Exercise 1.17 gives some basics about the curvature of a C2 curve in a plane.
Such a curve can be expressed locally near each point P0 as a graph over
the tangent line to the curve at P0. For a C2 curve in R3, the situation
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can be somewhat more complicated. In order to capture this potentially
more complicated geometric situation, it is convenient to associate with each
point on a C2 curve not only a number that measures the curvature but also
a vector. For the graph of a function u : (a, b) → R given on an interval (a, b)
with a, b ∈ R and a < b and satisfying u′(x0) = 0, this vector at the point
(x0, u(x0)), the curvature vector, is taken to be u′′(x0)(0, 1). In the case
of the local parametric representation

γ(t) = (x0, v(x0)) + t
(1, v′(x0))√
1 + v′(x0)2

+ g(t)
(−v′(x0), 1)√
1 + v′(x0)2

given in part (c) of Exercise 1.17 the curvature vector at γ(0) = (x0, v(x0))
is taken to be

γ′′(0) = g′′(t)
(−v′(x0), 1)√
1 + v′(x0)2

.

Note this vector is orthogonal to the unit tangent vector

(1, v′(x0))√
1 + v′(x0)2

and has length the absolute value of the signed curvature. For a general
parameterized curve it is convenient to require an additional condition in
order to make sense of the curvature at a point. The reason for this additional
condition is illustrated by the C2 curve parameterized by α(t) = (t3, t2) when
considered at the point (0, 0); see Exercise 1.19. The condition is called
“regular parameterization.” Given a, b ∈ R with a < b and n ∈ {1, 2, 3, . . .},
a curve

Γ = {α(t) : t ∈ (a, b)}
where α ∈ C2((a, b) → Rn) is said to be regularly parameterized by α
if |α′(t)| 6= 0 for t ∈ (a, b). A regularly paraemeterized C2 curve may be
reparameterized by arclength as follows: We set

s =

∫ t

x0

|α′(t)| dt (1.40)

where x0 is some point in (a, b). This relation defines s as a differentiable
function of t with

ds

dt
= |α′(t)| > 0.
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In particular, s : (a, b) → s(a, b) = (−ℓ,m) is bijective onto some interval
(−ℓ,m) with −ℓ < 0 < m, differentiable and strictly increasing. Therefore
s has an increasing differentiable inverse traditionally denoted by t = s−1 :
(−ℓ,m) → (a, b) with t = t(s). In fact, both s : (a, b) → (−ℓ,m) and
t : (−ℓ,m) → (a, b) are twice differentiable, and setting

γ(s) = α ◦ t(s)

we obtain a regular parameterization γ ∈ C2((−ℓ,m) → Rn) of Γ. Differ-
entiating the relation (1.40) again with s as the independent variable, one
finds

dt

ds
=

1

|α′(t)| =
1

|α′ ◦ t(s)| .

Consequently,

dγ

ds
= γ̇ =

α′(t)

|α′(t)| with

∣∣∣∣
dγ

ds

∣∣∣∣ ≡ 1,

and we define the curvature vector of Γ at α(t) = γ(s) to be the vector

~k = γ̈(s) =
d2γ

ds2
(s).

Thus, the curvature (vector) of a space curve is the rate of change

d

ds
γ̇

of the unit tangent γ̇ with respect to arclength along the curve. In
addition, the curvature vector is orthogonal to the unit tangent since |γ̇| ≡ 1
and

0 =
d

ds
|γ̇|2 = d

ds
(γ̇ · γ̇) = 2γ̈ · γ̇.

Thus, the unit tangent vector at least potentially defines a normal vector
to the curve. Under the current assumptions of a regular curve (or a curve
admitting a regular parameterization) we leave open the possibility that that
~k = γ̈ = 0 is the zero vector. In this case, of course, ~k does not determine a
specified normal vector to the curve. Otherwise, it is traditional to set

k = |~k| > 0
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and define this non-negative number to be the (scalar or numerical) curvature
of the curve, and define the principal normal at γ(s) to be

n =
~k

k
. (1.41)

The number k = |~k| , however, is not always the same as the signed curvature
k discussed above for planar curves.

If we do specialize once again to the special case of planar curves γ =
(γ1, γ2) ∈ C2((−ℓ,m) → R2) and assume γ̈(s0) 6= 0, then there is some ǫ > 0
for which

n(s) =
γ̈(s)

|γ̈(s)|
is well-defined for s0 − ǫ < s < s0 + ǫ, and there must hold either

n(s) = γ̇⊥ = (−γ̇2, γ̇1) for s0 − ǫ < s < s0 + ǫ

or
n(s) = −γ̇⊥ = (γ̇2,−γ̇1) for s0 − ǫ < s < s0 + ǫ.

In either case, n ∈ C1((s0 − ǫ, s0 + ǫ) → R2), and we find the interesting
relation

ṅ = −k γ̇. (1.42)

See Exercise 1.20. Comparing the two relations (1.41) and (1.42), that is

d

ds
γ̇ = k n, and

d

ds
n = − k γ̇,

(1.43)

we see (1.42) is a kind of parallel and alternative formulation of the funda-
mental curvature relation (1.41). In particular, curvature may also be ex-
pressed alternatively in terms of the rate of change of the unit principal
normal vector with respect to arclength along the curve.

Note: The alternative formulation of curvature of planar curves encapsu-
lated in (1.43) is especially important, or at least useful, to understand in
relation to the formulation of curvature for a two-dimensional surface in R3.
In that case instead of a regular parameterization α ∈ C2((a, b) → R2) one
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typically has a regular local parameterization X ∈ C2(U → R3) of a surface
S defined on some open set U ⊂ R2. In the latter case there is no specified
tangent vector directly comparable to γ̇ but rather one has a well-defined
tangent plane at each point on the surface. Consequently one alternative for
the formulation of curvature, at least at an intuitive or heuristic level is as a
measure of the “rate” of change of the tangent plane with respect to arclength
measured within the surface. On the other hand, for a surface S there is a
direct analog N of a (specified) unit normal and/or the principal unit normal
n ∈ C1((s0 − ǫ, s0 + ǫ) → R2) to a curve Γ, and from the quantitative or
technical point of view formulating curvature as encapsulating the rate of
change of a surface normal N ∈ C1(U → R3) with respect to unit speed
motion on the surface is usually the simpler and more desirable alternative.

Before I attempt to extend this discussion of the curvature of surfaces
further and in more detail, let me attempt to wrap up my discussion of the
curvature of space curves and leave it in a more complete state.

The situation with the principal normal n to a space curve can be some-
what more complicated than that considered above for a planar curve. Let
us say a space curve Γ is regularly parameterized by arclength on an interval
(−ℓ,m) as described above by γ ∈ C2((−ℓ,m) → R

3). In most expositions
two additional assumptions are made concerning the parameterization γ.
The first is γ̈ 6= 0 ∈ R3 so the principal unit normal is well-defined. I made
this assumption locally in our discussion of planar curves above in the form
γ̈(s0) 6= 0 ∈ R2. One reason for attempting greater generality than usual is
that ultimately I am primarily interested in curves on a surface S, and in
certain instances it is the case (and it is important to notice it is the case)
that the curvature of the surface itself forces the condition γ̈ 6= 0 at every
point on every regularly parameterized curve on S. Thus, for these curves
the condition γ̈ 6= 0 should not be an assumption but rather a necessary
consequence of being on the surface S.

The second “usual” assumption is γ ∈ C3((−ℓ,m) → R3). It is somewhat
interesting that no additional regularity assumption was needed to obtain the
fundamental relation ṅ = −k γ̇ in the case of planar curves, and I would like
to make some attempt to understand to what extent this usual assumption is
required (or perhaps just convenient) in the case of space curves. All (three)
of these conditions are referred to as “regularity” for a space curve. Since I
have taken it upon myself to consider somewhat greater generality than usual,
I will give these conditions separate names: Let Γ ⊂ R3 be parameterized by
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α ∈ C2((a, b) → R3) where a, b ∈ R with a < b. The curve Γ is said to have

1. a regular parameterization locally at α(t0) for some t0 ∈ (a, b) if for
some ǫ > 0 there holds α′(t) 6= 0 for t0 − ǫ < t < t0 + ǫ.

2. nonvanishing curvature locally at α(t0) if Γ is regularly parameterized
by α on (t0−ǫ, t0+ǫ)⊂⊂(a, b), regularly parameterized by γ : (−ℓ,m) →
R3 with −ℓ < 0 < m,

γ(−ℓ) = α(t0 − ǫ), γ(0) = α(t0), γ(m) = α(t0 + ǫ),

and

γ̈ =
d2γ

ds2
6= 0.

3. a C3 parameterization if α ∈ C3((a, b) → R3).

If we begin with all three of these assumptions, the principle normal n = n(s)
is well-defined for −ℓ < s < m and one may calculate the derivative

d

ds
n.

In this case, we obtain a relation

d

ds
n = −k γ̇ + τ (γ̇ × n),

which can be immediately seen to be more complicated than (1.42). See
Exercise 1.21. With this calculation in mind, we recall that for planar C2

curves satisfying the first two conditions, the third condition is not necessary
for the differentiation of the principal unit normal n with respect to arclength.
Let me add this as a fourth condition:

4. A C2 space curve Γ with local regular parameterization

γ ∈ C2((−ℓ,m) → R
3)

by arclength near γ(0) = α(t0) and nonvanishing curvature and well-
defined principal unit normal n(s) at γ(s) satisfying

n ∈ C0(−ℓ,m) → R
3)
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is said to have a differentiable principal normal at γ(0) = α(t0) if
the derivative

ṅ(0) =
dn

ds
(0) = lim

s→0

n(s)− n(0)

s

exists.

I wish to construct an example for which the first two conditions (regular
C2 parameterization and nonvanishing curvature) hold but for which the
well-defined principal unit normal is not differentiable. The example is given
by α ∈ C2(R → R3) with

α(t) =

{
(t, t2/2,−t3/6), t ≤ 0
(t, t2/2, t3/6), t ≥ 0.

(1.44)

See Exercises 1.22 through 1.25. In spite of the example determined by (1.44),
one is still inclined to believe some manifestation of the differentiability of
the principal normal of plane curves persists for space curves of nonvanish-
ing curvature so that the curvature function k = |γ̈| can be recovered by
differentiating some quantity obtained from the principle normal. Here is
one possibility:

Conjecture 1 Given a C2 curve Γ with nonvanishing curvature and regular

parameterization γ ∈ C2((−ℓ,m) → R3) by arclength, the unit vector field

ν(s) =
(n(s) · γ̇(0)) ˙γ(0) + (n(s) · n(0)) n(0)
|(n(s) · γ̇(0)) ˙γ(0) + (n(s) · n(0)) n(0)|

obtained by projecting the principal normal onto the osculating plane spanned

by γ̇(0) and n(0) satisfies

ν̇(0) =
dν

ds
(0) = lim

s→0

ν(s)− ν(0)

s

exists and ν̇(0) = −k γ̇(0).

At any rate we will henceforth primarily restrict attention to C2 curves
admitting a regular parameterization γ ∈ C2((−ℓ,m) → Rn) for some ℓ,m >
0 and some n ∈ {1, 2, 3} satisfying |γ̇| ≡ 1. Thus, in most cases, it will
be natural to begin with such a parameterization though the notation may
change.
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closed curves

We have focused on a curve Γ ⊂ Rn, mostly for n = 2, 3, given parametrically
by a function α : (a, b) → Rn defined on an interval (a, b) ⊂ R. Among
the conditions satisfied by such a parameterized curve it is often required
that α(t1) 6= α(t2) for a < t1 < t2 < b. When this condition holds, the
curve is said to be embedded. Roughly speaking a curve that may not
satisfy the embeddedness condition is said to be immersed. It can be a little
difficult to give a precise definition of an immersed curve as a subset of Rn

as suggested in Exercise 1.26. A curve essentially defined by a specific single
parameterization α : (a, b) → Rn is said to be strictly immersed if there
exist t1 6= t2 in (a, b) with α(t1) = α(t2). In order to allow the possibility
of a smooth closed curve, we can allow some condition like the following:
There exists some ǫ > 0 with ǫ < b− a such that

(i) α(t1) 6= α(t2) for a < t1 < t2 < b− ǫ, and

(ii) α(t) = α(b− ǫ+ t− a) = α(b− a− ǫ+ t) for a < t < a+ ǫ.

Technically, if Γ = {α(t) : a < t < b} for some α ∈ C1((a, b) → R
n) satisfying

(i) and (ii), we say Γ is a simple closed curve. See Exercise 1.28.
An important fact about a (simple) closed curve Γ in R2 is contained in

the famous Jordan curve theorem which asserts that R2\Γ consists of pre-
cisely two connected components C1 and C2 exactly one of which, say C1, is
bounded in R2 in the sense that the entire component C1 is a subset of a ball
BR(0) for some R > 0 and exactly one of which, say C2 is unbounded in the
sense that C2 is not a subset of any ball BM(0) for anyM > 0, and both com-
ponents are bounded by Γ in the set/topological sense that ∂C1 = ∂C2 = Γ.
There is a nice generalization of the Jordan curve theorem to higher dimen-
sions. This result is referred to as the Jordan-Brouwer separation theorem
in the next section.

1.5.1 a formal definition of surface

Having gotten a taste of what can happen and how the curvature of curves
works when regularity may be limited, we turn to our main topic which is
understanding something about the curvature of a surface by considering
certain C∞ curves lying in or upon that surface. We begin with a definition:
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Definition 1 (surface) A set S ⊂ R3 is a (smooth compact embedded)
surface (with boundary) if S is compact and for each p ∈ S there exists some
open set V ⊂ R3 with p ∈ V , some open set U ⊂ R2 with 0 ∈ U , and a
function X = (X1, X2, X3) ∈ C∞(U → R3) with X(0) = p such that

(i) X : U → X(U) is a homeomorphism,

(ii) Xu ×Xv 6= 0, where

Xu =
∂X

∂u
=

(
∂X1

∂u
,
∂X2

∂u
,
∂X3

∂u

)
, and

Xv =
∂X

∂v
=

(
∂X1

∂v
,
∂X2

∂v
,
∂X3

∂v

)
,

and the following conditions hold:

1. (interior points) If p ∈ S

(iii) S ∩ V = X(U) = {X(u, v) : (u, v) ∈ U}.

2. (smooth boundary points) If p ∈ ∂S = S\S with the possible exception
of a finite number of points {q1, q2, . . . , qk} ⊂ ∂S,

(iv) S ∩ V = X(U+) = {X(u, v) : (u, v) ∈ U, v > 0},
(v) X : U ∩ {(u, 0) : u ∈ R} → ∂S ∩ V determines a regular parame-

terization of a C∞ curve in R
3 by α(u) = X(u, 0).

3. (corner points) If p = qj , j = 1, 2, . . . , k,

(vi) S ∩ V = X(U++) = {X(u, v) : (u, v) ∈ U, u, v > 0},
(vii) X : U ∩ {(u, 0) : u > 0} → ∂S ∩ V determines a regular parame-

terization of a C∞ curve in R3 by α(u) = X(u, 0), and

(viii) X : U ∩ {(0, v) : v > 0} → ∂S ∩ V determines a regular param-
eterization of a C∞ curve in R

3 by β(v) = X(0, v).

Notes: The topological context of the use of the symbol ∂S in the case of
a surface and some of the accompanying terminology should be clarified. In
Definition 1 the boundary ∂S is not the topological boundary of S with
respect to R3 but rather the topological boundary of S as a topological
(metric) subspace of R3. The closure S, however, does denote the closure of
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S as a subset of R3. If one refers to the interior of a surface S, again, this
does not refer to the interior of S as a subset of R3 but rather the interior
of S as a topological subspace of R3 or simply as the set S itself in our
definition. Consequently, when S is referred to as a compact surface with
boundary it is not intended that S is necessarily compact nor that ∂S ⊂ S,
but only that S is compact. Of course in the case S = S, i.e., when the
surface boundary is empty, then such a surface S is required to be compact
in our definition.6,7

Technically, it may be necessary to specify in Definition 1 that ∂S ⊂ S\S.
In short, S may be referred to as an open surface without boundary,8 and
the surface boundary of S, the points of which satisfy conditions 2. and 3.
of the definition, is given explicitly by ∂S = S\S.

In spite of our somewhat lengthy discussion of curves a formal definition
of an embedded regular curve as a subset of Rn analogous to the definition
of a surface above was never given. See Exercise 1.26. It may be noted that
the definition of Exercise 1.26 is used at least implicitly in conditions 2(v),
3(vii) and 3(viii).

In the case where the surface boundary is empty the Jordan-Brouwer
separation theorem holds, that is R3\S consists of precisely two connected

6Unfortunately, one doesn’t often have the luxury of avoiding surfaces with boundary
in problems of mathematical capillarity; if a free surface interface without boundary is
encountered, this essentially means one is dealing with a free floating drop(let) having no
contact with any rigid support structures (tubes, walls, containers, etc.). In the case of
zero gravity such a liquid drop in equilibrium is usually modeled by a rounds sphere. This
is a famous result of A.D. Alexandrov from 1955. It is an interesting result, and we will
discuss it when we discuss capillary surfaces in zero gravity, but from some point of view
that is a rather special case.

7The condition that S is compact may also be dropped from the definition altogether
to obtain a more general definition of surface with boundary. For the physical modeling
of liquid interfaces in mathematical capillarity, the restriction to compact surfaces strikes
this author as appropriate. This is for the simple reason that I have never encountered a
physical volume of liquid I perceive to be infinite in extent. There are other mathematical
motivations for this restriction as well. Most authors have found it convenient to include
mathematical surfaces of infinite extent, and to imagine such surfaces are appropriate to
model capillary interfaces in some vague manner that for the most part has been able
to avoid serious scrutiny or any form of actual quantitative comparison for that matter,
though there are a couple notable exceptions.

8The formal definition of an open surface is obtained from the definition above by
simply leaving out the discussion of S\S and conditions 2. and 3. in particular. In the
context of our usage, namely physical modeling of capillary surfaces, one may also wish
to retain the condition that S is a compact subset of R3.
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components C1 and C2 exactly one of which, say C1, is bounded in R3 in the
sense that the entire component C1 is a subset of a ball BR(0) for some R > 0
and exactly one of which, say C2 is unbounded in the sense that C2 is not a
subset of any ball BM(0) for any M > 0, and both components are bounded
by S in the set/topological sense that ∂C1 = ∂C2 = S. This generalization
holds for hypersurfaces (n− 1 dimensional submanifolds) without boundary
in R

n for n = 4, 5, . . ., as well, but as mentioned briefly above, in most
problems the free surface interface has nontrivial boundary and fits together
with various wetted regions to enclose a set modeling a liquid volume. In
short the situation can be complicated as suggested by Exercises 1.1 and 1.2.

1.5.2 smooth curves on a surface

At each interior point p ∈ S, we can take a local parameterization X : U →
R3 of S with X(0, 0) = p as in Definition 1. Recall that there is an open set
V ⊂ R3 in this case for which X : U → X(U) = S ∩ V is a homeomorphism.
It follows that for all r > 0 small enough

X : X−1(Br(p) ∩ S) → Br(p) ∩ S

is a homeomorphism. Thus, one way to express the points X ∈ Br(p) ∩ S
is as the image X(u, v) for some points (u, v) in an open set U containing
0 = (0, 0) in R2. In particular, the local parameterization X determines a
correspondence between points near p in S and the points in an open subset
of R2.

Also in this case there is a well-defined tangent plane associated with
p = X(0, 0) given by

TpS = span{Xu(0, 0), Xv(0, 0)}

where we note the vectors Xu(0, 0) and Xv(0, 0) are linearly indepenent in
R3 by virtue of condition (ii) in Definition 1. Thus, TpS is a two dimen-
sional (abstract) vector space and/or a two-dimensional vector subspace of
R3 with basis {Xu(0, 0), Xv(0, 0)}. The affine plane (sometimes called an
“affine subspace”)

Tp = {p+ aXu(0, 0) + bXv(0, 0) : a, b ∈ R}

in R3 is also a surface of interest in comparison with S. The local pa-
rameterization X also gives a correspondence between vectors in T0R

2 and
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vectors in TpS. Specifically, dX0(a, b) = aXu+bXv where Xu = Xu(0, 0) and
Xv = Xv(0, 0).

Most of the basic assertions concerning the local representation of the
surface S and the associated tangent plane can be adapted to any point X =
X(u, v) ∈ S given by any local parameterization. We will use and refer to
this correspondence freely in that generality below, and distinction between
X , Xu, and Xv evaluated at 0 ∈ R

2 or a general point (u, v) ∈ U ⊂ R
2 may

need to be determined by context. Generally, the use of p and TpS indicate
evaluation at 0, while X and TXS suggest the more general correspondence.

There are many smooth (space) curves Γ passing through an interior point
p on a surface. Locally, these curves are also in one-to-one correspondence
with curves Γ0 passing through (0, 0) ∈ R2. For the moment, it will be
convenient to assume such a curve Γ0 ⊂ R2 is parameterized by arclength
so that the correspondence of curves is given by α(t) = X ◦ γ0(t) where
γ0 ∈ C∞((−ǫ, ǫ) → R

2) for some ǫ > 0 is a parameterization of Γ0 by
arclength satisfying γ0(0) = (0, 0) and the usual conditions for a regular
plane curve.

Exercise 1.29 suggests there are many smooth curves, with many different
curvature vectors, passing through 0 = (0, 0) ∈ R2. In order to understand
something about the smooth curves passing through a point p on a surface S,
we might first wish to find a formula for the curvature vector γ̈(0) of the curve
determined by α(s) = X ◦ γ0(s) for s ∈ (−ǫ, ǫ). Presumably this curvature
value should be determined by the direction γ̇0(0) and the curvature vector
γ̈0(0) of Γ0, but the dependence may be complicated. First of all we have
α′(s) = DX γ̇0(s), and the arclength along Γ ⊂ S is given by

σ =

∫ t

0

|DX γ̇0(s)| ds (1.45)

where DX = DX ◦ γ0(s). From this we conclude

dt

dσ
=

1

|DX γ̇0(t)|
which is well-defined because dX : T0R

2 → TpS is nonsingular, and as usual
we have an arclength parameterization of Γ given by γ(σ) = X ◦ γ0(t(σ))
with

dγ

dσ
= γ̇ =

DX γ̇0
|DX γ̇0|

=
DX

dγ0
ds∣∣∣∣DX
dγ0
ds

∣∣∣∣
.
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If we wish to be more explicit we may write γ̇0 = (µ0, ν0) so that

DX γ̇0 = µ0
∂X

∂u
◦ γ0 + ν0

∂X

∂v
◦ γ0. (1.46)

See Exercise 1.30. The main calculation we need to make is

γ̈(0) =
d

dσ

DX γ̇0
|DX γ̇0|

=



d

ds
(DX γ̇0)

1

|DX γ̇0|
−DX γ̇0

d

ds
(DX γ̇0) · DX γ̇0

|DX γ̇0|3



dt

dσ

=
d

ds
(DX γ̇0)

1

|DX γ̇0|2
−DX γ̇0

d

ds
(DX γ̇0) · DX γ̇0

|DX γ̇0|4
.

Thus, we see the calculation is essentially reduced to

d

ds
DX γ̇0 = µ̇0

∂X

∂u
+ ν̇

∂X

∂v

+ µ0

(
∂2X

∂u2
µ0 +

∂2X

∂u∂v
ν0

)

+ ν0

(
∂2X

∂u∂v
µ0 +

∂2X

∂v2
ν0

)

which we write as

d

ds
(DX γ̇0) = DX γ̈0 + β(D2X γ̇0, γ̇0)

where β : (R3)2 × R2 → R3 by

β((v,w), (µ, ν)) = µv + νw

and

D2X γ̇0 = µ0

(
Xuu

Xuv

)
+ ν0

(
Xuv

Xvv

)
.

Clearly, β is bilinear, i.e., linear in each argument, as is

B : Tγ0R
2 × Tγ0R

2 → R
3 by B(v,w) = β(D2X v,w)
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where D2X = D2X ◦ γ0. In particular, B is symmetric.
The quantity |DX γ̇0| may also be expressed more explicitly in terms of

γ̇0 = (µ0, ν0) as

|DX γ̇0| =
√
Eµ2

0 + 2Fµ0ν0 +Gν20 =
√
A(γ̇0, γ̇0)

where E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv, and A : Tγ0R
2 × Tγ0R

2 → R

by
A(v,w) = DX v ·DX w; DX = DX ◦ γ0.

From this expression, it is clear A is bilinear and symmetric.
In terms of A and B we can write

d

ds
(DX γ̇0) · DX γ̇0 = A(γ̈0, γ̇0) +B(γ̇0, γ̇0) ·DX γ̇0.

The last dot product may also be written as C(γ̇0, γ̇0, γ̇0)

C : (Tγ0R
2)3 → R by C(v,w, z) = β(D2X v,w) · DX z

is trilinear. Evaluating at σ = 0 we find the curvature vector of Γ at p ∈ S
is given by

γ̈ =
DX γ̈0 +B(γ̇0, γ̇0)

A(γ̇0, γ̇0)
− A(γ̈0, γ̇0) + C(γ̇0, γ̇0, γ̇0)

A(γ̇0, γ̇0)2
DX γ̇0 (1.47)

where A, B, and C are multilinear functions depending on DX(0) and
D2X(0), and in this case

γ̈ = γ̈(0),

γ̈0 = γ̈0(0), and

γ̇0 = γ̇0(0).

See Exercise 1.31.
While some interesting information can be derived from the formula (1.47)

for the curvature of the space curve Γ = α(−ǫ, ǫ) = X ◦ γ0(−ǫ, ǫ), and this
information indeed contains essentially all the information about the curva-
ture of the surface S itself at the point p, that information is not packaged or
isolated in such a convenient form. The problem with (1.47) is that a great
deal of information about the parameterization X is included which is not
directly related to the geometry of S but really has only to do with how S
has been parameterized.
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1.5.3 curvature(s) of a surface

In order to isolate the information of interest in (1.47) and put that infor-
mation in a more convenient form turns out to be relatively easy, though
the means of doing so are not necessarily obvious. The basic idea is due to
Meusnier who suggested the following: Instead of considering γ̈ = γ̈(0) as a
function of u = γ̇0(0) ∈ S

1 ⊂ T0R
2 and the curvature vector γ̈0(0) ∈ T0R

2,
consider instead the quantity

kn = γ̈(0) ·N (1.48)

as a function of u = γ̇(0) ∈ S
1
p ⊂ TpS where

S
1
p = {v ∈ TpS : |v| = 1}

and N = Xu ×Xv/|Xu ×Xv| is the unit normal to S at p. The real valued
quantity kn given in (1.48) is called the normal curvature of the surface
S at p in the direction u = γ̇(0). First of all, we should say that while the
formula in (1.48) certainly gives a well-defined real number associated with
every regular curve with parameterization γ ∈ APp(S) where the notation
for the class APpS of arcwise parameterizations is given in Exercise 1.31, it
is not quite clear that kn : S1

p → R has a properly defined domain. In fact
as it stands right now in the current formulation, this assertion is not quite
true. With a relatively minor modification, however, this assertion will make
sense, though it will take some additional work to see clearly what is going
on.

On the other hand, the quantity suggested by Meusnier has some prop-
erties one can immediately recognize as, at the very least, convenient. First
of all, turning to formula (1.47)

kn =
1

A(γ̇0, γ̇0)
B(γ̇0, γ̇0) ·N. (1.49)

This is the case because DX γ̇0 and DX γ̈0 are both in TpS to which N is
orthogonal. In fact, every vector

DX(0) v = DX(0)

(
µ
ν

)
= µ

∂X

∂u
(0) + ν

∂X

∂v
(0)

is a linear combination of the tangent vectors Xu(0) and Xv(0) in TpS for
every v = (µ, ν) ∈ R2.
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Considering the formula (1.49) along with the bijection dX0 : T0R
2 →

TpS according to which

dX0(γ̇0) =
dα

ds
(0)

where α(s) = X ◦γ0 strongly suggests kn should induce some kind of function
on S1

p or more generally on TpS. In fact, setting w = dX−1
0 (γ̇) and α0(σ) =

X−1 ◦ γ(σ) we have

dα0

dσ
(0) ∈ T0R

2\{0} and dX0

(
dα0

dσ
(0)

)
= γ̇.

Thus we obtain a curve Γ0 ⊂ R
2 with an arclength parameterization γ0 ∈

AP0R
2 such that

dX0(γ̇0(0)) = dX0




dα0

dσ
(0)

∣∣∣∣
dα0

dσ
(0)

∣∣∣∣


 =

γ̇

|dX−1
0 (γ̇)|

where γ̇ = γ̇(0). That is, we can replace γ̇0(0) with

γ̇0(0) =
dX−1

0 (γ̇)

|dX−1
0 (γ̇)|

in (1.49) and take account of the bilinearity of A and B to obtain

kn = kn(γ̇) =
1

A(dX−1
0 (γ̇), dX−1

0 (γ̇))
B(dX−1

0 (γ̇), dX−1
0 (γ̇)) ·N. (1.50)

For the sake of argument

Formula (1.50) shows at the very least the surprising fact that the normal
curvature kn is entirely independent of the curvature vector γ̈ = γ̈(0) and
consequently of the associated curvature vector γ̈0 = γ̈0(0) back in T0R

2.
Recall that there are many different curves with γ̇(0) = u ∈ TpS having
many different curvature vectors γ̈(0), but once γ̇(0) = u ∈ TpS is fixed,
there is only one unique normal curvature. . . almost.

The problem is the normal N . If we take N given by Xu×Xv/|Xu×Xv|,
which is what we have done, then we can switch the normal by changing
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the parameterization. See Exercise 1.32. This makes kn dependent on the
choice of normal and, as we have it phrased, dependent on the choice of
local parameterization. More broadly, the formula (1.50) contains all kinds
of additional formal dependence on the parameterization X : U → S through
the dependence in the functions A and B, not to mention dependence through
the inverse differential dX−1

0 = (dX0)
−1.

I will deal with the apparent dependence on X : U → S more com-
prehensively below, but for now let me focus on the choice of normal N .
Informally, I now restrict attention to capillary configurations for which the
model volume9 (of liquid) V ⊂ R3 satisfies

∂V = S ∪ Γ ∪W
is a piecewise smooth embedded surface10 satisfying the conclusion of the
Jordan-Brouwer separation theorem in the sense that there exists an open
spatially unbounded complement C = R3\V with

∂C = S ∪ Γ ∪W.

For each point p ∈ ∂V = ∂C there is some r > 0 such that

(i) There is a homeomorphism ψ : Br(p) → Br(0) with

(ii)

ψ∣∣
V∩Br(p)

: V ∩Br(p) → B−
r (0) = {x = (x1, x2, x3) : x ∈ Br(0), x3 < 0}

is a homeomorphism,

(iii)

ψ∣∣
∂V∩Br(p)

: ∂V∩Br(p) → B0
r (0) = {x = (x1, x2, x3) : x ∈ Br(0), x3 = 0}

is a homeomorphism, and

(iv)

ψ∣∣
C∩Br(p)

: C ∩Br(p) → B+
r (0) = {x = (x1, x2, x3) : x ∈ Br(0), x3 > 0}

is a homeomorphism.

9See condition 2 on page 7.
10This is a concept we have not formally defined, and is a little complicated to define

carefully.
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As a consequence, the unit outward normal field N on S as well as the
smooth portions of the wetted region W is always well-defined independent
of any parameterization. Furthermore, we can always take a local parame-
terization X : U → S at p ∈ S with X(0) = p and

N =
Xu ×Xv

|Xu ×Xv|
.

See Exercise 1.32. This takes care of the ambiguity concerning the sign of N
in the definition/formula (1.50) for the normal curvature.11 In reference to
our application in mathematical capillarity, the convention introduced here
should be emphasized: The normal N to a free surface S or to a wetted
surface W is always taken to point out of the liquid volume.

With the outward unit normal field N assumed as above, it is natural to
consider N as a function on the entire surface S with N : S → R3. This is in
contrast to, though presumed nominally consistent with, our previous local
definition of N : U → R3 given by

N = N(u, v) =
Xu ×Xv

|Xu ×Xv|
. (1.51)

Technically, we should choose one and define the other in terms of our choice.
In particular, we can perhaps now agree to write

Xu ×Xv

|Xu ×Xv|
= N ◦X,

though it is still natural to express this value simply as N with a suppression
of the argument. Another similar practice is to use the symbol N to represent
N ◦ γ : (−ǫ, ǫ) → R3 when γ ∈ APpS or even N ◦X ◦ γ0 : (−ǫ, ǫ) → R3 when
γ0 ∈ AP0R

2. Generally, we rely on the context to make the usage clear,
and we will try to include clarifying postscripts like “where N = N(u, v)”,
“where N = N(0, 0)”, or “where N = N ◦X−1.”

Our specific interest here is to let N denote N ◦ γ so that the quantity

d

dσ
N = Ṅ

11More generally, one may restrict attention to orientable surfaces and make a choice
of normal in order to define a notion of normal curvature with respect to a particular
unit normal field, but the limited construction we are suggesting is natural and serves
our purposes for modeling free surface interfaces and wetted regions at least in simple
situations.
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makes sense, where σ is an arclength parameter on a curve Γ ⊂ S and
γ̇ = γ̇(0) = u ∈ S1

p ⊂ TpS. Notice then that as a function of σ, the quantity
γ̇ ·N ≡ 0 and, consequently,

0 =
d

dσ
(γ̇ ·N) = γ̈ ·N + γ̇ · Ṅ .

Evaluating at σ = 0 we conclude

kn = −u · Ṅ = −γ̇ · d
dσ
N. (1.52)

This expression makes it clear at once that the normal curvature kn at p in
the direction u is independent of any local parameterization X of the surface
S. One sees furthermore a linear dependence in the first factor of kn on
u = γ̇ = γ̇(0) ∈ TpS, though the dependence of the second factor Ṅ is less
clear. To make this dependence clear let us review the meaning of

Ṅ =
d

dσ
N

and also consider the local structure of the surface S itself from a different
point of view. The conclusion we wish to reach is the following:

Theorem 2 (bilinear form of normal curvature) There exists a real sym-
metric 3× 3 matrix M and a unique corresponding bilinear quadratic form

II : TpS × TpS → R

given by
II(v,w) = v ·Mw = 〈v,Mw〉R3

so that
kn = II(γ̇, γ̇);

the matrix M itself is not uniquely determined, but the value Mw for w ∈
TpS ⊂ R3 and the corresponding linear transformation S : TpS → TpS
determined by

Sw =Mw

are unique. In fact, for w = γ̇ = γ̇(0) ∈ TpS with |γ̇| = 1 there holds

Sγ̇ =Mγ̇ = − d

dσ
[N ◦ γ(σ)]∣∣

σ=0
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so that (1.52) may be written as

kn = II(γ̇, γ̇) = 〈γ̇, Sγ̇〉R3 . (1.53)

The function S = Sp : TpS → TpS is called the shape operator at p ∈ S,
and the function II = IIp is called the second fundamental form of the
surface.

Idea of the proof: The normal N : S → R3 has a smooth extension N : V →
R3 locally near a point p to an open set V ⊂ R3 with p ∈ V . The extension
mapping N has a full derivative M = DN which is a real symmetric 3 × 3
matrix valued function on V . The matrix M is not uniquely determined
because it depends on the extension N , and the extension is not unique. See
Exercises 1.33 and 1.34.

The directional derivative
Dγ̇N(p)

where u = γ̇ = γ̇(0) ∈ TpS with |u| = 1 or more generally DuN(p) for
u ∈ S2 ⊂ TpR

3 can be computed in various ways. One way is using the usual
definition

DuN(p) = lim
v→0

N(p+ vu)−N(p)

v
.

By the multivariable mean value theorem/chain rule there is some v∗ between
0 and v for which

N(p+ vu)−N(p) = DN(p+ v∗u)(vu).

Thus,
DuN(p) = lim

v→0
DN(p+ v∗u) u = DN(p) u.

On the other hand, if γ ∈ APpR
3 is an arclength parameterization of any

space curve with γ̇(0) = u, then

d

dσ
N ◦ γ(σ)∣∣

σ=0

= DN(p) γ̇ = DN(p) u

by the chain rule. In particular, if we take γ ∈ APpS, then N ◦ γ(σ) =
N ◦ γ(σ), and we see

Ṅ =
d

dσ
[N ◦ γ(σ)]∣∣

σ=0

= DN(p) γ̇
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as well. Most importantly, the value

Ṅ =
d

dσ
[N ◦ γ(σ)]∣∣

σ=0

is independent of the extension N .
Finally then we can set S(v) = −DNv for v ∈ TpS. This determines

a linear function/operator S : TpS → TpS which we know is well-defined
(independent of the extension N) because

S(v) = |v|S
(

v

|v|

)
= −|v| d

dσ
[N ◦ γ(σ)]∣∣

σ=0

where γ ∈ APpS with γ̇(0) = v/|v|. We define II : TpS×TpS by II(v,w) =
v·S(w) so that (1.52) and (1.53) hold. These are essentially all the assertions
of Theorem 2. �

The only real ingredient lacking in the discussion of the proof of Theo-
rem 2 above is the construction of the smooth local extension N : V → R3 of
the normal field N on a surface along the lines of the special cases considered
in Exercises 1.33 and 1.34. Let me attempt here to tie up this loose end.

==================

I want to give an alternative way to express the surface S locally near a
point p and in closer relation to the tangent plane to TpS. Intuitively it is
clear that some subset Br(p)∩S for some r > 0 should be expressible as the
graph of a function over some interior set in Tp. More precisely, there should
exist orthonormal vectors u1 and u2 in TpS and a function w ∈ C∞(W ) for
some open set W ⊂ R2 with 0 = (0, 0) ∈ W for which

S ∩Br(p) = {p+ x u1 + y u2 + w(x, y) N : (x, y) ∈ W}

where N = [Xu(0, 0)×Xv(0, 0)]/|Xu(0, 0)×Xv(0, 0)| is the unit normal S at
p. Obtaining this local structure for S and illuminating the relation between
the function w and the parameterization X in particular will require some
careful attention.

==========
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Taking r > 0 smaller if necessary, there is some δ > 0 for whichX−1(Br(p)∩
S) ⊂ Bδ(0) where Bδ(0) = {(u, v) ∈ R2 : u2 + v2 < δ2} and X : Bδ(0) →
X(Bδ(0) is a homeomorphism.

Associated with each (u, v) ∈ U or alternatively for each X(u, v) ∈ S∩V ,
there is a smooth orthonormal frame {u1,u2, N} for R3 determined by

u1 =
Xu

|Xu|
,

u2 =
Xv − (Xv · u1)u1

|Xv − (Xv · u1)u1|
, and

N =
Xu ×Xv

|Xu ×Xv|
.

In particular,

|Xu ×Xv|2 = |Xu|2|Xv|2 − (Xu ×Xv)
2 > 0,

incorporating the orientation reversing12 transformation (u, v) 7→ (−u, v) of
the domain U if necessary we may assume {u1,u2, N} is a right-handed
orthonormal frame field, and there is a well-defined two-dimensional vector
subspace of R3 given by

TXS = {aXu + bXv : a, b ∈ R} = {xu1 + yu2 : x, y ∈ R}.

In particular, the tangent space TpS at p ∈ S has an orthonormal basis
{
Xu

|Xu|
,
Xv − (Xu ·Xv)Xu/|Xu|2
|Xv − (Xu ·Xv)Xu/|Xu|2

}

where Xu = Xu(0, 0) and Xv = Xv(0, 0). The addition of

N = N(0, 0) =
Xu ×Xv

|Xu ×Xv|

results in a right handed orthonormal basis {u1,u2, N} for R3. Fixing for the
moment these values at (u, v) = (0, 0) in the vector space basis {u1,u2, N}
at p ∈ S, we consider two transformations of Euclidean space. The first is
Ξ : U → R2 given by

Ξ(u, v) = ([X(u, v)− p] · u1, [X(u, v)− p] · u2),

12See Exercise 1.32.
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and the second is ψ : U × R → R3 by

ψ(u, v, z) = X(u, v) + zN.

==========

Consider an open set V = Br(p) where r > 0 and the affine translate

{p+ xu1 + yu2 : x, y ∈ R}

of TpS. If r > 0 is small enough, then S ∩ V
I claim that for r > 0 small enough the equation/condition

xu1 + yu2 + zN = X(u, v)

Consider also the function ψ : R3 → R
3 by

ψ(x, y, z) = xu1 + yu2 + zN.

1.6 Digression on the calculus of variations

In section 1.4 we derived a partial differential equation

Mu = div

(
Du√

1 + |Du|2

)
= κu− λ

satisfied by any minimizer u = u0 of the capillary energy suggested by Gauss
and determining a mensicus surface

S = S0 = {(x, y, u(x, y)) : (x, y) ∈ Ω}

given as a graph over the domain Ω corresponding interior region of the
horizontal cross-section of a vertical capillary tube. The same approach gives
an equation

Mu = div

(
Du√

1 + |Du|2

)
= κu− λout (1.54)

satisfied by the outer meniscus graph S1 = {(x, y, u(x, y)) : (x, y) ∈ Ωout}
over the outer (or remainder of the bath) domain Ωout = Ω2\Ω1. In this sec-
tion I am going to give a separate, and in several aspects somewhat different,
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derivation of (1.54). One of the objectives of this different derivation is to
give a clear identification of the constants λ and λout as Lagrange parameters,
or Lagrange multipliers, as they arise in the general theory of the calculus
of variations. I will then explain how to combine elements of the discussion
above to conclude that the two nominally different Lagrange parameters λ
and λout must in fact be equal.

A careful statement of the principle of Lagrange multipliers as considered
in the elementary calculus of functions of several variables is the following:

Theorem 3 (principle of Lagrange multipliers in calculus) Assume f, g ∈
C1(U) where U is an open subset of Rn, and let

L = {x ∈ U : g(x) = c}

for some constant c ∈ R. If x0 ∈ L and there is some some δ > 0 for which
x0 satisfies

f(x0) ≤ f(x) for every x ∈ L ∩Bδ(x0)

then either Dg(x0) = 0 ∈ Rn or there is some constant λ ∈ R such that

Df(x0) = λDg(x0). (1.55)

The reader is encouraged to write down a proof of this assertion and especially
to model a proof on that of the “infinite dimensional version” we give below.
For the moment note two things: (1) The possibility that the gradient of
the constrant function vanishes is not vacuous: The function f(x, y) = x has
a minimum subject to the constraint g(x, y) = x2 + y2 = 0 at the origin
0 = (0, 0) ∈ R2, but the gradient of f is given by Df = (1, 0) and never
vanishes so that (1.55) cannot hold at the point x0 = (0, 0) where the local
minimum occurs. (2) An alternative framing for the second possitility (1.55)
is that the modified function f −λg has an interior critical point at x0 which
may be interpreted as a potential local minimum (without any constraint)
for the function f − λg. In practice, the modified function f − λg may not
have an unconstrained local minimum at x0. See Exercise 1.35.

Let us begin consideration of the infinite dimensional minimization prob-
lem with a constraint by observing that in the case of capillary graphs, or
standard meniscus minimizing shapes, in the simple capillary tubes prob-
lem the energy functional E , and the simplified/modified energy functional
F , may be considered with domain a standard set of real valued functions.
In more general situations, for example if one seeks a minimizing interface
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among parametric surfaces or especially if one considers situations in which
rigid structures may be deformed (elastocapillarity) or have pieces moving
relative to one another (as when one allows a floating object), then it may be
more natural (and necessary) to consider E = E [C] as a function of an entire
“configuration” on some kind of set modeling all the possible configurations,
and a larger collection of configurations than those determined entirely by a
free surface interface given as a graph in particular. So then we have con-
sidered E = E [C] with C a configuration above, but in the case of a vertical
capillary tube under consideration it is natural to consider E = E [u] and

E ,F : A =

{
u ∈ C∞(U) : u > 0, and u∣∣

∂Ω∪∂Ω1

> d0

}
→ R

where as usual Ω⊂⊂Ω1⊂⊂Ω2 and U = Ω ∪ Ωout = Ω ∪ (Ω2\Ω1).
Retaining the special case in which the admissible class A is assumed

to satisfy A ⊂ C2(U) for some bounded open set U ⊂ Rn, we consider a
general functional F : A → R. We assume in particular certain standard
aspects of the calculus of variations. Specifically, we assume that for some
ǫ > 0 the perturbation φ ∈ C∞

c (U) with ‖φ‖C1 < ǫ may be used to construct
an admissible variation u + φ. Thus, the standard perturbation space of
functions C∞

c (U) comes into play. We assume there is a second functional
G : A → R, and to simplify the discussion we assume both functionals F
and G are integral functionals of the form(s)

F [u] =

∫

x∈U
F (x, u,Du) and G[u] =

∫

x∈U
G(x, u,Du) (1.56)

where F,G ∈ C∞(U × R× Rn). The function F appearing in the integrand
of F is called the Lagrangian of the functional F and will be considered
as a function of the 2n + 1 variables x, z, and p so that F = F (x, z,p). A
similar description applies to the functional G. It will be noted that F does
not contain boundary integral terms corresponding to the wetting energies

−σ
∫

∂U

β u and −
∫

∂U

β u

in the actual capillary functionals E and F respectively. Again, this is only to
simplify the discussion. The argument in the proof uses only “interior vari-
ations” so that additional integral terms like these wetting energies would
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essentially constitute only additive constants. Specifically, there is no prob-
lem allowing the more general form

F [u] =

∫

x∈U
F (x, u,Du) +

∫

x∈∂U
Fb(x, u,Du) (1.57)

as long as Γ = ∂U and Fb : ∂U×R×Rn → R are suitable for integration. If for
example Γ is a union of disjoint C1 curves of finite length and Fb ∈ C0(∂U ×
R × Rn), then there is no problem. Perhaps the most general assumption
would be that Γ = ∂U is a rectifiable curve. We will consider “boundary
variations” later. At that time we will focus on the wetting energies and
assume considerably more regularity than required for this discussion.

The functional G may be compared to the volume functional

G[u] =
∫

U

u

which of course has no boundary integral terms. For the reasons discussed
above, there is no problem considering the more general form

G[u] =
∫

x∈U
G(x, u,Du) +

∫

x∈∂U
Gb(x, u,Du) (1.58)

as long as ∂U and Gb are suitably regular.
The perturbation space C∞

c (U) is an infinite dimensional linear space, and
an integral functional like F does not, of course, have a standard “gradient”
like a real valued function of several variables in calculus. Such a functional
does admit, however, an analogue of the differential map dfx : TxR

n → TxR
for a real valued function f ∈ C1(U). This “infinite dimensional” differential
is called the first variation of F and is itself a functional defined on the
infinite dimensional linear space of perturbations:

δFu : C∞
c (U) → R

by

δFu[φ] =

∫

x∈U

∂F

∂z
(x, u,Du) φ+

∫

x∈U

n∑

j=1

∂F

∂pj
(x, u,Du)

∂φ

∂xj
.

This value is also given by

δFu[φ] =
d

dh
F [u+ hφ]∣∣

h=0

.
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The functional δFu is clearly linear on C∞
c (U) so that δFu is in the algebraic

dual space associated to C∞
c (U). It is somewhat more complicated to say

δFu : C∞
c (U) → R is continuous because this requires a topology on C∞

c (U),
and there is no natural norm or simple distance on the space. We will
not discuss the topology on C∞

c (U) in detail nor justify the assertion that
δFu is in the so called continuous dual space (C∞

c (U))∗ of continous linear
functionals on C∞

c (U), but one can roughly see this is true in the sense that if
{φj}∞j=1 is a sequence of functions in C∞

c (U) converging to the zero function

in Ck(U) for some k ≥ 1, for example this is true for every k if φj = (1/j)φ
for some fixed φ ∈ C∞

c (U), then it is pretty clear that

lim
jր∞

δFu[φj] = 0.

In any case, we will go ahead and write δFu ∈ (C∞
c (U))∗. No implication of

this assertion will be used in any explicit way anyway, but the exploration of
C∞

c (U) as a topological linear space is something that can be taken up as an
interesting aside in an effort to strengthen the interpretation of the calculus
of variations in terms of the familiar concepts from elementary calculus.

Since the perturbation space C∞
c (U) is an infinite dimensional linear

space, it is natural to consider the admissible class A as “infinite dimen-
sional.” In particular, we wish to prove the following “infinite dimensional”
version of the principle of Lagrange multipliers in the calculus of variations:

Theorem 4 (principle of Lagrange multipliers in the calculus of variations)
Assume F ,G : A → R are integral functionals of the form (1.57) and (1.58)
where U is a bounded open subset of Rn and A has the property that given
u ∈ A there is some ǫ > 0 for which u + φ ∈ A whenever φ ∈ C∞

c (U) with
‖φ‖C1 < ǫ. Let

L = {u ∈ A : G[u] = c}

for some constant c ∈ R. If u0 ∈ L and there is some some δ > 0 for which
u0 satisfies

F [u0] ≤ F [u] for every u ∈ L ∩Bδ(u0)

where Bδ(u0) = {u ∈ A : ‖u− u0‖C1 < δ}, then either δGu0 = 0 ∈ (C∞
c (U))∗

or there is some constant λ ∈ R such that

δFu0 = λδGu0 . (1.59)



60 CHAPTER 1. THE FIRST PROBLEM(S)

Proof: For any φ, ψ ∈ C∞
c (U) consider u + hφ + kψ and the function g :

R2 → R by

g(h, k) = G[u+ hφ+ kψ]

in particular. Notice the function u+ hφ+ kψ will be admissible, i.e., in A,
for h and k small enough, say on Bǫ(0, 0) for some ǫ > 0. We wish to choose
k = k(h) so that in fact on some interval −ǫ < h < ǫ the constraint condition

G[u+ hφ+ kψ] = c

holds. This assertion was extremely easy in our discussion above when G
happened to be the volume functional for a capillary graph. A generalization
allowing more general constraint functionals G is one of the main points of
this digression.

The function g : Bǫ(0) → R satisfies g ∈ C1(Bǫ(0)) and

Dg(0) =

(
∂g

∂h
(0),

∂g

∂k
(0)

)
= (δGu[φ], δGu[ψ]) .

See Exercise 1.36. The dichotomy of the theorem arises here: Either δGu is
the zero functional, or we can choose ψ ∈ C∞

c (U) so that δGu[ψ] 6= 0 and
consiquently

Dg(0, 0) 6= (0, 0) with
∂g

∂k
(0, 0) = δGu[ψ] 6= 0

in particular. In the latter case we conclude from the implicit function theo-
rem (at least informally) that the equation g(h, k) = c can be solved uniquely
on some interval −ǫ < h < ǫ for k as a function of h with k = k(h) having reg-
ularity determined by and matching the regularity of g. Thus, if g ∈ Ck(R2)
for some k ∈ {1, 2, 3, . . . , }, then k ∈ Ck(−ǫ, ǫ) as well.

Let us attempt to give this assertion in a little more precise form using
the inverse function theorem. For this let us define Φ : R2 → R2 by Φ(h, k) =
(h, g(h, k)). Notice that Φ(0, 0) = (0, c). Also,

DΦ =

(
1 0
gh gk

)
and detDΦ(0, 0) =

∂g

∂k
(0, 0) = δGu[ψ] 6= 0.

Consequently, the inverse function theorem says that for some ǫ > 0, the
function Φ : Bǫ(0, 0) → Φ(Bǫ(0, 0)) is one-to-one, onto, and has an inverse
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Φ−1 ∈ C∞(Φ(Bǫ(0, 0)) → Bǫ(0, 0)). Let us denote the coordinate functions
of Φ−1 by id and β = β(h, η). Given that

Φ ◦ Φ−1(h, η) = (id(h, η), g(id(h, η), β(h, η)) = (h, η),

it is clear that id(h, η) ≡ h. Finally, we take k : (−ǫ, ǫ) → R by k(h) =
β(h, c). This, it will be noted, is the value corresponding to a unique point
(h, k(h)) = (h, β(h, c)) ∈ Bǫ(0, 0) for which

Φ(h, β(h, c)) = (h, c).

In particular g(h, k(h)) = c. Thus, k(h) is indeed a solution of the “equation”
g(h, k) = c for k as a function of h, and if (h, k̃) were any other element of
Bǫ(0) for which g(h, k̃) = c, then we would have

Φ(h, k̃) = (h, g(h, k̃)) = (h, c)

so that applying Φ−1 to both sides we have (h, k̃) = (h, β(h, c)) = (h, k(h)).
Thus, h̃ = k(h) = β(h, c) is uniquely determined. This is the content of the
assertion of the implicit function theorem. See Exercise 1.37.

The discussion above gives us a one parameter family of admissible func-
tions u+ hφ+ k(h)ψ with

G[u+ hφ+ k(h)ψ] = c.

Furthermore, differentiating the defining relation g(h, k(h)) = c, we find

∂g

∂h
(0, 0) +

∂g

∂k
(0, 0) k′(0) = 0,

so

k′(0) = − δGu[φ]

δGu[ψ]
.

Assuming u is a/the minimizer (called u0 in the statement of the theorem)
we know

d

dh
F [u+ hφ+ k(h)ψ]∣∣

h=0

= 0.

That is,

δFu[φ] + k′(0) δFu[ψ] = δFu[φ]−
δFu[ψ]

δGu[ψ]
δGu[φ] = 0.
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Setting

λ =
δFu[ψ]

δGu[ψ]
,

we obtain the assertion of the theorem. �

Applying Theorem 4 to the minimization of the capillary energy E (or F)
subject to the constraint of volume we can consider

F =

∫

U

√
1 + |Du|2 =

∫

∂U

β u+
κ

2

∫

U

u2

given in (1.23) subject to (1.25)
∫

U

u = CV

where CV is a constant related to the total volume V and with U = Ω∪Ωout.
As mentioned above, the boundary integral terms in F play no role in the
techniques of interior variation used in the proof of Theorem 4. The result
is that there is a constant λ ∈ R for which

δ(F − λG)u[φ] =
∫

U

Du√
1 + |Du|2

·Dφ+

∫

U

(κu− λ)φ = 0

for all φ ∈ C∞
c (U) where U = Ω ∪ Ωout.

The usual integration by parts and application of the fundamental lemma
of vanishing integrals, assuming u ∈ C2(U) now gives the capillary equation

div

(
Du√

1 + |Du|2

)
= κu− λ (1.60)

on all of U = Ω ∪ Ωout notably with a single constant λ. Reflection on the
argument of section 1.4 leads to two observations: The two test functions ψ
and φ in the argument were entirely independent of one another and there
is/was no particular reason to restrict the test function φ (nor the test funtion
ψ for that matter) to the class C∞

c (Ω). In fact, allowing φ ∈ C∞
c (U) where

U = Ω ∪ Ωout gives the same conclusion of (1.60).
It is in fact true that a minimizing function u ∈ C2(U) satisfies

div

(
Du√

1 + |Du|2

)
= κu− λ on Ω
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and

div

(
Du√

1 + |Du|2

)
= κu− λout on Ωout

for some constants λ and λout. These constants given according to (1.33) by

λ =
1∫
Ω
ψ

(∫

Ω

Du ·Dψ√
1 + |Du|2

+ κ

∫

Ω

u ψ

)

and similarly by

λout =
1∫

Ωout
ψ

(∫

Ωout

Du ·Dψ√
1 + |Du|2

+ κ

∫

Ωout

u ψ

)

may be different if the volumes above the regions Ω and Ωout are sepearately
and independently kept fixed. If these separate volumes are allowed to vary
independently subject to the constraint that they sum to a single constant,
corresponding physically to the condition that the liquid under the two com-
ponents of the meniscus are allowed to communicate with one another, then
these two constants must be the same. This is the case no matter which
function ψ is chosen, and in particular, the more general value

λ =
1∫
U
ψ

(∫

U

Du ·Dψ√
1 + |Du|2

+ κ

∫

U

u ψ

)

may be allowed corresponding to the more general choice of a fixed function
ψ ∈ C∞

c (U). See Exercise 1.38.

The boundary condition

We have now established that a minimizer u ∈ C2(U) must satisfy a partial
differential equation of prescribed mean curvature

div Tu = κu− λ

where T : C1(U) → C0(U → Rn) by

Tu =
Du√

1 + |Du|2
.
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This conclusion was given in Theorem 1 for the inner tube region Ω, and
we have seen in various ways that the same conclusion holds on all of U =
Ω ∪ Ωout for some Lagrange parameter λ. We now augment this geometric
partial differential equation with an appropriate boundary condition. To
this end we assume ∂U is a set with adequate regularity to allow integration
and certain continuity properties. One possibility is that ∂Ω consists of
three C2 simple closed curves ∂Ω, ∂Ω1 and ∂Ω2. Upon these curves we
recognize the unit normal ν pointing out of U , and consider a particular test
function φ ∈ C∞

c (∂U) by which we mean the restriction to ∂U of a function
φ ∈ C∞

c (R2). We will give more detail on this point when the time comes.
For the moment we observe that given the volume constraint condition on
the perturbation, namely,

∫

U

(u+ φ) =

∫

U

u or simply

∫

U

φ = 0

we should have
d

dh
F [u+ hφ]∣∣

h=0

= 0. (1.61)

Accordingly, we compute

d

dh
F [u+ hφ] =

d

dh

(∫

U

√
1 + |Du+ hDφ|2

−
∫

∂U

β(u+ hφ) +
κ

2

∫

U

(u+ hφ)2
)

=

∫

U

(Du+ hDφ) ·Dh√
1 + |Du+ hDφ|2

−
∫

∂U

β φ+ κ

∫

U

(u+ hφ)φ.

Setting h = 0, we obtain a first necessary condition for a minimizer associated
with boundary variations:

∫

U

Tu ·Dφ−
∫

∂U

β φ+ κ

∫

U

u φ (1.62)

for all φ ∈ C∞
c (R2) for which

∫

U

φ = 0. (1.63)
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Integrating by parts, or more properly applying the divergence theorem in
conjunction with the product rule

div(φ Tu) = Tu ·Dφ+ φ div Tu,

we can write (1.62) in the form

∫

∂U

(Tu · ν)φ −
∫

U

(div Tu− κu)φ−
∫

∂U

β φ = 0 (1.64)

where ν is the unit normal field on ∂U pointing out of U and again the
condition holds for all φ ∈ C∞

c (R2) satisfying the volume constraint condition
(1.63). We have shown above that the expression

div Tu− κu

takes a constant value −λ, so the area integral term vanishes:

−
∫

U

(div Tu− κu)φ = λ

∫

U

φ = 0.

More generally, if we wish to preserve the naive view that div Tu−κu might
be piecewise constant taking values −λ on Ω and λout on Ωout, a view that
arose by considering volume preserving perturbations with support restricted
to the domains Ω and Ωout respectively, then we can impose the additional
restriction(s)

φ ∈ C∞
c (R2\Ωout) and alternatively φ ∈ C∞

c (R2\Ω)

along with (1.63) which becomes in these cases

∫

Ω

φ = 0, alternatively

∫

Ωout

φ = 0.

In any case, we may conclude
∫

∂Ω

(Tu · ν − β0)φ = 0 (1.65)

if φ ∈ C∞
c (R2\Ωout) and ∫

Ω

φ = 0,
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while
∫

∂Ωout

(Tu · ν − β)φ =

∫

∂Ω1

(Tu · ν − β1)φ+

∫

∂Ω2

(Tu · ν − β2)φ = 0 (1.66)

if φ ∈ C∞
c (R2\Ω) and ∫

Ωout

φ = 0.

As usual the question is: What conclusions can be drawn concerning the
minimizing solution u : U → R from these integral conditions?

Theorem 5 (boundary condition(s)) If u ∈ C2(U) minimizes the capillary
energy E determined by a capillary tubes domain U = Ω∪Ωout as described
above with ∂U consisting of C2 embedded and nested simple closed curves
∂Ω, ∂Ω1 and ∂Ω2 over which the piecewise constant values β0, β1, and β2 as
adhesion coefficients are assumed respectively, then

Tu · ν =





β0, x ∈ ∂Ω
β1, x ∈ ∂Ω1

β2, x ∈ ∂Ω2.

Proof: Assume by way of contradiction that for some point p ∈ ∂Ω there
holds

Tu · ν 6= β0

in the integral condition (1.65). Let us in fact assume as a first case that

Tu(p) · ν(p)− β0 = α > 0. (1.67)

Let µ ∈ C∞
c (R2) be a specific test function given as follows:

µ(x, y) =





1
c0
e

1

x2 + y2 − 1 , x2 + y2 < 1

0, x2 + y2 ≥ 1

where

c0 =

∫

B1(0,0)

e

1

x2 + y2 − 1 ,
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so that supp(µ) = B1(0, 0), µ(x, y) > 0 for x2 + y2 < 1, and
∫

R2

µ = 1.

The construction now becomes a little delicate. For each h > 0 consider
φ ∈ C∞

c (Rn) given by

φ(x) =
1

h2
µ

(
x− p

h

)
− c

h2
µ

(
x− (p− 2hν)

h

)

where

c =
1

h2

∫

x∈Ω
µ

(
x− p

h

)
.

For h small Bh(p− 2hν)⊂⊂Ω and consequently
∫

x∈Ω

c

h2
µ

(
x− (p− 2hν)

h

)
=

∫

x∈Bh(p−2hν)

c

h2
µ

(
x− (p− 2hν)

h

)
= c

and ∫

Ω

φ = 0.

That is, φ is a volume preserving perturbation. Also for h small φ ∈
C∞

c (R2\Ωout), so (1.65) holds. In view of (1.67) we may assume by con-
tinuity that

Tu(x) · ν(x)− β0 ≥
α

2
> 0 for x ∈ ∂Ω ∩ Bh(p).

Thus we see

0 =

∫

∂Ω

(Tu · ν − β0)φ ≥ α

2

∫

∂Ω

φ.

Here of course φ denotes the restriction

φ = φ∣∣
∂Ω

.

We obtain a contradiction as long as
∫

∂Ω

φ∣∣
∂Ω

> 0.

For this we only need a simple continuity/monotonicity property of integra-
tion on ∂Ω: Note that the restriction satisfies
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(i) φ ∈ C0(∂Ω),

(ii) φ ≥ 0, and

(iii) φ(p) > 0.

Thus, the condition ∫

∂Ω

φ =

∫

Bh(p)∩∂Ω
φ > 0

is adequate, and this certainly holds if ∂Ω is a C2 curve. See Exercise 1.39.

We reach a similar contradiction if Tu(p) · ν(p) − β0 ≤ −α/2 for some
α > 0, namely for h > 0 small

∫

∂Ω

(Tu · ν)φ =

∫

∂Ω∩Bh(p)

(Tu · ν)φ ≤ −α
2

∫

Bh(p)∩∂Ω
φ < 0.

We leave it to the reader (Exercise 1.40) to formulate a more elegant proof
giving the assertion Tu · ν = βj on ∂Ωj , when j = 1, 2,. �

A different proof showing λout = λ

We now offer another proof that λ = λout using the simple variation (1.28) of
section 1.3 and the formula (1.30) for the lifted volume in particular. We will
also use the assertion/boundary condition of Theorem 5 which we note did
not depend on the equality λout = λ. This proof illustrates more clearly the
modeling of the communication of liquid between the physical liquid above
the inner tube and the outer bath. We note also that the variation (1.28)
gives an example of a variation that moves the boundary values.

Note that the formula for the lifted volume (1.30) may take the form

κ
1

area(Ω)

∫

Ω

u − β0
length(∂Ω)

area(Ω)
=

κ
1

area(Ωout)

∫

Ωout

u − β1
length(∂Ω1)

area(Ωout)
− β2

length(∂Ω2)

area(Ωout)
.

We proceed to obtain alternative expressions for λ and λout via integra-



1.7. SIMPLE OBSERVATIONS ABOUT THE CAPILLARY EQUATION69

tion. Integrating the equation div Tu = κu− λ over Ω we find

λ =
1

area(Ω)

(
κ

∫

Ω

u−
∫

Ω

div Tu

)

=
1

area(Ω)

(
κ

∫

Ω

u−
∫

∂Ω

Tu · ν
)

=
1

area(Ω)

(
κ

∫

Ω

u−
∫

∂Ω

β0

)

=
1

area(Ω)

(
κ

∫

Ω

u− β0 length(∂Ω)

)
.

Similarly, integrating div Tu = κu− λout over Ωout yields

λout =
1

area(Ω)

(
κ

∫

Ωout

u−
∫

Ωout

div Tu

)

=
1

area(Ωout)

(
κ

∫

Ωout

u−
∫

∂Ωout

Tu · ν
)

=
1

area(Ωout)

(
κ

∫

Ωout

u−
∫

∂Ω1

β1 −
∫

∂Ω2

β2

)

=
1

area(Ωout)

(
κ

∫

Ωout

u− β1 length(∂Ω2 − β2 length(∂Ω2)

)
.

Thus, we see the lifted volume formula of section 1.3, when propertly inter-
preted, says precisely that λout = λ. �

1.7 Simple observations about the capillary

equation

By considering a vertical translation u = u0 + c we obtain a one-to-one
correspondence between solutions of the PDE (1.35) and the equationM [u−
c] = κ(u−c)+λ for u. Since the mean curvature operator (like the Laplacian)
is invariant under vertical translation, we have M [u − c] = Mu, and taking
c = λ/κ we can see every sulution of (1.35) is a vertical translate of a solution
of

Mu = div

(
Du√

1 + |Du|2

)
= κu.
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1.8 Axioms for 2-D mathematical capillarity

1.9 Exercises

Exercise 1.1 Let D denote the toroidal region

D =

{
(x, y, z) :

∣∣∣∣∣(x, y, z)−
2√

x2 + y2
(x, y, 0)

∣∣∣∣∣ < 1, 1 ≤ x2 + y2 < 3

}
,

and let R = R3\D model a rigid support structure with boundary containing
the wetted region W determined by the interface

S = {2(cos t, sin t, 0) + r(cos(t/2) cos t, cos(t/2) sin t, sin(t/2)) :

t ∈ R, −1 < r < 1}. (1.68)

Determine the following

(a) The wetted region W in ∂R. Find chart functions Y : U → W giving
regular local parameterizations of W on some open sets U ⊂ R2. By
regular here, we mean Y : U → Y (U) is a homeomorphism and

∂Y

∂x1
× ∂Y

∂x2
6=




0
0
0


 .

For example the restriction

X∣∣
Uj

: Uj → S

where

X(t, r) = 2(cos t, sin t, 0) + r(cos(t/2) cos t, cos(t/2) sin t, sin(t/2))

is given by the formula in (1.68) gives a regular parameterization of an
open half of the Möbius strip S when

U1 = (−π/2, π/2)× (−1, 1),

U2 = (0, π)× (−1, 1),

U3 = (π/2, 3π/2)× (−1, 1), or

U4 = (π, 2π)× (−1, 1)
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with

S =

4⋃

j=1

X(Uj).

(b) The contact line Γ = S∩W . Find a regular parameterization γ : R → Γ
of the contact line.

(c) The volume V bounded by by S, Γ and W.

(d) The angle at which S meets W along Γ.

Exercise 1.2 Let V, S, Γ, and W be as described in Exercise 1.1. Con-
sider/answer the following questions:

(a) What is the angle at which S meets W along Γ measured within the
volume V?

(b) Do the wetted regions S and W constitute a configuration satisfying
configuration properties 1-3 above?

(c) Can you modify this configuration to obtain a configuration in which the
contact angle γ measured within the volume V is not well-defined?

(d) Can you think of some reasons to rule out configurations of this kind?
Hint: What is peculiar about a/the physical capillary system modeled
by this configuration?

(e) What is the mean curvature of S?

Exercise 1.3 Make a composite drawing of the capillary tubes configuration
containing the elements in both Figure 1.2 and Figure 1.3. Label all wetted
regions W0,W1, . . . ,W4 and associated boundaries (including contact lines)
Γ0,Γ1, . . . ,Γ5 as identified/discussed above, and identify the following:

(a) ∂S1 = Γi∪Γj where Γi and Γj are circles from among (1.7), (1.8), (1.14),
(1.15), (1.16).

(b) ∂W1 = Γi ∪ Γj where Γi and Γj are circles from among (1.7), (1.8),
(1.14), (1.15), (1.16).

(c) ∂W2 = Γi ∪ Γj where Γi and Γj are circles from among (1.7), (1.8),
(1.14), (1.15), (1.16).
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(d) ∂W3 = Γi ∪ Γj where Γi and Γj are circles from among (1.7), (1.8),
(1.14), (1.15), (1.16).

(e) ∂W4 = Γi ∪ Γj where Γi and Γj are circles from among (1.7), (1.8),
(1.14), (1.15), (1.16).

Exercise 1.4 Find smooth extensions of each of the wetted surfaces W0,
W1, W2, W3, and W4 from Exericse 1.3 above.

Exercise 1.5 What is the radius of each circle Γ0, Γ1, Γ2, Γ3, Γ4 and Γ5

from Exericse 1.3 above?

Exercise 1.6 How does the expression

ρg

∫

V
z

given in (1.18) change if instead of a a constant, the density of the liquid is
assumed to be given by a spatially dependent function ρ : V → (0,∞)?

Exercise 1.7 Let u0 ∈ C2(U) be an admissible meniscus function for the
capillary tubes problem in the sense that U = Ω ∪ Ωout with Ω⊂⊂Ω1 ⊂⊂Ω2

nested domains,
Ωout = Ω2\Ω1,

u0 > 0 and
u0
∣∣
∂(Ω1\Ω)

> d0

where d0 is a positive constant. Find the maximum value of ǫ > 0 (and show
there is such a value) for which the function u ∈ C2(U) given in (1.28) by

u(x, y) =

{
u0(x, y) + h, (x, y) ∈ Ω
u0(x, y)− h area(Ω)/ area(Ωout), (x, y) ∈ Ωout

is admissible in the sense that u satisfies u > 0,

u∣∣
Ω1\Ω

> d0,

and ∫

Ω

u+

∫

Ωout

u =

∫

Ω

u0 +

∫

Ωout

u0



1.9. EXERCISES 73

for h < ǫ. Hint: You should be able to express your answer in terms of the
four positive numbers

min{u(x, y)− d0 : (x, y) ∈ ∂Ω} = min
∂Ω

u− d0,

min{u(x, y)− d0 : (x, y) ∈ ∂Ω1} = min
∂Ω1

u− d0,

min
Ω
u, and min

Ωout

u.

Exercise 1.8 Substitute the expression for the competitor mensicus func-
tion u given in (1.28) into (1.22) and calculate

d

dh
E [Ch] and

d

dh
E [Ch]∣∣

h=0

to verify (1.29) and hence the formula (1.30) for the lifted volume.

In certain instances, it is natural to designate a different quantity as the
lifted volume. The next two exercises describe one such case.

Exercise 1.9 Assume the surface of the container and the outer surface of
the capillary tube in the capillary tubes problem are coated with a substance
so that the wetted regions W1 and W2 share a common liquid-surface ad-
hesion coefficient β1 = β2 = 0 but the inner surface of the capillary tube
maintains adhesion coefficient β0. For notation, see Exercise 1.3 above.

(a) Derive a formula analogous to (1.30) for the quantity

∫

Ω

u0

giving the integral of a minimizing inner meniscus function

u0 = u0∣∣
Ω

> 0

in terms of the integral of the outer minimizing mensiscus function

uout = u0∣∣
Ωout

> 0.



74 CHAPTER 1. THE FIRST PROBLEM(S)

(b) Assume the outer minimizing meniscus function uout is a positive con-
stant,13 and use your formula from part (a) above to express the quan-
tity ∫

Ω

u0 −
∫

Ω

uout =

∫

Ω

u0 − uout area(Ω) (1.69)

in terms of κ = ρ g/σ and length(∂Ω).

(c) Explain why the quantity in (1.69) is naturally designated the lifted
volume in this case.

(d) Draw illustrations to accompany your explanation in part (c) above with
at least one for the case β0 > 0 and one for the case β0 < 0. What
might be a better name for the quantity in (1.69) in the case β0 < 0?

Exercise 1.10 Assume the Archimedean bath hypothesis β1 = β2 = 0 and
uout is a positive constant of Exercise 1.9, but assume the inner adhesion
coefficient β0 may be spatially dependent with β0 ∈ C0(∂Ω0).

(a) Show the lifted volume does not depend on the outer tube domain Ω1

nor the container domain Ω2 in any way.

(b) How is the assertion of part (a) simply translated/applied to the situ-
ation of the concentric circular cylindrical tube and container? Hint:
The raised volume depends only on. . . .

Exercise 1.11 Let u0, φ, and ψ be fixed in C∞(U) where U is a bounded
open subset of Rn and let h be a fixed real number. Show an L1 estimate

∥∥∥∥
1

v

(√
1 + |Du0 + (h + v)Dφ+ k(h+ v) Dψ|2

−
√

1 + |Du0 + hDφ+ k(h) Dψ|2
)∥∥∥∥ < C

that holds uniformly for v ∈ R. Hint: The constant C may depend on. . .

Exercise 1.12 (fundamental lemma of vanishing integrals) Show that if f ∈
C0(U) where U is an open subset of Rn and

∫

U

f φ = 0 for every φ ∈ C∞
c (U),

13This may be called the Archimedean bath hypothesis.
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then f(x) = 0 for every x ∈ U . Hint(s): Assume by way of contradiction
that f(x0) > 0 for some x0 ∈ U . Choose a particular φ ∈ C∞

c (U) to obtain
a contradiction.

Exercise 1.13 Let U be a fixed bounded, open, and connected subset of
R

2; let M : C2(U) → C0(U) denote the associated capillary operator and let
∆ : C2(U) → C0(U) denote the Laplace operator.

(a) Show minimizers of the Dirichlet energy D : C2(U) → C0(U) by

D[u] =

∫

U

|Du|2 (1.70)

are solutions of Laplace’s equation.

(b) Show minimizers of the Dirichlet energy (1.70) subject to the con-
straint ∫

U

u = c

where c is some constant are solutions of some version of Poisson’s
equation.

(c) The assertions of parts (a) and (b) are said to give variational for-
mulations for Laplace’s equation and (a special case of) Poisson’s
equation. Can you find a variational formula for Poisson’s equation in
general where f ∈ C0(U) is a given function?

Exercise 1.14 Let M and ∆ be as in Exercise 1.13.

(a) Show ∆[au+ bv] = a∆u+ b∆v for a, b ∈ R and u, v ∈ C2(U) so that ∆
is linear.

(b) Show by example that M [au] is not always aMu for a ∈ R and u ∈
C2(U) so that M is nonlinear.

(c) Show by example thatM [u+v] is not always Mu+Mv for u, v ∈ C2(U)
so that (again) M is nonlinear.

Exercise 1.15 Let M and ∆ be as in Exercise 1.13 and let α > 0 be a pos-
itive constant. Consider the scaling transform(ation) A : C2(U) → C2(αU)
given by Au = v where

v(x) = α u
(x
α

)

and αU = {αx : x ∈ U}.
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(a) Calculate Mv =MAu.

(b) Calculate ∆v = ∆Au.

Technically the operators M and ∆ featured in parts (a) and (b) are nom-
inally different operators because they have different domains with respect
to the set αU , but of course the structural formulas for these nominally dif-
ferent operators are exactly the same as the corresponding operator of the
same name from Exercise 1.13.

Exercise 1.16 (∆u = κu− λ) Let κ and λ be fixed real constants.

(a) Show that every solution of ∆u = κu− λ has the form

u = uh + up

where up is a solution of the Poisson equation ∆up = −λ and uh is a
solution of the homogeneous PDE ∆uh = κuh.

(b) In one space dimension the PDE ∆u = κu− λ becomes the ODE u′′ =
κu− λ. Solve the Poisson equation u′′p = −λ in this case.

(c) Find the general solution of u′′h = κuh

(i) when κ < 0,

(ii) when κ = 0, and

(iii) when κ > 0.

Exercise 1.17 (curvature) Consider the circle

Γ = {(x, y) ∈ R
2 : x2 + (y − r)2 = r2}.

(a) Express Γ ∩ Br
√
2(0) as the graph of a function u : Cω(−r, r).

(b) Calculate u′′(0) for the function you found in part (a).

(c) Let ǫ0 > 0 and x0 ∈ (−r, r). Consider a function v ∈ C2(−ǫ0, ǫ0)
satisfying the following:

(i) v(x0) = u(x0),

(ii) v′(x0) = u′(x0), and
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(iii) v′′(x0) = u′′(x0).

It is reasonable to define the curvature of the graph

G = {(x, v(x)) : −ǫ0 < x− x0 < ǫ0}

of v at P0 = (x0, v(x0)) to be k = 1/r. Show that for some ǫ > 0, some
a, b ∈ R with a < 0 < b, and some g ∈ C2(a, b) the curve G ∩ Bǫ(P0)
can be expressed as

{
(x0, v(x0)) + t

(1, v′(x0))√
1 + v′(x0)2

+ g(t)
(−v′(x0), 1)√
1 + v′(x0)2

: t ∈ (a, b)

}
.

(d) Calculate a formula for g′′(0) in terms of v′(x0) and v′′(x0) where g is
the function you found in part (c); apply this calculation to the special
case v ≡ u.

Exercise 1.18 Let u ∈ C2(a, b) where a, b ∈ R with a < b. Draw a picture
illustrating the inclination angle ψ of the graph of u given by

ψ = sin−1

(
u′√

1 + u′2

)
.

Exercise 1.19 Consider α ∈ C2(R → R2) by α(t) = (t3, t2).

(a) Give an accurate sketch of the image curve

Γ = {α(t) : t ∈ R}

determined by α.

(b) What happens if you attempt to reparameterize Γ by arclength?

(c) Show there exists no regular paraemeterization of Γ.

Exercise 1.20 (a Frenet’s equation for a planar curve) Consider γ ∈ C2((a, b) →
R

3) where a, b ∈ R with a < b and |γ̇(s)| ≡ 1. Assume

~k = γ̈ = |γ̈| n 6= 0.

Show ṅ = −k γ̇ = −|γ̈| γ̇.
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Exercise 1.21 (a Frenet’s equation) Consider γ ∈ C3((a, b) → R3) where
a, b ∈ R with a < b and |γ̇(s)| ≡ 1. Assume

~k = γ̈(s0) 6= 0.

(a) Show {γ̇,n, γ̇ × n} is an orthonormal basis for R3 at γ(s0).

(b) Show
ṅ = −k γ̇ + τ γ̇ × n

where τ = τ(s) is some real valued function defined locally near s0 ∈
(a, b). Hint: ṅ = (ṅ · γ̇) γ̇ + (ṅ · n) n+ (ṅ · γ̇ × n) γ̇ × n.

Exercise 1.22 (C2 curves) Consider the (space) curve Γ with parameteri-
zation α ∈ C2(R → R3) given in (1.44).

(a) Calculate α′ and verify in particular that α′(0) is well-defined.

(b) Reparameterize this curve by arclength and calculate the curvature
vector n = n(s) determined by the arclength parameterization γ ∈
C2(R → R3) with γ(0) = α(0). In particular, show

γ̈ ∈ C0(R → R
3).

(c) Show Γ has nonvanishing curvature so that the principal unit normal
n ∈ C0(R → R

3) given by

n(s) =
γ̈(s)

|γ̈(s)|
is well-defined with image in S2 = {x = (x1, x2, x3) ∈ R3 : x21+x

2
2+x

2
3 =

1}.

(d) Show the principal unit normal n from part (c) above satisfies

lim
s→0

n(s)− n(0)

s
does not exist.

Exercise 1.23 (C2 curves) Construct examples of planar curves Γ with C2

regular parameterizations α ∈ C2((a, b) → R2) for some a, b ∈ R with a < b
such that α(t0) ∈ Γ is an isolated point of vanishing curvature, that
is a local parameterization γ ∈ C2((−ℓ,m) → R2) of Γ by arclength with
γ(0) = α(t0) satisfies γ̈(0) = 0 but γ̈(s) 6= 0 for s 6= 0, and having the
following properties:
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(a)
lim
s→0

n(s)

does not exist.

(b)
lim
s→0

n(s)

exists, and the function

ν(s) =

{
n(s), s 6= 0
lims→0 n(s), s = 0

satisfies ν ∈ C1((−ℓ,m) → R2).

(c)
lim
s→0

n(s)

exists, and the function

ν(s) =

{
n(s), s 6= 0
lims→0 n(s), s = 0

satisfies ν ∈ C0((−ℓ,m) → R2)\C1((−ℓ,m) → R2).

(d)
lim
s→0

n(s)

exists, and the function

ν(s) =

{
n(s), s 6= 0
lims→0 n(s), s = 0

satisfies ν /∈ C0((−ℓ,m) → R2).

Exercise 1.24 (C2 curves) Show that if Γ is a curve with C2 regular pa-
rameterization α ∈ C2((a, b) → R

3) for some a, b ∈ R with a < b satisfying

(i) Γ has nonvanishing curvature, and

(ii) Γ is planar, that is,

α(t) ∈ Π = {x = (x1, x2, x3) ∈ R
3 : (x− p) ·N = 0}

for some p = (p1, p2, p3) and N = (N1, N2, N3) in R3,
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then Γ has a well-defined principal normal n ∈ C1((a, b) → S2).

Exercise 1.25 (C2 curves) Construct examples of curves Γ with C2 regular
parameterizations α ∈ C2((a, b) → R3) for some a, b ∈ R with a < b such
that α(t0) ∈ Γ is an isolated point of vanishing curvature, that is a local
parameterization γ ∈ C2((−ℓ,m) → R

3) of Γ by arclength with γ(0) = α(t0)
satisfies γ̈(0) = 0 but γ̈(s) 6= 0 for s 6= 0, and having the following properties:

(a)
lim
s→0

n(s)

does not exist.

(b)
lim
s→0

n(s)

exists, and the function

ν(s) =

{
n(s), s 6= 0
lims→0 n(s), s = 0

satisfies ν ∈ C1((−ℓ,m) → R3).

(c)
lim
s→0

n(s)

exists, and the function

ν(s) =

{
n(s), s 6= 0
lims→0 n(s), s = 0

satisfies ν ∈ C0((−ℓ,m) → R3)\C1((−ℓ,m) → R3).

(d)
lim
s→0

n(s)

exists, and the function

ν(s) =

{
n(s), s 6= 0
lims→0 n(s), s = 0

satisfies ν /∈ C0((−ℓ,m) → R3).



1.9. EXERCISES 81

Exercise 1.26 (definition of a curve) Adapt the discussion of S in Defini-
tion 1 to formulate a formal definition of a curve Γ as a subset of Rn for n = 2
or n = 3. Note(s): You may wish to obtain also a definition of a curve with
boundary (endpoints). You may also wish to distinguish the compactness
properties of the curves you define.

Exercise 1.27 (extension of a surface) Given a regular surface S with bound-
ary as described in Definition 1, show there exists an open surface U ⊂ R3

with S ⊂ U .

Exercise 1.28 (simple closed curve) Let a, b, n, ǫ ∈ R with 0 < ǫ < b − a
and n ∈ N. Assume Γ = {α(t) : a < t < b} with α ∈ C1((a, b) → Rn)
satisfying

(i) α(t1) 6= α(t2) for a < t1 < t2 < b− ǫ, and

(ii) α(t) = α(b− a− ǫ+ t) for a < t < a + ǫ.

Show

(a) α(t1) 6= α(t2) for a < t1 < t2 < b if and only if t2 = b− a− ǫ+ t1.

(b) a < a− b+ t + ǫ < a + ǫ and α(t) = α(a− b+ t+ ǫ) for b− ǫ < t < b.

(c) α ∈ C1([a, b] → Rn), and calculate α′(a) and α′(b).

(d) Is it necessarily the case that α′(a) = α′(b)?

Exercise 1.29 (arclength parameterization in the plane; curvature vectors)
Let AP0R

2 denote the collection of all parameterizations

γ0 ∈
⋃

ǫ>0

C∞((−ǫ, ǫ) → R
2)

satisfying

(i) γ0(0) = 0 = (0, 0).

(ii) |γ̇0| ≡ 1.

Let
S
1 = {x = (x1, x2) ∈ R

2 : x21 + x22 = 1} ⊂ R
2

denote the unit circle in R2.
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(a) Given u ∈ S1 construct an arclength parameterization γ0 ∈ AP0R
2 for

which
Γ0 = {γ0(s) : s ∈ (−ǫ, ǫ)}

is a regular embedded curve with |γ̇0| ≡ 1 and γ̇0(0) = u.

(b) Determine
K = {γ̈0(0) ∈ T0(R

2) : γ0 ∈ AP0R
2}.

(c) Let
Ku = {γ̈0(0) ∈ K : γ0 ∈ AP0R

2, γ̇0(0) = u}

Given any u ∈ S1 and any curvature vector ~k ∈ Ku, construct an
arclength parameterization γ0 ∈ AP0R

2 satisfying the conditions of
part (a) and for which γ̈0(0) = ~k.

(d) Describe
{(γ̇0(0), γ̈0(0)) ∈ R

4 : γ0 ∈ AP0R
2}

as a submanifold of R4.

Exercise 1.30 Use (1.46) to describe

{α′(0) = DX γ̇0(0) ∈ TpS : γ̇0(0) ∈ S
1}

in TpS where X : U → R3 is a local parameterization of a surface S with
X(0, 0) = p ∈ S ⊂ R

3 and α(s) = X ◦ γ0(s).

Exercise 1.31 (arclength parameterization on a surface; curvature vectors)
Let S be a surface in R3 with p ∈ S. Let APpS denote the collection of all
parameterizations

γ ∈
⋃

ǫ>0

C∞((−ǫ, ǫ) → S)

satisfying

(i) γ(0) = p.

(ii) |γ̇| ≡ 1.

Let X : U → R3 be a local parameterization of S with X(0, 0) = p. Use
(1.47) to complete the following parts:
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(a) Given a regular embedded curve Γ0 ⊂ U parameterized by γ0 ∈ AP0R
2,

is the curvature vector γ̈(0) where γ ∈ APpS,

Γ = {γ(σ) : σ ∈ −σ0 < σ < σ0} = {X ◦ γ0(s) : −ǫ < s < ǫ},

and

σ0 =

∫ ǫ

0

|Dx ◦ γ0(s) γ̇0(s)| ds

a linear function of the curvature vector γ̈0(0) ∈ T0R
2 for γ̇0(0) = u

fixed in S1? See Exercise 1.29.

(b) Describe

{γ̈(0) : γ ∈ APpS} ⊂ TpR
3.

Hint: Consider various cases determiined by DX(0) and D2X(0).

Exercise 1.32 (normals on a surface) Let S be a surface given locally by
a regular parameterization X : U → R3 near a point p ∈ S with U an
open subset of R2. Consider Y : {(−u, v) : (u, v) ∈ U} → R3 by Y (u, v) =
X(−u, v).

(a) Show {(−u, v) : (u, v) ∈ U} is an open subset of R2 containing (0, 0) and
Y (0, 0) = p.

(b) Show Y is a regular local parameterization of S at p ∈ S.

(c) Show the parameterization Y reverses the local unit normal field N in
the sense that

Yu × Yv
|Yy × Yv|

= −N = − Xu ×Xv

|Xy ×Xv|
. (1.71)

Provide for the relation (1.71) the appropriate compositions/arguments
in order for it to make precise formal sense, i.e., so that the normal and
the reverse normal are clearly located at the same point on S.

Exercise 1.33 (planar surface) The plane

S = {(x, y, 0) ∈ R
3 : (x, y) ∈ R

2}

is a regular surface in R3.
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(a) Find a regular parameterization X : U → S ⊂ R3 of the plane with
X(0, 0) = (0, 0, 0) using some open set U in R2, and compute

Xu =
∂X

∂u
, Xv =

∂X

∂v
, and N =

Xu ×Xv

|Xu ×Xv|
.

(b) Find a smooth extension N ∈ C∞(V → R3) of N : S → R3 with V an
open set in R3 containing (0, 0, 0). Calculate

DN =




∂N 1

∂x1

∂N 1

∂x2

∂N 1

∂x3

∂N 2

∂x1

∂N 2

∂x2

∂N 2

∂x3

∂N 3

∂x1

∂N 3

∂x2

∂N 3

∂x3




(1.72)

where N = (N 1, N2, N3).

(c) Which entries in the matrix M = DN are determined uniquely by N
and which are arbitrary? Find an extension N including arbitrary
dependence in those entries which are arbitrary.

Exercise 1.34 (graph) Given f ∈ C∞(U) where U is an open subset of R2

with (0, 0) ∈ U and f(0, 0) = 0, consider the surface

S = {(x, y, f(x, y)) ∈ R
3 : (x, y) ∈ U}.

(a) Find a regular parameterization X : U → S ⊂ R3 of S with X(0, 0) =
(0, 0, 0), and compute

Xu =
∂X

∂u
, Xv =

∂X

∂v
, and N =

Xu ×Xv

|Xu ×Xv|
.

(b) Find a smooth extension N ∈ C∞(V → R3) of N : S → R3 with V an
open set in R3 containing (0, 0, 0). Calculate DN as in (1.72).
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(c) Which entries in the matrix M = DN are determined uniquely by N
and which are arbitrary? How about if you assume

Df(0, 0) =

(
∂f

∂x
(0, 0),

∂f

∂y
(0, 0)

)
= (0, 0)

and specialize to DN(0, 0)? Find an extension N including arbitrary
dependence in those entries which are arbitrary.

Exercise 1.35 (Lagrange multipliers) Prove Theorem 3 and give an example
in which the function f has a minimum at a point x0 with respect to the
constraint g(x) = 0 and Dg(x0) 6= 0, but the function f − λg where λ is
the Lagrange parameter for which D(f − λg)(x0) = 0 does not have a local
minimum (i.e., an unconstrained local minimum) at x0.

Exercise 1.36 (Lagrange multipliers) Let G : A → R be an integral func-
tional with Lagrangian G so that

G[u] =
∫

x∈U
G(x, u,Du)

for u in some set A ⊂ C1(U). Show

Dg(0) =

(
∂g

∂h
(0),

∂g

∂k
(0)

)
= (δGu[φ], δGv[ψ]) .

where g : R2 → R by

g(h, k) = F [u+ hφ+ kψ].

Exercise 1.37 (inverse and implicit function theorems) Let g : R2 → R be
given by

g(h, k) = h+ k.

(a) Draw the image of Φ(h, k) = (h, g(h, k)) on Bǫ(0, 0).

(b) Draw the graph of the function k = k(h) determined by k(h) = β(h, 0)
where Φ−1 = (id, β) is the inverse of

Φ∣∣
Bǫ(0)

.
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Exercise 1.38 The claim was made in connection with the equation (1.60)
that for a minimizing (solution) of the capillary tubes problem given by
u ∈ C2(U) where U = Ω ∪ Ωout the constant

λ =
1∫
U
ψ

(∫

U

Du ·Dψ√
1 + |Du|2

+ κ

∫

U

u ψ

)

is independent of the choice of test function ψ ∈ C∞
c (U). Prove this.

Exercise 1.39 Let Γ ⊂ R2 be a regular C1 simple closed curve in the plane.
Recall that for each p ∈ Γ, there exists some ǫ > 0 and a local arclength
parameterization γ : (−ǫ, ǫ) → Γ such that

(0) γ(0) = p,

(i) γ ∈ C1((−ǫ, ǫ) → R2),

(ii) |γ̇| ≡ 1, and

(iii) γ(s2) 6= γ(s2) for s1 < s2.

Show that if f ∈ C0(Γ) is a nonnegative function with f(p) > 0, then for
any h > 0 ∫

Γ

f ≥
∫

Γ∩Bh(p)

f > 0.

Hint: Note that ∫

Γ∩Bh(p)

f ≥
∫

γ(−ǫ,ǫ)∩Bh(p)

f

and change variables and use the continuity of γ to integrate an appropriate
function on a subinterval of the interval (−ǫ, ǫ).

Exercise 1.40 Complete the proof of Theorem 5 showing

Du√
1 + |Du|2

· ν = βj on ∂Ωj , j = 1, 2

where ν = ν(x) is the unit normal to ∂Ωj pointing out of Ωout.



Chapter 2

Circular capillary tubes

We have obtained two geometric boundary value problems associated with
the capillary tubes problem. Specifically, when and if a meniscus shape
modeled by the graph of a function u : Ω → R minimizes the capillary
energy, then provided the function u possesses adequate regularity, say u ∈
C2(Ω) ∩ C1(Ω), then u should satisfy





div

(
Du√

1 + |Du|2

)
= κu− λ, on Ω

cos γ = β0, on ∂Ω

(2.1)

where

cos γ =
Du√

1 + |Du|2
· ν

and ν is the unit normal to ∂Ω pointing out of Ω. The quantity Tu · ν where

Tu =
Du√

1 + |Du|2

may also be recognized as the dot product of the downward pointing unit
normal

(ux, uy,−1)√
1 + |Du|2

with the extension (ν1, ν2, 0) of ν to R
3. Thus, the quantity cos γ may be

identified as the angle at which the free surface interface

S = {(x, y, u(x, y)) : (x, y) ∈ Ω}

87
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meets the vertical surface modeling the inner wall of the capillary tube.
Similarly, we can imagine modeling the outer meniscus with a free inter-

face
Sout = {(x, y, u(x, y)) : (x, y) ∈ Ωout}

with u satisfying




div

(
Du√

1 + |Du|2

)
= κu− λ, on Ωout = Ω2\Ω1

cos γ = βj, on ∂Ωj , j = 1, 2

(2.2)

We have also remarked, or it should be obvious, that these problems may
be considered independently as models for a liquid capillary interface in the
corresponding cylinder with a closed bottom. For all of these problems it is
convenient to choose coordinates so the level z = 0 corresponds to the level
of the projection of the tube domain Ω (or alternatively Ωout) onto the plane
modeling the bottom/floor of the container or environment. Naturally, this
value z = 0 is somewhat arbitrary, and it is interesting that there is a canon-
ical horizontal level built into the partial differential equation. Specifically, if
we take a solution u of one of the problems (2.1) or (2.2) and set w = u−λ/κ
then

div Tw = div Tu = κu− λ = κw.

Thus we see w satisfies the first vertically normalized capillary tube
system 




div

(
Dw√

1 + |Dw|2

)
= κw, on U

cos γ = β, on ∂U .

(2.3)

Here we can take U = Ω ∪ Ωout as we have done above with β now consid-
ered as a function taking potentially piecewise constant, or potentially more
complicated, values on ∂U . In order to generalize the considerations we may
also let U denote one of the domains Ω or Ωout separately. In all cases, there
is a solution corresponding to β = 0 given by w ≡ 0 or equivalently

u ≡ hb =
λ

κ
.

Let us call the number hb = λ/κ the reference bath height. These solu-
tions are unique:
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Theorem 6 If U is an open bounded subset of R2 with C1 boundary and
w ∈ C2(U) ∩ C1(U) satisfies (2.3) with β ≡ 0 where

cos γ = ν · Dw√
1 + |Dw|2

and ν is the unit normal to ∂U pointing out of U , then w ≡ 0.

Proof: As usual we set

Tw =
Dw√

1 + |Dw|2
.

Then Tw − κw ≡ 0 on U , so

0 =

∫

u

w(Tw − κw)

=

∫

U

div(wTw)−
∫

U

Dw · Tw − κ

∫

U

w2

=

∫

∂U

wTw · ν −
∫

U

|Dw|2√
1 + |Dw|2

− κ

∫

U

w2

= −
∫

U

|Dw|2√
1 + |Dw|2

− κ

∫

U

w2.

We conclude ∫

U

|Dw|2√
1 + |Dw|2

= κ

∫

U

w2 = 0.

In particular, w ≡ 0. �

This argument can be generalized in remarkable ways. We will consider
certain simple generalizations below, but ultimately one should see Theo-
rem 5.1 in [Fin86].

2.1 Inner meniscus

Here we consider the axially symmetric meniscus over the inner disk Ba(0) ⊂
R2 and the meridian equation

u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u (2.4)
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in particular. The singular initial value problem





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a

u(0) = u0
u′(0) = 0

(2.5)

admits a unique solution u ∈ C2(0, a) ∩ C1[0, a) at least for a > 0 small
enough. This solution, furthermore, extends to an even real analytic function
u ∈ Cω(−a, a), again if a is small enough depending on u0. There are
various ways to justify the existence, uniqueness and regularity assertions
just given, but we will postpone these justifications until later and proceed
on the assumption that they are correct. One solution u ≡ 0 when u0 = 0 is
known, but no other solution is known explicitly.

Technically, for the purposes of the calculus of variations and specifically
to ensure the free surface energy associated with the inner meniscus is well-
defined, we need also u ∈ C1[0, a]. We should look for solutions with this
additional regularity. Recall that there are various equivalent notions of
continuous differentiability of a real valued function on a closed interval. In
this case, one may consider the left and right limits

u′(0+) = lim
tց0

u(0 + t)− u(0)

t
and u′(0−) = lim

tր0

u(a+ t)− u(a)

t
. (2.6)

We say u ∈ C1[0, a] if these limits exist as real numbers and the derivative

u′(r) = lim
t→0

u(r + t)− u(r)

t

for 0 < r < a extends to a continuous real valued function on [0, a] with the
left and right endpoint values given in (2.6). Alternatively, we can assume
u ∈ C1(0, a) and there exists some ǫ > 0 and a function u ∈ C1(−ǫ, a + ǫ)
for which

u∣∣
(0,a)

= u.

See Exercise 2.1. Notice that for a function u ∈ C1[0, a), the condition
u′(0) = 0 in (2.5) is more properly given by u′(0+) = 0 though it is also true
that u′(0) = 0 for any C1 extension of u.
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In this special case of a function u ∈ C1[0, a) satisfying the initial con-
dition u′(0) = 0 in (2.5) there is one particular C1 extension of u that is
natural to consider, namely the even extension. This particular extension
will be seen to have additional interest when we consider justification of the
existence and uniqueness assumptions. For now, however, it is natural when-
ever we are considering any solution u of (2.5) to denote (also) by u the even
extension u : (−a, a) → R satisfying u(x) = u(−x) for x < 0. We will then
have u ∈ C1(−a, a).

Notice that if instead of u ∈ C2(0, a) we only assume u is twice differ-
entiable, then the continuity of u′′ on (0, a) follows immediately from the
ordinary differential equation (ODE) in (2.5). The even extension is then
seen to satisfy u ∈ C2((−a, 0)∪ (0, a)), but the additional regularity at x = 0
requires some attention. For the moment we make the sweeping assumption
that not only does the even extension u satisfy u ∈ C2(−a, a) but that for
any c ∈ [0, a) there is some ǫ > 0 such that the series

∞∑

n=0

un(c)

n!
(x− c)n converges to u(x) for |x− c| < ǫ.

That is to say, we assume u is real analytic and we write u ∈ Cω(−a, a).
In particular, for the even extension and taking c = 0, we assume u has a
power series expansion

u(x) =

∞∑

k=0

u(2k)(0)

(2k)!
x2k.

If we wish to consider all solutions of (2.5) and the interesting solutions
with u0 6= 0 in particular then it is enough to consider only solutions with
u0 > 0. If we have a solution with u0 < 0, then −u is a solution of the same
equation and is a solution of the associated initial value problem obtained
from (2.5) by replacing u0 with −u0 > 0. Accordingly we introduce the
condition u0 > 0 as a standing assumption.

2.2 Initial comparison of solutions

In order to make the existence and uniqueness assumptions mentioned above
more definite and explicit, let us say that for every real number u0 > 0, there
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exists some a1 > 0 and a function u1 ∈ C2(0, a1) ∩ C1[0, a1) satisfying





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a1

u(0) = u0
u′(0) = 0.

(2.7)

In accord with the discussion above, we denote the even extension to (−a1, a1)
also by u1 and assume u1 ∈ Cω(−a1, a1). As for uniqueness, if there is any
other function u ∈ C2(0, a) ∩ C1[0, a) satisfying the singular initial value
problem (2.5), then we must have

u(r) ≡ u1(r) for 0 < r < min{a1, a}.

It follows of course that u(0) = u1(0) and u(x) = u1(x) for x < 0 as well.
In particular, the even extension of u must be real analytic on (−a, a) as
well. In what follows, we will nominally consider a general solution u ∈
C2(0, a) ∩ C1[0, a) of (2.5). In view of the foregoing discussion/assumptions
if a ≤ a1, then we are only considering some restriction of u1. The more
interesting possibility is that of considering such a solution with a > a1.
In this case, the following existence, uniqueness, and regularity result for
nonsingular ODEs has an interesting consequence:

Theorem 7 If I = (α, β) is an interval in the real line with α < β and
f ∈ C1(I×R2), then for any x0 ∈ I, any y0 ∈ R and any p0 ∈ R, there exists
some ǫ > 0 such that the initial value problem





y′′ = f(x, y, y′), x0 − ǫ < x < x0 + ǫ
y(x0) = y0,
y′(x0) = p0,

(2.8)

has a unique solution y ∈ C2(x0 − ǫ, x0 + ǫ).
Given the solution y, if the structure function f enjoys extra regularity,

then the solution will have extra regularity as well:

(k) If f ∈ Ck(I × R2) for some k ≥ 1, then y ∈ Ck+2(I).

(ω) If f ∈ Cω(I × R2), then y ∈ Cω(I).
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Note: The regularity conditions here are the usual ones for a function of
several variables. If f ∈ Ck(I ×R2), then all partial derivatives of order less
than or equal to k exist and are continuous; if f ∈ Cω(I ×R2), then for each
(x0, z0, p0) ∈ I × R2, there exists a convergent multivariable power series in
x, z, and p centered at (x0, z0, p0) and convergent in some open ball with
center (x0, z0, p0) to the function f .

If a > a1, then r = a1 becomes an interior point in the domain of the solution
u. By the uniqueness of u1 one has that u

′
1(a

−
1 ) = u′(a1) exists, the function u

is real analytic in the interval (0, a), and consequently the function u satisfies
all the conditions assumed about the initial solution u1. See Exercise 2.4.
In this case, there seems little reason not to replace u1 with the alternative
function u having a larger domain. The question then arises: Is it possible to
find some a1 > 0, and a solution u1 ∈ C2(0, a1) ∩C1[0, a1) of (2.7) for which
the problem (2.5) has no solutions when a > a1? The answer turns out to
be affirmative as we shall see shortly.

Presently, we consider various properties of solutions u ∈ C2(0, a) ∩
C1[0, a) of (2.5) which apply to the special case of u1, and we do not as-
sume a ≤ a1. Perhaps we can take as a first and simplest objective showing
u(r) ≥ u0 for 0 ≤ r < a with equality only for r = 0. This follows in a sense
because u′′(r) > 0 for 0 ≤ r < a and consequently u′(r) ≥ 0 for 0 ≤ r < a
with equality only for r = 0. Each of these assertions will need to be justified
however. Figure 2.1 shows a numerical plot of a solution u of the singular
inititial value problem (2.5) with u0 = 1 and a = 1 and gives a visual indi-
cation of some of the properties one might wish to establish for the capillary
meridian.

A first observation is that

u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= km + kℓ =
1

r

d

dr

(
ru′√
1 + u′2

)

where
d

dr

(
u′√

1 + u′2

)
= km

is the curvature of the generating curve of the interface, or meridian cur-
vature,

1

r

u′√
1 + u′2

= kℓ
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Figure 2.1: A capillary meridian or meniscus profile. This profile extends to
be even and real analytic. We are assuming these properties at the moment.
u′′(x) > 0 for −a < x < a so that u′(r) > 0 and u(r) > u0 for 0 ≤ r < a.
These properties are established below.

is the latitudinal (normal) curvature, and

u′√
1 + u′2

= sinψ

is the sine of the inclination angle along the meridian. Under the assumption
that u admits an even power series expansion

u(x) =
∞∑

k=0

u(2k)(0)

(2k)!
x2k = u0 +

u′′(0)

2
x2 + · · · ,

we must have

u′′(0) = lim
rց0

[
u(r) (1 + u′(r)2)− 1

r
u′(r) (1 + u′(r)2)

]
, (2.9)

and each of the normal curvatures

km(0) = lim
rց0

u′′

(1 + u′2)3/2
and kℓ(0) = lim

rց0

1

r

u′(r)√
1 + u′(r)2

must have a well-defined real limit in particular. Notice that by L’Hopital’s
rule

lim
rց0

u′(r)

r
= u′′(0),
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and it follows from (2.9) that

u′′(0) = u0 − u′′(0) or u′′(0) =
u0
2
.

We conclude further that

km(0) = kℓ(0) =
u0
2
.

One consequence of the fact that u′′(0) = u0/2 > 0 is that there exists some
α > 0 for which

u′′(r) > 0 for 0 < r < α. (2.10)

The number R > 0 given by

R = sup{α ∈ R : u′′(r) > 0 for 0 < r < α} (2.11)

= sup{α ∈ R : u′(r) > 0 and u′′(r) > 0 for 0 < r < α} (2.12)

= sup{α ∈ R : u(r) > u0, u
′(r) > 0 and u′′(r) > 0 for 0 < r < α} (2.13)

has special significance. In addition to the inequalities (2.11), (2.12), and
(2.13) defining the radius R, a fourth condition is also implicit, namely that
a twice differentiable solution u of the initial value problem (2.5) exists for
0 < r < α. Note this point carefully: In the definition of the set

E = {α ∈ R : u′′(r) > 0 for 0 < r < α}

we are implicitly considering a family of solutions u each defined and twice
differentiable on an interval [0, α). In view of the existence and uniqueness of
solutions discussed above each such solution must also satisfy u(x) = u1(x)
for 0 < x < min{a1, α}, and more generally any two such solutions must
agree on their common interval of definition. In this way, we obtain a unique
solution of the singular initial value problem





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < R

u(0) = u0
u′(0) = 0,

(2.14)

and by the previous observation, we might as well assume a1 ≥ R (excepting
the possibility that R = +∞ which—it turns out—is not the case). That is,
u1(x) = u(x) for 0 ≤ x < R. At the very least we can conclude at this point
the following result:



96 CHAPTER 2. CIRCULAR CAPILLARY TUBES

Theorem 8 (convexity interval theorem) There is some unique extended
real number R > 0, the one defined in (2.11), for which

(i) the singular initial value problem (2.14) admits a solution u ∈ Cω(−R,R),

(ii) u′′(r) > 0 for 0 < r < R,

(iii) u′(r) > 0 for 0 < r < R, and

(iv) u(r) > u0 for 0 < r < R.

Let us assume for a moment that R <∞. The question to ask might be:
What happens at r = R which prevents any further extension of u with the
same properties, or why, if the domain of u1 extends beyond R with a1 > R
which properties fail? Notice there are basically two possibilities: According
to the definition (2.11), either

(i) The solution u1 fails to exist, that is a1 = R or

(ii) a1 > R, but the condition u′′1(r) > 0 fails for some r ≥ R (arbitrarily
close to r = R).

In the latter case one must have u′′(R) = u′′1(R) = 0. Since u′′(R) > 0 for
0 < r < R, one must also have in this case

u′′′(R) = u′′′1 (R) ≤ 0. (2.15)

Differentiating the ODE (2.4) we find

u′′′ = u′ (1 + u′2)3/2 + 3uu′u′′
√
1 + u′2 +

1

r2
u′(1 + u′2)− 1

r
u′′ − 3

r
u′2u′′.

Thus, in particular

u′′′1 (R) = u′1(R) (1 + u′1(R)
2)3/2 +

1

R2
u′1(R)(1 + u′1(R)

2)

= u′1(R)(1 + u′1(R)
2)

(
1

R2
+
√

1 + u′1(R)
2

)
. (2.16)

But

u′1(R) = lim
rրR

u′(r).
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Given the monotonicity u′′(r) > 0 for 0 < r < R, either the limit

lim
rրR

u′(r). (2.17)

is a finite positive number or +∞. Consider the situation in which

lim
rրR

u′(r) = u′(R−) = u′1(R)

is a positive real number. In this case we see from (2.16) that

u′′′1 (R) ≥ u′1(R)

(
1 +

1

R2

)
> 0

contradicting (2.15). This means

lim
rրR

u′(r) = +∞

and significantly
lim
rրR

u′(r) = lim
rրR

u′1(r) = +∞.

This contradicts the assumption of case (ii) altogether and suggests a more
direct approach is to consider the limit in (2.17) from the beginning; see
Exercise 2.7.

One consequence of the discussion above and/or Exercise 2.7 is that if
R <∞, then we know the singular initial value problem (2.5) has no solution
on an interval [0, a) with a > R. In particular, a1 ≤ R and the situation
described in (ii) above never happens. This means the only possibility is (i)
in which (we might as well take) a1 = R and the solution u1 (always) satisfies

u′′1(r) > 0, u′1(r) > 0, and u1(r) > u0 for 0 < r < a1.

In this case the unique global solution u1 ∈ Cω(−a1, a1) (somehow) fails to
exist at or beyond r = a1. In fact, we know something fairly precise about
how that failure of existence occurs. We know

lim
rրR

u′1(r) = +∞.

At this point, all of these insightful assertions still leave open the possi-
bility that R = +∞, so let us now show that cannot happen. If R = +∞, we
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have a (unique) solution of the singular initial value problem u ∈ C2(0,∞)
with

u′′(r) > 0, u′(r) > 0, and u(r) > u0 for r > 0; (2.18)

see Exercise 2.9. As a consequence of the last inequality in (2.18) we know
also

d

dr

(
r

u′√
1 + u′2

)
= ru > ru0 for r > 0.

Let us make a comparison to a certain circular arc given by the graph of a
function c ∈ C2[0, r0) ∩ C0[0, r0] with

r0 =
2

u0

and

c(r) = u0 + r0 −
√
r20 − r2.

Notice that

c′ =
r√

r20 − r2
and 1 + c′2 =

r20
r20 − r2

so
c′√

1 + c′2
=

r

r0
=

1

2
ru0

and
d

dr

(
r

c′√
1 + c′2

)
= ru0.

Evidently then, our comparison can take the form

d

dr

(
r

c′√
1 + c′2

)
<

d

dr

(
r

u′√
1 + u′2

)
.

This strict inequality holds for 0 < r < min{r0, R} = r0, and in fact there is
no singularity in these expressions at r = 0 where they are both equal and,
of course, take the value 0. Thus, we can integrate to find

c′√
1 + c′2

<
u′√

1 + u′2
< 1 for 0 < r <

2

u0
. (2.19)
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The inequality in (2.19) is interesting in several respects. First of all, notice
it certainly justifies our assertion that the extended real number

R = sup{α ∈ R : u′′(r) > 0 for 0 < r < α}

is actually a finite real number since

lim
rրr0

c′√
1 + c′2

=
u0
2

lim
rրr0

r = 1

so that

lim
rրr0

u′√
1 + u′2

= 1

as well, meaning
lim
rրr0

u′(r) = +∞

contradicting our assumption R = +∞ and specifically the consequence u ∈
C2(0,∞). So that question is settled, and Theorem 8 can be strengthened
substantially:

Theorem 9 (improved convexity interval theorem) There is a unique real
number R > 0 satisfying

0 < R ≤ 2

u0
(2.20)

for which the singular initial value problem (2.14) with u0 > 0 has a unique
solution u ∈ C2(0, R) ∩ C1[0, R). Furthermore, the solution u satisfies

(i) u ∈ Cω[0, R) and u has an even real analytic extension u ∈ Cω(−R,R),

(ii) There holds

u′′(0) =
u0
2
, and u′′(r) > 0 for 0 ≤ r < R

so that
u′′(x) > 0, −R < x < R,

(iii)
u(x) ≥ u0, −R < x < R

with equality only for x = 0, and
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(iv)
u′(r) ≥ 0, 0 < r < R

with equality only for r = 0 and

lim
rրR

u′(r) = +∞.

Notice also the geometric meaning of the quantities

sinψ =
u′√

1 + u′2

and

sinψc =
c′√

1 + c′2

appearing in (2.19). Here we recall that ψ is the inclination angle of
the graph of u nominally measured with respect to the positive r direction
and determined up to an additive multiple of 2π. In practice we can take
0 ≤ ψ = ψ(r) ≤ π/2 for 0 ≤ r < a1 = R. We have introduced also the
inclination angle ψc associated with the circular arc which is the graph of
c as indicated in Figure 2.2 where we have drawn the circular arc of radius
r0 = 2 associated with u0 = 1 in relation to the solution plotted in Figure 2.1.

With all the virtues of Theorem 9, there are still many questions left
unanswered. Two of the most obvious are the following:

(a) Can we assert that

R < r0 =
2

u0
or is it the case that R = r0?

(b) What about
lim
rրR

u(r)?

Is this value finite like

lim
rրr0

c(r) = u0 +
2

u0
,

or do we have
lim
rրR

u(r) = +∞?
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Figure 2.2: Comparison of a capillary meridian given by the graph of a function

u and a circular arc given by the graph of a function c with c(0) = u0, c
′(0) = 0,

and c′′(0) = u′′(0) = u0/2. We obtain by comparison that the inclination of

the meridian is greater than that of the circular arc at corresponding radii r >

0. Consequently, the capilary meridian is always above the circular arc, that is,

u(r) > c(r) for 0 < r < R, and the capillary meridian must become vertical at

some positive radius R ≤ r0 = 2/u0 where r0 is the radius at which the circular arc

becomes vertical (at finite height u0 + 2/u0). I have drawn an extended portion

of the capillary meridian so the meridian can be clearly distinguished from the

circular arc, though I have not drawn it up to the vertical point at r = R nor

indicated the location of the actual value of R. It remains unclear at this point

in the discussion if the height of the capillary meridian tends to infinity as r ր R

(which, it turns out, it does not) and if the strict inequality R < r0 = 2/u0 holds

(which, it turns out, does hold).

Before we attempt to discuss the answers to these new questions about the
capillary meridian, let me extend the comments concerning the comparison
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inequality (2.19). Each sine-quotient of the form

u′√
1 + u′2

can be expressed as σ(u′) where σ : R → (−1, 1) by

σ(p) =
p√

1 + p2
.

The function σ is a real analytic increasing bijection with inverse

σ−1 : (−1, 1) → R by σ−1(s) =
s√

1− s2
.

Since σ−1 is also increasing, applying σ−1 to both sides of (2.19) yeilds

u′(r) > c′(r) =
r√

r20 − r2
for 0 < r < R

as expected, and integration gives

u(r) > c(r) for 0 < r < R

as well. Thus we see comparison of inclination is a useful and relatively
powerful technique. See also Exercise 2.11.

2.3 Coefficients and comparison

The singularity in the equation at r = 0 is an interesting problematic as-
pect of any analysis of the axially symmetric solutions. One of our initial
objectives will be to say something about the coefficients in the power series
expansion

u(r) =
∞∑

k=0

u(2k)(0)

(2k)!
r2k

and attempt to obtain estimates from above and below for the solution u.
We can rewrite the equation in the form

u′′ = u(1 + u′2)3/2 − 1

r
u′(1 + u′2)
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and set

f2(z, p1) = z (1 + p21)
3/2

g2(z, p1) = −p31 − p1

so that

u′′ = f2(u, u
′) +

1

r
g2(u, u

′). (2.21)

Notice that under our assumption that u is a real analytic solution we must
have

lim
rց0

f2(u, u
′) = lim

rց0
u(1 + u′2)3/2 = u0

and

lim
rց0

1

r
f2(u, u

′) = lim
rց0

u′(1 + u′2)

r
= u′′(0).

It follows from (2.21) that 2u′′(0) = u0 and

u′′(0) =
u0
2
.

More generally, if we assume (inductively) that

u(j) = fj(u, u
′, . . . , u(j−1)) +

1

r
g(u, u′, . . . , u(j−1))

for some smooth functions fj = fj(p0, p1, . . . , pj−1) and gj = gj(p0, p1, . . . , pj−1),
then

r u(j) = rfj(u, u
′, . . . , u(j−1)) + gj(u, u

′, . . . , u(j−1))

and

r u(j+1) = fj(u, u
′, . . . , u(j−1)) + r

j−1∑

m=0

∂fj
∂pm

(u, u′, . . . , u(j−1)) u(m+1)

+

j−1∑

m=0

∂gj
∂pm

(u, u′, . . . , u(j−1)) u(m+1).

Thus u(j+1) has the same inductive form

u(j+1) = fj+1(u, u
′, . . . , u(j)) +

1

r
gj+1(u, u

′, . . . , u(j))
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with

fj+1 = fj+1(p0, p1, . . . , pj)

=

j−1∑

m=0

∂fj
∂pm

pm+1 and

gj+1 = gj+1(p0, p1, . . . , pj)

= fj +

j−1∑

m=0

∂gj
∂pm

pm+1.

2.4 Exercises

Exercise 2.1 (continuous differentiability) Let a and b be extended real
numbers with a < b. Recall that a real valued function u : (a, b) → R is
differentiable at x ∈ (a, b) if

lim
t→0

u(x+ t)− u(x)

t
= u′(x)

exists. The function u : (a, b) → R is differentiable (on all of (a, b)) if
u is differentiable at each x ∈ (a, b). A differentiable function determines
a real valued function u′ : (a, b) → R, and is said to be continuously
differentiable if the function u′ ∈ C0(a, b). In this case, we write u ∈
C1(a, b), that is, the collection of all continuously differentiable functions on
an open interval (a, b) is denoted C1(a, b). These definitions all apply to a
real valued function with domain an open interval (a, b).

(a) Assume b <∞ and show the following are equivalent:

(i) The limit

u′(b−) = lim
tրb

u(b+ t)− u(b)

t

exists as a real number.

(ii) There exists a function u ∈ C1(a,∞) with

u∣∣
(a,b)

≡ u.
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If either of the equivalent conditions (i) and (ii) hold, we say u is
continuously differentiable on (a, b]. The collection of all continu-
ously differentiable functions on the half closed interval (a, b] is denoted
C1(a, b].

(b) Formulate a notion of continuous differentiability for a real valued func-
tion u : [a, b) → R when −∞ < a.

(c) Formulate a notion of continuous differentiability for a real valued func-
tion u : [a, b] → R when −∞ < a < b <∞.

(d) Show C1[a, b] ⊂ C0[a, b].

Exercise 2.2 Show that for a > 0 and u′0 6= 0, there is no solution of the
initial value problem





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a

u(0) = u0
u′(0) = u′0.

Exercise 2.3 Assume a > 0 and u ∈ C2(0, a)∩C1[0, a) is a solution of (2.5)
as described above. Let u denote also the even extension of u to the open
interval (−a, a) as usual, and assume u ∈ C2(−a, a). Show

u′′(0) =
u0
2
.

Exercise 2.4 Let u1 be a solution of (2.7) satisfying the existence, unique-
ness, and regularity assumptions described in section 2.2. Specifically,

(i) u1 ∈ C2(0, a1) ∩ C1[0, a1) is a solution of (2.7).

(ii) If u ∈ C2(0, a) ∩ C1[0, a) is a solution of (2.5) for some a > 0, then
u(r) ≡ u1(r) for 0 < r < min{a, a1}.

(iii) The even extension of u1, also called u1, satisfies u1 ∈ Cω(−a1, a1).

Let u ∈ C2(0, a)∩C1[0, a) be a solution of (2.5) for some a > 0 with a > a1.
Show the following:
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(a) If u2 ∈ C2(0, a2) ∩ C1[0, a2) is a solution of




u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a2

u(0) = u0
u′(0) = 0

(2.22)

for some a2 > 0, then u2(r) ≡ u(r) for 0 < r < min{a, a2}.

(iii) The even extension of u, also called u, satisfies u ∈ Cω(−a, a).

Hint: Use the properties of the initial solution u1 and Theorem 7.

Exercise 2.5 Let ǫ and a be positive real numbers. Assume u ∈ C3(−a −
ǫ, a+ ǫ) is a solution of the singular initial value problem





u′′ = f(r, u, u′), −a < r < a
u(0) = u0
u′(0) = 0

for the capillary equation with

f(r, z, p) = z (1 + p2)3/2 − 1

r
p(1 + p2).

If u′′(r) > 0 for 0 < r < a, then show u′′(a) > 0. Hint: Argue by contradic-
tion.

Exercise 2.6 Show the suprema in (2.11), (2.12), and (2.13) define the same
number R associated with the singular initial value problem (2.5). Hint: By
integration a third condition

u′(r) =

∫ r

0

u′′(ρ) dρ and u(r) = u0 +

∫ r

0

u′(ρ) dρ.

Exercise 2.7 Assume u is a solution of the singular initial value problem




u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < R

u(0) = u0
u′(0) = 0
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given in (2.14) where

R = sup{α ∈ R : u′′(r) > 0 for 0 < r < α}

as in (2.11). Assume R <∞ and show directly that

lim
rրR

u′(r) = +∞.

Conclude as an immediate corollary that there is no solution u1 of the singular
initial value problem





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a1

u(0) = u0
u′(0) = 0

for any a1 > R, that is a1 ≤ R. Hint(s): Argue by contradiction, and
complete the following steps.

(a) Show the limit
lim
rրR

u(r)

also exists as a (finite) real number u(R) with u0 < u(R) <∞.

(b) Write down a nonsingular initial value problem for the capillary ODE
(2.4) with initial value at r = R and apply Theorem 7 to find a solution
v ∈ C2(0, a) of the singular initial value problem (2.5) on an interval
[0, a) with a > R.

(c) Use Theorem 7 again to show v(r) = u(r) for 0 ≤ r < R and conse-
quently

v′′(R) = lim
rրR

u′′(r) ≥ 0.

(d) Show v′′(0) > 0 and get a contradiction of the definition of R.

Note this argument still leaves open the possibility that R = +∞.

Exercise 2.8 Let α, β ∈ R with α < β. Prove carefully that if

(i) f ∈ C1[α, β],
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(ii) f(x) > 0 for α < x < β, and

(iii) f(β) = 0,

then f ′(β) ≤ 0. Explain how this assertion is used to obtain (2.15) and step
(d) in Exercise 2.7.

Exercise 2.9 Assume u is a solution of the singular initial value problem




u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < R

u(0) = u0
u′(0) = 0

given in (2.14) where

R = sup{α ∈ R : u′′(r) > 0 for 0 < r < α}

as in (2.11). Assume R = +∞ and show that in this case there exists a
unique solution u1 ∈ Cω(R) of the singular initial value problem





u′′

(1 + u′2)3/2
+

1

x

u′√
1 + u′2

= u, x ∈ R\{0}

u(0) = u0
u′(0) = 0.

Show also that the solution u1 is even and satisfies u′′1(x) > 0 for x ∈ R,
so that u′1 is odd with u′1(r) > 0 for r > 0 and u1(x) ≥ u0 for x ∈ R with
equality only for x = 0.

Exercise 2.10 Give a modified version of the proof of Theorem 8 that ap-
plies to the case R = +∞.

Exercise 2.11 (inclination angle) Given α, β ∈ R with α < β, assume u, v ∈
C2[α, β] with u′(α) = v′(α).

(a) Plot the graphs of the functions σ and σ−1 where

σ(p) =
p√

1 + p2
.
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(b) If σ(u′) > σ(v′) for α < x < β, then is it true that u′′(x) > v′′(x)?

(c) If σ(u′) > σ(v′) for α < x < β, then is it true that

u′′(x)

(1 + u′(x)2)3/2
>

v′′(x)

(1 + v′(x)2)3/2
?

These are the curvatures of the graphs of u and v respectively.

Exercise 2.12 (uniqueness for nonsingular ODEs) Note that the ODE for
a capillary meridian in the singular initial value problem





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a2

u(0) = u0
u′(0) = 0

(2.23)

where a2 > 0 can be written in the form

u′′ = f(r, u, u′)

with f ∈ Cω(I × R2) given by

f(r, z, p) = z (1 + p2)3/2 − 1

r
p (1 + p2) (2.24)

on any interval I = (α, β) with 0 < α < β. In short, the capillary equation is
nonsingular for positive r, and so the initial value problem is well-behaved.

The following steps give an alternative approach to obtaining the unique
solution of the singular initial value problem for the capillary meridian dis-
cussed above.

(a) Assume there exists some initial solution u1 of the singular initial value
problem





u′′

(1 + u′2)3/2
+

1

r

u′√
1 + u′2

= u, 0 < r < a1

u(0) = u0
u′(0) = 0

(2.25)
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given in (2.5) for some a1 > 0 and that the solution u1 is unique among
solutions u ∈ C2(0, a1) ∩ C1[0, a1) of the problem.

Show u2 : [0, R) → R given by

u2(r) = u(r),

where u ∈ C2(0, a2) ∩ C1[0, a2) is any solution of the singular initial
value problem (2.5) for some a2 > r and

R = sup{a ∈ R : (2.5) admits a solution u ∈ C2(0, a) ∩ C1[0, a)},

determines a unique real analytic solution u2 ∈ Cω(−R,R). Hint:
Use Theorem 7 and the assumption that R is a well-defined positive
extended real number.

(b) Show R ≥ a1 and u2(r) = u1(r) for 0 ≤ r < a1.

(c) Show u′′2(r) > 0 for 0 ≤ r < R.

Hint: Consider the nonsingular initial value problem





v′′ = f(r, v, v′), a− ǫ < a < a+ ǫ
v(a) = u(a)
v′(a) = u′(a)

(2.26)

where f ∈ Cω(I × R2) has values given in (2.24).
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Maximum and comparison
principles

Mu =
n∑

i,j=1

aij DiDju+
n∑

j=1

bj Dju

〈(aij)ξ, ξ〉 ≥ λ|ξ|2

In particular, aii ≥ λ > 0 for i = 1, 2, . . . , n.

Theorem 10 (weak maximum principle—first version) If M is uniformly
elliptic in a bounded open set Ω, the coefficient functions bj are bounded in
Ω, that is bj ∈ C0(Ω) ∩ L∞(Ω), and u ∈ C2(Ω) ∩ C0(Ω) satisfies Mu ≥ 0 in
Ω, then

max
x∈Ω

u(x) = max
x∈∂Ω

u(x). (3.1)

Proof: First consider the caseMu > 0 in Ω. In this case, we obtain a stronger
result:

u(p) < max
x∈∂Ω

u(x) for p ∈ Ω.

In other words the function u cannot obtain an interior maximum. This is a
version of the strong maximum principle. To see this, assume there is some
p ∈ Ω with

u(p) = max
x∈∂Ω

u(x).

We have used here the fact that Ω is bounded and u ∈ C0(Ω). Then we have

∂u

∂xj
(p) = 0 for j = 1, 2, . . . , n

111
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and

D2u(p) =

(
∂2u

∂xi∂xj
(p)

)

is a negative semidefinite matrix.1 Since the coefficient matrix (aij(p)) is
positive definite, it follows that

n∑

i,j=1

aij(p)
∂2u

∂xi∂xj
(p) ≤ 0.

See Lemma 12 below. From this we have

0 < Mu(p)

=

n∑

i,j=1

aij(p) DiDju(p) +

n∑

j=1

bj(p) Dju(p)

=
n∑

i,j=1

aij(p) DiDju(p)

≤ 0,

which is a contradiction.

Next consider v ∈ Cω(Rn) given by

v(x) = ǫeγx1

for positive numbers ǫ and γ. Computing we see

Mv = ǫ γ (γ a11 + b1) e
γx1

≥ ǫ γ (γ λ− B) eγx1

where
B = sup

x∈Ω,1≤j≤n
|bj(x)| = sup

1≤j≤n
‖bj‖L∞(Ω).

Thus taking

γ >
B

λ

we have Mv > 0 on Ω.

1See Lemma 11 below.
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Finally, since M is linear we have

M [u+ v] =Mu +Mv > 0

where v(x) = ǫeγx1 as above and γ > B/λ. Thus, by the version of the strong
maximum principle proved above

u(p) + ǫ eγp1 < max
x∈∂Ω

[u(x) + ǫ eγx1 ]

for every p ∈ Ω. Since u ∈ C0(Ω) and Ω is bounded,

max
x∈Ω

[u(x) + ǫ eγx1 ] = sup
p∈Ω

[u(p) + ǫ eγp1 ] ≤ max
x∈∂Ω

[u(x) + ǫ eγx1 ] ,

that is, the weak maximum principle holds for u+ v. Since we have imposed
no restriction on ǫ up to this point, we can take ǫց 0 in

max
x∈Ω

[u(x) + ǫ eγx1 ] ≤ max
x∈∂Ω

[u(x) + ǫ eγx1 ]

and conclude
max
x∈Ω

u(x) ≤ max
x∈∂Ω

u(x). �

Lemma 11 (necessary conditions for an interior maximum) If p is a point
in an open set U and u ∈ C2(U) satisfy

u(p) ≥ u(x) for x ∈ U,

then Du(p) = 0 ∈ Rn and D2u(p) satisfies

〈D2u(p)ξ, ξ〉 ≤ 0 for ξ ∈ R
n.

Lemma 12 (definiteness and trace) If A = (aij) is a real symmetric pos-
tive definite matrix and H = (bij) is a real symmetric negative semidefinite
matrix, then ∑

i,j

aijbij ≤ 0.
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Appendix A

Appendix: Notation

A.1 Sets, functions and regularity

A.1.1 open balls

Given a metric space X , which for us will usually be some Euclidean space
R

n, with distance d : X × X → [0,∞), some r > 0 and some p ∈ X , the
open ball of radius r and center p is

Br(p) = {x ∈ X : d(x, p) < r}.

A.1.2 functions

Given sets X and Y , a function f with domain X and values taken in the
set Y is expressed as f : X → Y .

A.1.3 continuity

In the case X and Y are topological spaces, we write f ∈ C0(X → Y )
indicating the function f is continuous. In the case Y = R, this is abbreviated
to f ∈ C0(X).

A.1.4 Ck and C∞

In the case X is an open subset of Rn and Y ⊂ Rm the existence and
continuity of the first order partials of each coordinate function of f : X →

115
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Rm is indicated by f ∈ C1(X → Y ). Again, when Y ⊂ R this is abbreviated
to f ∈ C1(X).

Some special convention is required to define C1(X) and C1(X → Rm)
when X is some subset of Rn which is not an open set. The usual meaning
we attach to f ∈ C1(X → Rm) in this case is that there is some open set
U ⊂ Rn and a function g : U → Rm with X ⊂ U and

g∣∣
X

= f.

Notice that in the case when X is open, we can take g ≡ f as the extension.
Given f = (f1, . . . , fm) ∈ C1(X → Rm) furthermore, we define Df : X →
Rmn by

Df(x) =

(
∂g1
∂x1

(x), . . . ,
∂g1
∂xn

(x),
∂g2
∂x1

(x), . . . ,
∂g2
∂xn

(x), . . . ,
∂gm
∂x1

(x), . . . ,
∂gm
∂xn

(x)

)
.

With this convention in place, we can define for X an arbitrary subset of Rn

the sets Ck(X) and Ck(X → Rm) for k ≥ 2 as more or less inductively, but
some additional notation for (higher order) partial derivatives is helpful to
make that process simpler and precise. Given first an open set X ⊂ R

n, a
real valued function u : X → R, and an element β = (β1, β2, . . . , βn) ∈ Nn

0

where N0 = {0, 1, 2, 3, . . .}, usually called a multi-index we define the order
|β| = β1 + β2 + · · ·+ βn partial derivative

Dβu =
∂|β|u

∂β1x1∂β2x2 · · ·∂βnxn

assuming this partial derivative exists in the usual sense of an iterated single
partial derivative at a point in an open set. Finally then for k ≥ 2 and
X ⊂ Rn we set

Ck(X) = {f ∈ Ck−1(X) : Dβf ∈ C1(X) for |β| = k − 1}.
The space Ck(X → R

m) is defined similarly; see Exercise A.1.

C∞(X → R
m) = ∩∞

k=1C
k(X → R

m).

A.1.5 compact support

Let X be a topological space. If U and V are open subsets of X with U ⊂ V
and U compact, then we write

U ⊂⊂ V
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and say U is compactly contained in V . More generally, if A and B are
any subsets of X , then we write A⊂⊂B to indicate the existence of an open
subset U of X for which

A ⊂ U ⊂⊂ int(B).

See Exercise A.2.
Given f : X → R, the support of f is the set

supp(f) = {x ∈ X : f(x) 6= 0}.

Given f : X → R, we say f is compactly supported and write f ∈ C0
c (X)

if supp(f) is compact.
If U is an open subset of X and f : U → R, we say f is compactly

supported in U if

supp(f)⊂⊂U and U is compact.

In the special case X ⊂ Rn and for k = 1, 2, 3, . . ., the space Ck
c (X) is

defined by

Ck
c (X) = Ck(X) ∩ C0

c (X).

Given an open set U ⊂ Rn and f ∈ Ck
c (U), we often let f also denote the

extension g : Rn → R with

g(x) =

{
f(x), x ∈ U
0, x ∈ Rn\U

and write f ∈ Ck
c (R

n). Finally,

C∞
c (X) = ∩∞

k=1C
k(X) ∩ C0

c (X).

When U is an open subset of Rn, the important space C∞
c (U) is sometimes

called the space of test functions.

A.1.6 Exercises

Exercise A.1 Define Ck(X → R
m) for X and arbitrary subset of Rn.

Exercise A.2 If A and B are (any) subsets of a topological space X and
A⊂⊂B, then show A is compact.
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Exercise A.3 Given a f ∈ C∞(X) with X ⊂ Rn, we often let f also denote
the extension g : Rn → R with

g(x) =

{
f(x), x ∈ X
0, x ∈ R

n\X.

If supp(f) is compact, show g ∈ C∞
c (Rn).

Exercise A.4 Show
C∞

c (X) = ∩∞
k=1C

k
c (X).
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