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Chapter 1

The circular capillary tube
problems

1.1 Introduction

Leonardo da Vinci, around 1490, observed carefully a thin column of liquid
rising up in a cylindrical glass tube when the end of the tube was inserted
in the liquid. The thin column of liquid in the tube resembled a hair, and
Leonardo referred to the phenomenon as a “hair-like” action of the liquid.1

Jacob Bernoulli around 1683 in his paper Dissertatio de Gravitate Ætheris,
in Latin, suggested that it is more difficult for air to enter a narrow tube
than it is for (the) liquid. It is interesting to note that the theory of æther
seems to be featured in Bernoulli’s paper. Introduction of the mysterious
element æther was a popular approach for treating inexplicable phenomena
at the time.

Perhaps it can be said that Young and Laplace, in 1805 and 1806, offered
the first mathematical framework in which to pose and study specific prob-
lems associated with the rise of liquid in a capillary tube. We can say they
started with the mathematical assumption that there is a surface separating
the liquid and the air inside the tube and that this surface is the graph of
a function of two variables. I have tried to draw a picture representing such
a surface in Figure 1.1. More precisely, taking specific coordinates, we let

1The word “hair” is Capelli in Italian, and this is the origin of the terms capillary
action and capillarity.
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6 CHAPTER 1. THE CIRCULAR CAPILLARY TUBE PROBLEMS

Figure 1.1: drawing of liquid in a capillary tube

Br(0) be the open disk (or ball) centered at the origin in R2:

Br(0) = {(x, y) : x2 + y2 < r2}.

This set, which we take to model the cross-section of the tube is illustrated
in Figure 1.2. Thus, the separating surface is the graph of a function

Figure 1.2: The unit disk (r = 1) in R2 with its outward normal at a point

u : Br(0) → R.
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This allows us to use calculus. Young and Laplace proposed the following
equations for the function u:

div

(

Du
√

1 + |Du|2

)

= κu on Br(0) (1.1)

Du
√

1 + |Du|2
· n = cos γ on ∂Br(0). (1.2)

In these equations Du denotes the gradient, or vector of first partial deriva-
tives,

Du =

(

∂u

∂x
,
∂u

∂y

)

from calculus. The first equation is a partial differential equation, known as
the Young-Laplace equation or the capillary equation, with
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involving second (and first) partial derivatives of the function u. The quantity
denoted by κ is assumed constant and is called the capillary constant.

The second equation is a boundary condition known as Young’s law.
The angle γ is called the contact angle and is also assumed constant. This
expression of Young’s law assumes the function u extends to the boundary
circle of Br(0),

∂Br(0) = {(x, y) ∈ R2 : x2 + y2 = 1},
with first order partial derivatives defined there. The vector quantity n is
called the outward unit normal to Br(0) along ∂Br(0) and is given by

n =
1

r
(x, y).
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There are a number of modeling questions we need to address. Among
these are the following:

1. What are the physical significance of the capillary constant κ and the
contact angle γ?

2. What is the physical significance of the zero level u = 0, that is, how
are coordinates for the third or z-axis chosen?

3. Why do these equations hold?

It is not difficult to make good and satisfying progress in answering these
questions, but both in the spirit of the manner in which these equations
were offered by Young and Laplace, and because we will address these top-
ics in more detail in a unified way later, we postpone further discussion at
the moment. Instead, let us note that we can now pose (and have some
hope of answering) quantitative questions da Vinci or Bernoulli would have
appreciated:

1. What is the shape of the surface between the liquid and the air?

2. What is the height that the liquid rises above certain points in the
cross-section of the tube?

It will take some time and effort to understand and appreciate this boundary
value problem of Laplace and Young (and to obtain some answers from it),
but to give an indication that we are on the right track, let us consider a
simpler version of the mathematical problem already considered by Euler in
1744.

Exercise 1.2 Expand the derivatives in the partial differential operator

Mu = div

(

Du
√

1 + |Du|2

)

,

and simplify the result.
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1.3 Euler’s elastica and 2-D capillary surfaces

A two-dimensional version of the equations of Young and Laplace may be
considered as follows: We seek u : (−r, r) → R with



























d

dx

(

u′(x)
√

1 + u′(x)2

)

= κu, |x| < r

u′(±r)
√

1 + u′(±r)2
= ± cos γ.

(1.3)

The equations appearing in (1.3) include, first, an ordinary differential equa-
tion (ODE) for the function u and, second, a two point boundary value
condition, which is not exactly the standard initial value one encounters
in the study of elementary ODEs but is one which does arise, especially in
applications. These equations may be compared to the equations (1.1) and
(1.2), and at least a superficial resemblance is obvious. We will make the
relation/comparison quite precise, but our first objective is to explain their
geometric significance.

Figure 1.3: A solution of the 2-D capillary equation

In this 2-D capillary problem the interface is a curve instead of a surface,
and this simplifies the geometry rather considerably.
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1.3.1 Signed curvature of a plane curve

Given a plane curve as indicated on the right in Figure 1.3, the signed
curvature is the rate at which the inclination angle ψ, between the positive
x-axis and the indicated tangent T increases with respect to arclength along
the curve. That is, the signed curvature k is given by

k =
dψ

ds
(1.4)

where the arclength along the curve measured from (0, u(0)) is given by

s =

∫ x

0

√

1 + [u′(t)]2 dt. (1.5)

Exercise 1.4 Compute the signed curvature of the graph of the function
u : (−r, r) → R given by

u(x) = −
√
r2 − x2.

Hint: You may wish to parameterize this curve using a different parameter.

Exercise 1.5 If the graph of a function u : (−r, r) → R is parameterized
by γ(x) = (x, u(x)), what is the velocity vector γ′(x) associated with the
parameterization and what is its length |γ′(x)|.

Exercise 1.6 Use a Riemann sum and the relation

rate × times = distance

to explain the formula (1.5).

Exercise 1.7 Draw a triangle on the picture of the graph of u on the right
in Figure 1.3 illustrating the following relations:

u′ =
du

dx
=

rise

run
, and sinψ =

u′√
1 + u′2

.

Exercise 1.8 Find expressions for the unit tangent vector T and the unit
upward normal vector N to the graph of a function u of one real variable as
illustrated in Figure 1.2.
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Notice the arclength relation (1.5) may be used to define two functions. On
the one hand, we can think of the arclength s : (−r, r) → R by

s(x) =

∫ x

0

√

1 + [u′(t)]2 dt. (1.6)

But on the other hand, the fundamental theorem of calculus tells us

ds

dx
=
√

1 + [u′(x)]2 > 0,

so s : (−r, r) → R has an inverse x : (−s0, s0) → R where

s0 =

∫ r

0

√

1 + [u′(t)]2 dt,

defined by the same formula:

s =

∫ x(s)

0

√

1 + [u′(t)]2 dt.

Notice the derivative of the function x = x(s) satisfies

dx

ds
=

1
√

1 + [u′(x)]2
= cosψ.

We could write 1/
√

1 + [u′(x(s))]2 in the middle expression and ψ(s) in the
last one, but the arclength argument is left out. Note carefully the ambiguity
between the use of the symbols x and s here. Each is used in two different
ways as an independent parameter and as a dependent parameter, or func-
tion. For the arclength s, in particular, we often emphasize the distinction
(according to context) by referring to the arclength parameter of (1.4) as
opposed to the arclength function of (1.6).

1.8.1 Interpretation of the 2-D capillary equation

We should now be in a position to understand the geometric significance of
the ODE in (1.3). Our definition of the signed curvature (1.4) assumes the
inclination angle ψ is a function of arclength, that is, ψ : (−s0, s0) → R. Let



12 CHAPTER 1. THE CIRCULAR CAPILLARY TUBE PROBLEMS

us think, momentarily,2 of the inclination angle ψ as a function of x. Then
we can write the left side of the ODE as

d

dx

(

u′√
1 + u′2

)

=
d

dx
(sinψ).

The chain rule then tells us

d

dx

(

u′√
1 + u′2

)

= cosψ
dψ

dx
= cosψ

dψ

ds

ds

dx
= k.

That is, the 2-D capillary equation says the signed curvature of the interface is
a linear function of height or, as a physicist might say it, the signed curvature
is proportional to the height at every point on the interface.

I should like to leave the interpretation of the boundary condition to you.

Exercise 1.9 Interpret the left side of the boundary condition in terms of
the inclination angle ψ. Draw appropriate versions of the tangent and normal
on the interface (curve) shown in Figure 1.3 at x = ±r. Identify and label
the contact angle γ in your drawings.

At the end of this chapter, I will state both the 2-D and 3-D capillary
problems under consideration as geometric problems. When you have fin-
ished the exercises above, you can compare your understanding of the prob-
lems to those statements. In the next section I will attempt to describe some
simple properties of solutions of the two point boundary value problem (1.3)
suggesting we are on the right track.

1.10 Monotonicity and estimates for elastica

Given a solution u of (1.3), if we integrate over the base domain (−r, r) we
find

u′√
1 + u′2

∣

∣

r

x=−r

= κ

∫ r

−r

u(x) dx.

The boundary condition then implies
∫ r

−r

u(x) dx =
2 cos γ

κ
. (1.7)

2Technically, we could introduce a new function Ψ : (−r, r) → R by Ψ(x) = ψ(s(x))
where s is the arclength function (1.6).
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The integral quantity on the left here is called the lifted volume, and we
denote it by

V =

∫ r

−r

u(x) dx.

The explicit formula (1.7) we have obtained for the lifted volume has the
following qualitative properties or interpretations:

(a) If the contact angle tends to π/2 (with κ > 0 fixed), then the lifted
volume tends to zero.

(b) If the capillary constant tends to zero (with 0 < γ < π/2 fixed), then
the lifted volume tends to infinity.

We can also see the following closely related quantitative (monotonicity)
properties:

(c) If 0 < γ1 < γ2 < π/2 (with κ > 0 fixed), then the lifted volumes V1 and
V2 associated with γ1 and γ2 respectively satisfy

V2 < V1.

(d) If two capillary tubes are modeled with capillary constants 0 < κ1 < κ2
(with 0 < γ < 0 fixed), then the lifted volumes V1 and V2 associated
with κ1 and κ2 respectively satisfy

V2 < V1.

Put another way, a smaller contact angle or a smaller capillary constant
results in a greater lifted volume.

We will see in the modeling that the capillary constant κ is naturally
assumed positive and one may think of smaller values of κ in any one of the
following ways:

(i) The density of the liquid is small.

(ii) The gravitational field is of small magnitude.

(iii) The surface tension of the liquid is large.
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Density and gravitational strength should have some (at least intuitive)
meaning to everyone. Surface tension as a property of a liquid may be unfa-
miliar, but we will talk more about this later. For now, we can consider the
suggestion that

The effects of capillarity become more significant when κ becomes
smaller,

and we can make some preliminary attempt to see if what the lifted volume
formula implies agrees with our intuition.

Exercise 1.11 What does the formula (1.7) for lifted volume tell you about
the case when γ > π/2? Does this make sense?

Exercise 1.12 One might assume that when the contact angle tends to zero,
then the lifted volume tends to infinity. Explain both mathematically and
intuitively why this is not the case.

Exercise 1.13 The interface drawn in Figure 1.3 is a numerically computed,
i.e., numerically approximated, solution of (1.3). It is quite accurate, and
you can draw such accurate pictures yourself. Use mathematical software
like Matlab (ode45) or Mathematica (NDSolve) to draw/plot (numerically)
an interface like that in Figure 1.3. Here are some hints/steps:

(a) Expand the outer derivative in the 2-D capillary equation

d

dx

(

u′√
1 + u′2

)

= κu

so that you can solve for the second derivative u′′.

(b) Introduce a new dependent variable v = u′ so you can express the equa-
tion in terms of an equivalent (first order) system of equations, the first
of which is u′ = v.

(c) Numerically approximate the solution of the first order system using κ =
1 and the initial value

(

u(0)
v(0)

)

=

(

u0
0

)

.

where u0 is some positive (or negative) central height.
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This exercise assumes the interface is symmetric with respect to the vertical
line x = 0. Can you justify this assumption rigorously?

Exercise 1.14 Assume u is a positive solution of the elastica boundary
value problem (1.3). Prove the following:

(a) u′′(x) > 0 for all x so that the graph of u is a convex curve.

(b) The minimum value of u occurs at x = 0.

(c) The quantity u(0) is called the central rise height. It satisfies

u(0) ≤ cos γ

κr
.

We mentioned that it is natural to assume the capillary constant is posi-
tive. In fact, the definition arising in or model will be

κ =
ρg

σ
(1.8)

where ρ is the density of the liquid, g is the gravitational acceleration of the
field, and σ is the surface tension parameter mentioned above (which is
also positive).

Exercise 1.15 Under the assumption (1.8) write down as many limiting
(qualitative) and monotonicity (quantitative) relations as you can between
the raised volume (or the central rise height) and the three parameters ρ, g,
and σ. See properties (a-d) above. For example,

If γ, r, g, and σ are fixed with 0 < γ < π/2 and the density of
the liquid tends to zero, then the lifted volume tends to infinity.

1.16 Summary

The 2-D capillary problem presented above is an essential geometric one:

Find an interface curve whose curvature is a linear function
of height and which meets the vertical lines x = ±r at an angle
γ measured within the liquid.
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The equations of Young and Laplace pose a very similar geometric prob-
lem, though the geometry is somewhat more complicated, and the mathemat-
ical analysis is much more difficult. We will address both in later chapters.
For now, let us attempt to see the geometric problem at least in broad terms.
The quantity

Mu = div

(

Du
√

1 + |Du|2

)

also measures curvature, but the curvature measured is not exactly the
curvature of a curve. This is a kind of curvature associated with a surface
called mean curvature,3 and we will discuss the details of the associated
geometry later. With this in mind, the capillary equation Mu = κu in (1.1)
is a prescribed curvature equation.

The boundary condition (1.2) also has an interpretation like that of the
2-D capillary boundary value problem. Notice the vector operator

Tu =
Du

√

1 + |Du|2

can be interpreted as the first two components of the unit downward normal
to the graph of u:

−N =

(

ux
√

1 + |Du|2
,

uy
√

1 + |Du|2
,−1

)

. (1.9)

Here we have written Du = (ux, uy). Note4 also that in the case of a curve
(when u is a function of one variable), as indicated on the right in Figure 1.3,
the upward unit normal is given by

N =

(

− u′√
1 + u′2

, 1

)

,

so we have in (1.9) a direct generalization to graphs of functions of two
variables.

The cross-sectional domain Br(0) may be embedded in R3 in, for example,
the x, y-plane, so that the outward unit normal n to ∂Br(0) takes the form

n =
(x

r
,
y

r
, 0
)

3More precisely, Mu is twice the mean curvature of the graph of u at each point.
4Remember Exercise 1.8.



1.16. SUMMARY 17

and is (by interpretation) an outward unit normal to the surface of the cir-
cular cylindrical capillary tube.

With these extensions, the expression Tu ·n in Young’s law (1.2) becomes

−N · n = cos γ.

That is to say, the angle between the downward unit normal to the interface
and the outward unit normal to the tube is prescribed to be γ.

Exercise 1.17 Draw a vertical cross-section of the 3-D capillary configura-
tion illustrated in Figure 1.1 and in Figure 1.4 in a plane through

√

x2 + y2 =
0. Label the vectors N and n and convince yourself that γ is the angle between
the interface and the surface of the tube measured within the liquid.

The geometric problem5 may now be understood as the following:

Find an interface surface whose mean curvature is a linear
function of height and which meets the vertical wall of the tube
√

x2 + y2 = r at an angle γ measured within the liquid.

Specific problems falling under this general description (and of keen in-
terest to Young and Laplace) would be

1. What is the raised volume

V =

∫

Br(0)

u ?

2. What is the central rise height u(0, 0)?

3. What can be said about the shape of the graph of u. Compare the
sketch6 in Figure 1.1 to the numerical plot in Figure 1.4.

5Finn may have been the first person to formally identify the capillary problem as a
geometric one. Certainly Young and Laplace only offered text and equations.

6Figure 1.1 is just a “freehand” sketch in which the curve indicating the bottom of the
interface happens to be quadratic (part of an ellipse) because such curves are convenient
to draw in the drawing program used.
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Figure 1.4: A solution of the 3-D capillary equation
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1.18 Extras

Notice the “lifted” volume can be negative if γ > π/2.
You may also ask the question: Is it possible to have a solution of (1.1)

and (1.2) which is not axially symmetric.
Actually, you might not think this is a very good question. You might

think the answer is obvious. (Young and Laplace probably agreed with you.)

1.19 Outline of the Course

1. The (circular) capillary tube problem(s)

2. Calculus of Variations and Mean Curvature

3. 2-D capillary surfaces

4. Floating Objects

5. Additional Topics

(a) axially symmetric capillary equation

(b) sessile drops

(c) vertical tubes of other shapes; corners

(d) pendent drops

(e) cells and partitioning; grain boundaries

(f) experimental verification for circular capillary tube and sessile
drops

(g) numerics
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I’m also going to include here an (older) previous outline of the course
(just for my reference):

I The circular capillary tube (model assumptions)

II 2-D capillary surfaces (1-D calculus of variations)

III The capillary equation (symmetric solutions in the circular tube)

IV Sessile drops

V Floating objects

The (somewhat ambitious) goal in both outlines is to discuss the mathe-
matics of floating objects—and the variational theory of floating objects in
particular. There seems to be no complete discussion of this topic in the lit-
erature, and the material in mind here is drawn mainly from my own papers.
Many of these (especically the later and better ones) are joint papers with
Ray Treinen.



Chapter 2

Calculus of Variations and
Mean Curvature

2.1 Calculus of Variations

The calculus of variations is, roughly speaking, a theory of minimization.
In the broadest sense, if A is any set and f is a real valued function with

domain A, i.e.,
f : A→ R,

then we can define what it means to minimize the function f in the following
terms:

An element a ∈ A is a minimizer if

f(a) ≤ f(x) for all x ∈ A.

Given a minimizer a ∈ A, the real number f(a) is called the
minimum value of f .

It is pretty obvious that a minimum value is unique while there may be
many minimizers. Also, it is not difficult to see that it is quite possible for
no minimizer to exist.

In order to proceed further with any kind of theory of minimization, we
need more structure on the domain set A. It is also usual to introduce some
kind of structure on the function f . If the set A is an interval in the real line,
and the function f is differentiable, then the minimization of f is considered

21
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in a first course in calculus, or what is often called 1-D (one dimensional)
calculus. This simple case is rather important for us, so let’s review it.

Theorem 1 If x0 ∈ (a, b) is a minimizer of f : (a, b) → R where f is a
differentiable function, then

f ′(x0) = 0. (2.1)

The condition (2.1) is called a necessary condition for a minimizer because
any minimizer x0 (of this sort) must satisfy this condition.

Exercise 2.2 Give an example of a minimizer x0 ∈ [a, b] of a differentiable
function f : [a, b] → R for which (2.1) fails to hold. Note: When we say a
function f : [a, b] → R, defined on a closed interval [a, b], is differentiable
we usually mean there is an extension f̄ : (ā, b̄) → R for some ā < b̄ with
ā < a ≤ b < b̄, and

f̄∣
∣

[a,b]

= f. (2.2)

The function f̄∣
∣

[a,b]

: [a, b] → R is called the restriction of f̄ to the interval

[a, b], and its values are given (of course) by

f̄∣
∣

[a,b]

(x) = f̄(x) for every x ∈ [a, b].

Exercise 2.3 Give an example of a differentiable function f : (a, b) → R
and a point x0 ∈ (a, b) with f ′(x0) = 0 which illustrates that (2.1) is not
sufficient to imply x0 is a minimizer.

Exercise 2.4 What is the definition of the derivative f ′(x) at x ∈ (a, b) for
a differentiable function f : (a, b) → R?

Exercise 2.5 Prove the necessary condition (2.1) for an interior minimizer
x0 of f : (a, b) → R.

There is also a second order necessary condition for interior minimizers,
but it requires more regularity for the function f .

Theorem 2 If x0 ∈ (a, b) is a minimizer of f : (a, b) → R where f is a
twice differentiable function, then

f ′′(x0) ≥ 0. (2.3)



2.1. CALCULUS OF VARIATIONS 23

Exercise 2.6 The following conditions on a function f : (a, b) → R are
called regularity conditions:

1. (continuity) For each x ∈ (a, b), the function f is continuous at x.

2. (differentiability) For each x ∈ (a, b), the derivative f ′(x) exists (as a
well-defined real number).

3. (continuous differentiability) For each x ∈ (a, b), the derivative f ′(x)
exists and the function f ′ : (a, b) → R is continuous.

4. (twice differentiability) For each x ∈ (a, b), the derivative f ′(x) exists
and the function f ′(a, b) → R is differentiable.

The set of continuous real valued functions on the interval (a, b) is denoted by
C0(a, b). Let us denote the set of differentiable real valued functions on (a, b)
by Diff(a, b). The set of continuously differentiable real valued functions on
(a, b) is denoted by C1(a, b). Let us denote the set of twice differentiable real
valued functions on (a, b) by Diff2(a, b). Show

Diff2(a, b) $ C1(a, b) $ Diff(a, b) $ C0(a, b).

Exercise 2.7 Prove Theorem 2.

Exercise 2.8 Give an example showing the conclusions/necessary condi-
tions (2.1) and (2.3) of Theorem 1 and Theorem 2 respectively, taken to-
gether, are not sufficient to imply x0 is a minimizer.

Exercise 2.9 Give an example showing the conditions

f ′(x0) = 0 and f ′′(x0) > 0

are also not sufficient to imply x0 ∈ (a, b) is a minimizer of the function
f ∈ Diff2(a, b).

If f : A → R and the set A is taken to be an open subset of R2 or R3,
then the minimization problem for f is discussed in a course on multivariable
calculus. Some understanding of what happens in these cases, and when A
is an open subset of Rn for any natural number n, is important for us too,
and we will review that situation below. These cases fall under the heading
of finite dimensional calculus.
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A minimization problem in the calculus of variations is distinguished,
roughly speaking, by the condition that the set A is infinite dimensional.
This terminology is a tiny bit misleading because the notion of dimensionality
relies on a vector space structure. On the other hand, an open set Ω ⊂ Rn

is usually not a vector space, but there is an obvious (finite dimensional)
vector space of which Ω is a subset. Perhaps the best way to proceed is
with a relatively simple example in which the domain does happen to be an
infinite dimensional vector space:

2.9.1 2-D Capillary Surfaces

Consider E : C1[−r, r] → R by

E [u] =
∫ r

−r

[

√

1 + u′(x)2 + κ
u(x)2

2

]

dx− β[u(−r) + u(r)]. (2.4)

Notice that E assigns to each continuously differentiable function u ∈ C1[−r, r]
a real number. Such a function is called a functional, and minimizing such
functionals is the main objective in the calculus of variations. Put another
way, the calculus of variations is the theory of minimizing functionals, more
or less, like the functional E above. Generally speaking, this is a very difficult
problem.

It is always a good idea, with a problem like this, to have some under-
standing of what your functional is computing—or what is the meaning of
its value. With this in mind, let us take a somewhat careful look at E before
we proceed to look for minimizers directly.1

As in the previous chapter, the graph of the function u represents a
possible interface separating the liquid in a capillary tube from the vapor
exterior to that liquid. The idea is that the observed interface should, for
some reason, be the one minimizing the functional E . In particular, E should,
roughly speaking, measure the energy associated with any proposed interface,
and the one that is observed is (the one) minimizing that energy.

1This is a little bit of an obscure math joke because we are actually only going to
consider what are called the indirect methods in the calculus of variations. Thus, we
will actually look for minimizers “indirectly.” There are also what are called the “direct
methods in the calculus of variations,” but we won’t really consider those methods in this
course.
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We can recognize three terms that make up E . The first one might be

∫ r

−r

√

1 + u′(x)2 dx.

Hopefully, you recognize this as the length of the graph of u. The idea is
that a certain amount of energy is required to maintain an interface between
a liquid and the vapor exterior to that liquid. There are a few different ways
to look at this. First of all, it is almost surely true that on some microscopic
level the separation between the liquid and vapor is much more messy and
complicated than the simple C1 curve we are using to model it. There are
molecules of liquid moving around near the separation region. Some are
evaporating into the vapor where there is probably a region of higher density
near the bulk liquid; some are condensing back into the bulk liquid. In the
liquid itself molecules near the separation experience an attraction to more
molecules located deeper in the liquid than those closer to the separation. It
is assumed this results in a net force pulling those molecules deeper into the
liquid. On the other hand, the overall volume of the liquid does not appear
to change position appreciably. Thus, it must be assumed other molecules
of liquid are either condensing to replace those near the surface which are
sinking deeper or deeper molecules are moving (being pushed) outward.

The bottom line of this point of view is that there is kinetic energy asso-
ciated with the separation region called free surface (or interface) energy,
and two assumptions are made about this energy (in this 2-D case):

1. The free surface energy is proportional to the length of the interface.

2. The observed interface “prefers” to minimize this energy.

The first assumption is probably a relatively reasonable one if the identi-
fication of the energy is with the kinetic energy of moving molecules near
the separation region—modeled by the interface curve. The units we have
are not quite correct since energy is force times length, and in fact, a more
physically accurate expression for the free surface energy is

σ

∫ r

−r

√

1 + u′(x)2 dx

where σ is a constant with units of force called the surface tension. One
can simply think of this as a tension inherent to the particular liquid and
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vapor (subject to ambient—temperature and pressure—conditions) along the
interface. We have simply divided the entire energy by this surface tension
constant to obtain a simpler form for E .

The second assumption is quite a bit more mysterious. The word “prefers”
is not intended to suggest that the liquid (and/or vapor, molecules, etc.) are
sentient. Probably the best interpretation is the following:

If a competitor interface were somehow constructed or achieved
near the observed equilibrium interface, then the motion of molecules
would result in a redistribution of the liquid so as to minimize the
length of the interface—subject to other constraints in the prob-
lem, including those imposed by the other terms in the energy.

We are really not saying anything more than that we assume the energy is
minimized. However, in practice, this kind of interpretation can be impor-
tant. Let’s consider the next term in the energy, and I will try to explain
how and why.

The second term in the energy E is proportional to
∫ r

−r

u(x) dx.

This term is much easier to understand. The idea is that there is a potential
field associated with gravity having the form −g(0, 1). If a point mass m is
located at the height z in this field, say at the point (0, z), then we imagine it
has been moved there from some reference level, say z = 0, and the potential
energy associated with the point mass is given by the force times the distance

∫ z

0

mg(0, 1) · (0, 1) = mgz.

Similarly, each liquid element ∆V in the area

V = {(x, z) : |x| < r and 0 < z < u(x)}

has associated with it a potential energy

ρ∆V gz∗

where ρ is an areal density and z∗ is some representative height for the
area element ∆V . Of course, the gravitational potential field −g(0, 1) we
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have taken is not really representative of the inverse square gravitational
field of the earth, but it is a reasonable (and usual) approximation near the
surface of the earth, where we expect most interesting everyday capillary
surfaces will be observed. We are also assuming in the definition of V that
u is positive. With these assumptions the total energy associated with a
particular interface is approximated by a sum

∑

j

ρg∆Vjz
∗
j .

This is a Riemann sum for an area integral over V, and (under appropri-
ate regularity assumptions) we can say the gravitational potential energy
associated with an interface determined by u should be

lim
∑

j

ρg∆Vjz
∗
j =

∫

V
ρgz = ρg

∫

V
z.

For the integral we can also write
∫

V
z =

∫ r

−r

∫ u(x)

0

z dz dx =

∫ r

−r

u(x)2

2
dx.

The factor in front of this integral for a physical energy is ρg. It will be
recalled that we have divided by the surface tension σ to obtain (2.4), and

κ =
ρg

σ

is called the capillary constant. The previous principle we attempted to
delineate for free surface energy can be, in a sense, easily illustrated for
gravitational energy:

If a competitor interface were somehow constructed or achieved
near the observed equilibrium interface, then the motion of molecules
would result in a redistribution of the liquid so as to minimize the
gravitational potential energy of the interface—subject to other
constraints in the problem, including those imposed by the other
terms in the energy.

Imagine the observed interface modeled in the upper left of Figure 2.1 where
the liquid is assumed to be below the interface curve. The suggestion is that
were the modification of the observed interface indicated in the upper right
constructed and “let go,” then the liquid in the bulge would fall in order to
lower the value of E .
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Figure 2.1: A modification of an observed interface (upper row). Clearly
elimination of the bulge reduces the gravitational potential energy associated
with the modified interface. Notice replacing the bulged portion with a
straight line would both reduce the gravitational potential energy and the
free surface length. In fact, this would reduce the free surface length to a
minimum with respect to possible modification on the bulge region. It is at
least plausible, however, that the energy can be reduced further by lowering
the interface a little more (making it convex). This reduces the gravitational
energy a relatively large amount while increasing the free surface length only
slightly. See Exercise 2.10. The suggestion is that the observed interface
is precisely the one obtaining the optimal balance to minimize the total
energy. The lower row indicates (very roughly) how the liquid might “move”
or migrate in a way that lowers energy. You should ask yourself the question:
Is that what the liquid would actually do?
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Exercise 2.10 Consider a modification of the unit square

{(x, z) : 0 ≤ x, z ≤ 1} = [0, 1]× [0, 1]

obtained by replacing the top edge

{(x, u(x)) : 0 ≤ x ≤ 1, u(x) ≡ 0}

with the graph of v(x) = 1 + ǫx(x− 1). How does the energy

E [u] =
∫ 1

0

[

√

1 + u′(x)2 + κ
u(x)2

2

]

dx

change under this modification. There are several possible approaches you
can take here. You can plot the value f(ǫ) = E [u] numerically. You can
also compute the derivative f ′(0). In the end, you should try to obtain an
understanding of the order to which the length term changes compared to the
order to which the gravitational energy term changes.

Finally, we consider the third term −β[u(−r)+u(r)]. This term is called
the wetting energy. Technically, in order to have physically correct units
the wetting energy is σβ[u(−r)+u(r)]. Nevertheless, β is a physical constant
measuring the differential attraction between the molecules of the liquid and
those of the container, or 2-D “tube” consisting of two vertical walls that are
straight lines. The constant β is called the adhesion coefficient. If β > 0,
then the molecules of the liquid are attracted to those of the walls so that
the energy is lower when the wetted portions of the wall

{(−r, z) : 0 < z < u(−r)} and {(r, z) : 0 < z < u(r)}

are as long as possible. Notice again, the balance: If β > 0, then making
these segments long tends to increase both the free surface energy and the
gravitational potential energy. If β = 0, then the molecules of the liquid are
indifferent toward those of the wall, and if β < 0, then the molecules of the
liquid and those of the wall experience a mutual repelling force.

The discussion of the energy functional above is vague and inadequate.
If you can think more deeply about why and how liquid interfaces minimize
such a functional, many people will be interested to hear your thoughts. We
have merely attempted to make the minimization of E by observed interfaces
seem plausible. What we can do is say more precise things about the model
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interfaces that do minimize E . At the current time, the ultimate motivation
for this description is that it leads to the equations of Young and Laplace
and the resulting minimizing interfaces match experimental observations.

Returning to our illustration of the general subject of calculus of varia-
tions, we have a specific functional E : C1[−r, r] → R.

Exercise 2.11 Recall that a vector space E over a field F is a set with a
binary operation of addition + : E × E → E and a scaling operation
· : F × E → E and having the following properties:

1. Addition is commutative: v + w = w + v for all w, v ∈ E.

2. Addition is associative: (v + w) + z = v + (w + z) for all w, v, z ∈ E.

3. There exists a zero vector 0 with

v + 0 = 0+ v = v for all v ∈ E.

4. For each vector v ∈ E, there exists an additive inverse, which is
another vector w ∈ E for which

v + w = w + v = 0.

The additive inverse vector w of a vector v is denoted by −v. See
Exercise 2.12 below.

5. Scaling is associative: (ab)v = a(bv) for all a, b ∈ F and v ∈ E.

6. 0v = 0 and 1v = v for any v ∈ E where 0 is the additive identity in
the field F and 1 is the multiplicative identity in the field F .

7. There are two distributive laws for scaling.

(a) Scalars distribute across a sum of vectors:

a(v + w) = av + aw for all a ∈ F and v, w ∈ E.

(b) A vector distributes across a sum of scalars:

(a+ b)v = av + bv for all a, b ∈ F and v ∈ E.



2.1. CALCULUS OF VARIATIONS 31

Definition 1 Given two vector spaces X and E over the same field F , a
function L : X → E is linear if

L(av + bw) = aL(v) + bL(w) for all a, b ∈ F and v, w ∈ X.

Show C1[−r, r] and R are both vector spaces over R, but E : C1[−r, r] → R
is not linear.

Exercise 2.12 The following are some basic exercises concerning the notion
of a vector space.

(a) Show that the zero vector in a vector space is unique.

(b) Show that the additive inverse of any vector v in a vector space is unique.

(c) Show that the compatibility properties for scaling involving the additive
and multiplicative identities in the field given in condition 6 of the def-
inition of a vector space follow independently from the other properties
defining a vector space. Thus condition 6 may be omitted from the
definition.

(d) Look up and write down carefully the definition of a field.

(e) Explain how the integers mod 3

Z3 = {0, 1, 2}

is a field.

Exercise 2.13 Let V be a vector space over a field F .

Definition 2 A set B ⊂ V is a basis for V if the following conditions hold:

1. Given any vector v ∈ V there exist (finitely many) vectors v1, v2, . . . , vk ∈
V and there exist scalars c1, c2, . . . , ck ∈ F for which

v =
k
∑

j=1

cjvj .
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2. Given elements w1, w2, . . . , wℓ ∈ B and a1, a2, . . . , aℓ ∈ F with the
elements of B distinct, if

0 =

ℓ
∑

j=1

ajwj, then a1 = a2 = . . . aℓ = 0.

The following are basic exercises concerning the notion of a basis:

(a) Given any subset A ⊂ V , the span of A is defined to be the set of all
linear combinations of elements from A, that is,

span(A) =

{

k
∑

j=1

cjvj : v1, v2, . . . , vk ∈ A and c1, c2, . . . , ck ∈ F

}

.

Show span(A) is a vector field over the same field F . Thus, the first
condition defining a basis B may be written simply as span(B) = V ,
i.e., B is a spanning set.

(b) Any subset A ⊂ V satisfying the second condition defining a basis for V ,
that is, given elements w1, w2, . . . , wℓ ∈ A and a1, a2, . . . , aℓ ∈ F with
the elements of A distinct, if

0 =
ℓ
∑

j=1

ajwj, then a1 = a2 = . . . aℓ = 0,

is said to be linearly independent. Show any vector v in the span
of a linearly independent set A can be written uniquely as a linear
combination of distinct elements of A, i.e, if

ℓ
∑

j=1

ajwj =
k
∑

j=1

cjvj

for some distinct w1, w2, . . . , wℓ ∈ A, some distinct v1, v2, . . . , vk ∈ A
and some a1, a2, . . . , aℓ, c1, c2, . . . , ck ∈ F , then

{v1, v2, . . . , vk} = {w1, w2, . . . , wℓ},

and in particular k = ℓ, and there exists a permutation, i.e., a bijec-
tion φ : {1, 2, . . . , k} → {1, 2, . . . , ℓ = k}, such that

vj = wφ(j) and cj = aφ(j) for j = 1, 2, . . . , k.
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Thus, an alternative definition of a basis B for a vector space V is a subset
B ⊂ V for which each element v ∈ V can be written as a unique linear
combination of distinct elements in B.

Exercise 2.14 A vector space V is said to be finite dimensional if there
exists a basis B for V with finitely many elements. A vector space V is said
to be infinite dimensional if it is not finite dimensional, i.e., if no basis
with finitely many elements exists.

(a) Two vector spaces E and V over the same field are said to be isomor-
phic (as vector spaces) if there is a linear bijection L : E → V . Show
any finite dimensional vector space V is isomorphic to F n for some n.

(b) Show C1[−r, r] is infinite dimensional.

According to the preceding exercises, we have a real valued nonlinear
functional E : C1[−r, r] → R defined on an infinite dimensional vector space
C1[−r, r], and we can attempt to minimize E . It turns out that, in the grand
scheme of things, the fact that C1[−r, r] is an infinite dimensional vector
space is not directly representative of the infinite dimensionality inherent to
the problems of the calculus of variations, but the review of vector spaces, and
infinite dimensional vector spaces in particular, will be useful and necessary.
The functional E : C1[−r, r] → R is, in fact, a rather typical example of the
kinds of functionals considered in the calculus of variations.

The object corresponding to a first derivative of a functional like E is
called a first variation or Gateaux differential. Here is the construction:
Let u, φ ∈ C1[−r, r] and consider v = u+ ǫφ. The quantity

δE [φ] = δuE [φ] =
[

d

dǫ
E [u+ ǫφ]

]

∣

∣

ǫ=0

is called the first variation of E at u in the direction φ. In this definition, we
are thinking of u and φ fixed. After the value of δE is computed, we may
think of u and/or φ as arguments of the first variation. If u is a minimizer
of E , then E [v] = E [u + ǫφ] ≥ E [u], and f(ǫ) = E [u + ǫφ] (with φ fixed) is a
real valued function of one variable, ǫ, with a minimum at ǫ = 0. Therefore,
if u is a minimizer of E , then

δuE [φ] ≡ 0 for every φ ∈ C1[−r, r].
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We might be worried about whether or not the derivative with respect
to ǫ exists and, if so, if the limit as ǫ tends to zero exists as well. Let’s see
if we can make a computation to determine if concerns about this are valid.
Writing out E [v] from (2.4) we have

E [v] =
∫ r

−r

[

√

1 + v′(x)2 + κ
v(x)2

2

]

dx− β[v(−r) + v(r)]

=

∫ r

−r

[

√

1 + [u′(x) + ǫφ′(x)]2 + κ
[u(x) + ǫφ(x)]2

2

]

dx

− β[u(−r) + ǫφ(−r) + u(r) + ǫφ(r)].

Thus, forming the difference quotient

E [u+ ǫφ]− E [u+ (ǫ+ h)φ]

h

we obtain

1

h

∫ r

−r

[

√

1 + [u′(x) + (ǫ+ h)φ′(x)]2 −
√

1 + [u′(x) + ǫφ′(x)]2
]

dx

+ κ

∫ r

−r

[

[u(x) + ǫφ(x)]φ(x) +
hφ(x)2

2

]

dx− β[φ(−r) + φ(r)].

The First term can be written as
∫ r

−r

2[u′(x) + ǫφ′(x)]φ′(x) + hφ′(x)
√

1 + [u′(x) + (ǫ+ h)φ′(x)]2 +
√

1 + [u′(x) + ǫφ′(x)]2
dx.

From these expressions, it is clear the limit as h tends to zero exists and

d

dǫ
E [v] =

∫ r

−r

[u′(x) + ǫφ′(x)]φ′(x)
√

1 + [u′(x) + ǫφ′(x)]2
dx

+ κ

∫ r

−r

[u(x) + ǫφ(x)] φ(x) dx− β[φ(−r) + φ(r)].

The derivative with respect to ǫ does exist, and evaluation at ǫ = 0 is also
immediate:

δE [φ] =
∫ r

−r

[

u′(x)
√

1 + u′(x)2
φ′(x) + κu(x)φ(x)

]

dx− β[φ(−r) + φ(r)].
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We pause to remark/recall that if u ∈ C1[−r, r] is a minimizer of E , then
δuE [φ] = 0 for all φ ∈ C1[−r, r]. Our computation allows us to write this
condition as

∫ r

−r

[

u′(x)
√

1 + u′(x)2
φ′(x) + κu(x)φ(x)

]

dx = β[φ(−r) + φ(r)]

(2.5)

for all φ ∈ C1[−r, r].

It is not entirely clear what this (integral) condition implies about the mini-
mizer u. We can say, more generally, however that any function u ∈ C1[−r, r]
for which (2.5) holds is called a weak extremal for the functional E . A weak
extremal is an analogue of a (1-D calculus) critical point in the calculus of
variations; a weak extremal need not be a minimum; it might be a maximum
or neither a minimum nor maximum.

Theorem 3 (first necessary condition in the calculus of variations) A min-
imizer u ∈ C1[−r, r] of E : C1[−r, r] → R given by (2.4) is a weak extremal
for E .

In order to proceed further, we assume additional regularity on a mini-
mizer (or extremal) u.

Theorem 4 (C2 weak extremals) If u ∈ C2[−r, r] is a weak extremal for E
given by (2.4), then

d

dx

(

u′(x)
√

1 + u′(x)2

)

= κu(x) for x ∈ (−r, r), (2.6)

and
u′(±r)

√

1 + u′(±r)2
= ±β. (2.7)

Proof: If u ∈ C2[−r, r], then the curvature of the graph

d

dx

(

u′(x)
√

1 + u′(x)2

)
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makes sense, and we may integrate the first term in (2.5) by parts to obtain

(

u′(x)
√

1 + u′(x)2
φ(x)

)

∣

∣

r

x=−r

−
∫ r

−r

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx

= β[φ(−r) + φ(r)].

That is,

∫ r

−r

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx

(2.8)

=

[

u′(r)
√

1 + u′(r)2
− β

]

φ(r)−
[

u′(−r)
√

1 + u′(−r)2
+ β

]

φ(−r)

for all φ ∈ C1[−r, r].

Let us assume, by way of contradiction that the factor

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

in the integral in (2.8) is nonzero at some point x = x0 ∈ (−r, r). By
continuity, then, there is some ǫ > 0 for which

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x) 6= 0 for |x− x0| < ǫ.

Notice that this assertion assumes ǫ is small enough so that x ∈ [−r, r]
for every x with |x − x0| < ǫ. We know, furthermore, by the intermediate
value theorem that this integrand assumes a single sign on the entire interval
x0 − ǫ < x < x0 + ǫ.

Exercise 2.15 Explain why (i.e., give explicit estimates showing) we can
assume {x : |x − x0| < ǫ} ⊂ (−r, r). Also, explain the application of the
intermediate value theorem in detail.
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Exercise 2.16 There exists a function φ ∈ C1[−r, r] satisfying the following:
(a) φ(x) ≡ 0 for |x− x0| ≥ ǫ.

(b) φ(x) > 0 for |x− x0| < ǫ.

Substituting the function φ from Exercise 2.16, for which φ(−r) = φ(r) =
0, into (2.8) we conclude

∫ r

−r

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx = 0.

That is,
∫ x0+ǫ

x0−ǫ

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx = 0.

The factors in the integrand here are both nonzero and neither changes sign
on the interior interval (x0− ǫ, x0+ ǫ). This is a contradiction implying (2.6)
must hold identically.

In view of what we have just shown (2.8) simplifies to
[

u′(r)
√

1 + u′(r)2
− β

]

φ(r) =

[

u′(−r)
√

1 + u′(−r)2
+ β

]

φ(−r)

for all φ ∈ C1[−r, r].

Taking any φ ∈ C1[−r, r] for which φ(r) = 0 but φ(−r) 6= 0, we get

u′(−r)
√

1 + u′(−r)2
= −β.

Similarly, when φ(−r) = 0 but φ(r) = 0, we conclude

u′(r)
√

1 + u′(r)2
= β. �

Notice that we have obtained in Theorem 4 the 2-D capillary surface
equation (and ordinary differential equation) and the boundary condition
subject to the assumption that the adhesion coefficient β satisfies

|β| < 1
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so that the equation cos γ = β defines a unique contact angle γ strictly
between 0 and π. It may be observed that there was no particular physical
restriction suggesting |β| < 1, and it can be fairly asked: What if we consider
the functional E with |β| ≥ 1? Let us postpone consideration of this question
until the next chapter where we discuss solutions of Euler’s equation for
elastic curves.

2.16.1 Calculus of Variations

With at least one example of the process (typical to the calculus of variations)
by which one begins with a functional and, in an effort to minimize its value
or find a minimizer, arrives at a differential equation, let us consider the
process in a somewhat more general framework.

Problems in the calculus of variations always involve two important sets,
which are usually sets of functions. These two sets are the admissible class
A and the set of perturbations V. The admissible class is the domain of
the functional under consideration. Thus, we consider

F : A → R,

and we (typically) seek to minimize F . The set A is very often not a vector
space, though it was in our example above. The set of perturbations V is
almost always a vector space—and an infinite dimensional vector space in
the case of the calculus of variations. The perturbations can be thought
of roughly as differences of admissible functions. In particular, given an
admissible function u ∈ A and a perturbation φ ∈ V, we require

v = u+ ǫφ ∈ A for ǫ ∈ R with |ǫ| small.

We need this in order to compute the first derivative

d

dǫ
F [u+ ǫφ]

and hence the first variation

δuF [φ] =

(

d

dǫ
F [u+ ǫφ]

)

∣

∣

ǫ=0

.

If you think of V as differences admissible functions with

v = u+ a φ ∈ A and w = u− b ψ ∈ A
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both admissible with φ, ψ ∈ V, then v − w = a φ + b ψ should also be in
V (at least for small a and b). This means V is closed under “small” linear
combinations making V a vector space at least on a small scale.

Also by assuming the set of perturbations V is a vector space, the first
variation (Gateaux derivative or functional derivative) is a functional defined
on a vector space:

δuF : V → R.

This makes it possible to understand the first variation as a linear functional.
In fact, under the most common structural assumption for F : A → R, the
first variation will always be a linear functional. Namely, if F : A → R is an
integral functional of the form

F [u] =

∫ b

a

F (x, u(x), u′(x)) dx

where A is some subset (not necessarily a subspace) of C1[a, b] and F :
[a, b] × R × R → R with F = F (x, z, p) is continuously differentiable, then
δuF : V → R by

δuF [φ] =

∫ b

a

(

∂F

∂z
(x, u(x), u′(x))φ(x) +

∂F

∂p
(x, u(x), u′(x))φ′(x)

)

dx

where V is a subspace of C1[a, b]. The first variational formula is often written
in a shorter form obtained by suppressing the arguments of the functions in
the integrand:

δuF [φ] =

∫ b

a

(

∂F

∂z
φ+

∂F

∂p
φ′
)

dx (2.9)

Exercise 2.17 Compute the first variation formula (2.9) for an integral
functional and verify δuF is linear (assuming V is a vector subspace of
C1[a, b]).

At this point consideration of several other examples is in order. In particular,
we should like to see an example where the admissible class is (naturally) not
a vector space. This is easy to illustrate.

Exercise 2.18 Consider the length of the graph of a function u : [a, b] → R
with u ∈ C1[a, b]. Write down the formula for the length functional L : A →
R where

A = {u ∈ C1[a, b] : u(a) = ya and u(b) = yb}.
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Explain why A is not a vector space, but the set of perturbations

V = {u− v : u, v ∈ A} is a vector space.

What can you say about minimizers for this problem?

The shortest graph problem above is a very simple and popular example of
a problem in the calculus of variations. The next problem is very similar to
it in several ways.

Exercise 2.19 Again let us take

A = {u ∈ C1[a, b] : u(a) = ya and u(b) = yb}

and
V = C1

0 [a, b] = {φ ∈ C1[a, b] : φ(a) = φ(b) = 0}.
This time consider D : A → R by

D[u] =

∫ b

a

u′(x)2 dx.

This is called the Dirichlet energy of a function u ∈ C1[a, b].

(a) Find the unique minimizer in the case ya = yb. Prove your answer is
the only possible minimizer in this case.

(b) Explain why the minimizer when ya = yb is inadmissible when ya 6= yb
and that the minimum value of D (if it exists when ya 6= yb) is positive.
Hint: Use the mean value theorem. Can you find an explicit lower
bound for the minimum value of D (in terms of a, b, ya, and yb)?

(c) Compute the first variation of D.

(d) Assume a minimizer u0 exists and is in C2[a, b]. Integrate by parts
to find an ordinary differential equation satisfied by the minimizer u0.
State and solve the natural boundary value problem for this ordinary
differential equation for the minimizer.

(e) Again assuming ya 6= yb, compare the values of D[uc] where c is fixed
with a < c < b and

uc(x) =

{

ya, 0 ≤ x ≤ c,
(yb − ya)(x− c)/(b− c) + ya, c ≤ x ≤ b.
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There is something quite interesting about the functions uc in the last part
of Exercise 2.19. Do you see what it is?

Here are two (much harder) but still quite popular calculus of variations
problems:

Exercise 2.20 (Brachistochrone) Consider the points A = (0, H) and B =
(1, h) in the plane with 0 < h < H. If we consider the path

{(x,−(H − h)x+H) : 0 ≤ x ≤ 1}

connecting A to B, we can imagine a point mass (or frictionless bead) that
starts from rest at A and slides down to B (under the influence of a downward
gravitational field −g(0, 1)). Assuming the mass is constrained to the specified
path, notice that the gravitational force can be decomposed in components
parallel and orthogonal to the path as

−mg(0, 1) = −mg sinψ(cosψ, sinψ) +mg cosψ(sinψ,− cosψ)

where ψ = tan−1(h−H) < 0. The component orthogonal to the path must be
absorbed by a reaction force and, according to Newton’s second law the other
component gives acceleration to the mass according to

(

d2x

dt2
,
d2y

dt2

)

= −g sinψ(cosψ, sinψ).

In this case we can find an explicit expression for the motion, and then es-
sentially everything is known.

(a) How long does it take for this mass to move from A to B?

In other cases, computing the time of travel is not so easy. Let us say a path
is given by the graph of a function in the set u ∈ C1[0, 1] with u(0) = H and
u(1) = h.

Let us also assume, as with the straight line path given above, a frictionless
bead starting from rest at A will move to B along the graph of this function
(under the influence of gravity) and arrive at B in finite time T . Denote the
motion of this mass by

r(t) = (x(t), y(t)) = (x(t), u(x(t))) for 0 ≤ t ≤ T.
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(b) Recall the arclength relation

s =

∫ x

0

√

1 + u′(ξ)2 dξ.

Differentiate this expression twice with respect to time to obtain

d2s

dt2
= −g sinψ

where the inclination angle ψ is defined by

(cosψ, sinψ) =

(

1
√

1 + u′(x)2
,

u′(x)
√

1 + u′(x)2

)

as usual. Hint(s): Take the component of force along the path as we
did for the straight line path to conclude

d2r

dt2
= −g sinψ(cosψ, sinψ)

in general. Then compute d2r/dt2 directly and compare what you get
to your expression for d2s/dt2.

(c) Show the quantity

C =
1

2
m

(

ds

dt

)2

+mgu(x(t))

is constant. Hint: Differentiate C with respect to t and use the previous
part.

(d) Assume
dx

dt
> 0

so that x : [0, T ] → [0, 1] has in inverse τ : [0, 1] → [0, T ] giving the
time τ = τ(ξ) at which the mass has x-coordinate ξ. Show

T [u] =
1√
2g

∫ 1

0

√

1 + u′(x)2

H − u(x)
dx.
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Hint: Use the fundamental theorem of calculus to write T as an integral
of dτ/dξ. Then use the chain rule to show

dτ

dξ
=

ds

dx
ds

dt

.

Finally, use the conserved quantity to express ds/dt in terms of u.

A minimizer of the time of travel functional T : A → R where

A =

{

u ∈ C1[0, 1] : u(0) = H, u(1) = h, and

∫ 1

0

√

1 + u′(x)2

H − u(x)
dx <∞

}

is called a brachistochrone or “shortest time” function. This is an example
where the perturbation space

V = {φ ∈ C1[0, 1] : φ(0) = 0 = φ(1)}

cannot be interpreted as the set of differences of admissible functions. Nev-
ertheless, one has for each u ∈ A the crucial condition

u+ ǫφ ∈ A when φ ∈ V and |ǫ| is small enough.

This is enough to compute the first variation and determine minimizers.
Incidentally, this problem was posed publicly (and somewhat flamboyantly)

by Johann Bernoulli in 1696:

I, Johann Bernoulli, address the most brilliant mathematicians in the

world. Nothing is more attractive to intelligent people than an hon-

est, challenging problem, whose possible solution will bestow fame and

remain as a lasting monument. Following the example set by Pas-

cal, Fermat, etc., I hope to gain the gratitude of the whole scientific

community by placing before the finest mathematicians of our time

a problem which will test their methods and the strength of their in-

tellect. If someone communicates to me the solution of the proposed

problem, I shall publicly declare him worthy of praise.

It can certainly be argued that while the shortest path and minimum Dirichlet
energy problems have (at least) obvious candidates for minimizers, this prob-
lem illustrates the fact that the calculus of variations can be used to obtain
very non-obvious information.
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Exercise 2.21 Consider A : A → R by

A[u] = 2π

∫ 1

0

u(x)
√

1 + u′(x)2 dx

where
A = {u ∈ C1[0, 1] : u(0) = z0, u(1) = z1, u > 0}.

This functional gives the area of a surface of rotation generated by rotating
the graph of u around the x-axis. Find the first variation and the differential
equation satisfied by C2 minimizers. What you will obtain is called the axially
symmetric minimal surface equation; it is in fact the equation of meridian
curves for axially symmetric surfaces with zero mean curvature. (We will
discuss mean curvature in the next section.)

Finding the actual minimizers for the functionals in the last two problems
is relatively difficult.

Note on regularity of function classes

For reasons that should become clear later—and would also become clear if
the brachistochrone and axially symmetric minimal surface problems were
studied further—it is natural to require less regularity than we have required
above for admissible functions and more regularity for perturbations. In fact,
we already considered functions whose regularity was less than the nomi-
nal regularity of the admissible class in part (e) of Exercise 2.19 concerning
Dirichlet energy. Taking the set

{u ∈ C1[a, b] : u(a) = ya and u(b) = yb}

used in some of the examples above, we usually replace this with the larger
admissible class

{u ∈ ⊏
1[a, b] : u(a) = ya and u(b) = yb}

where ⊏
1[a, b] denotes the subspace of C0[a, b] consisting of piecewise C1

functions. For each function u ∈ ⊏1[a, b] there exists a partition a = x0 <
x1 < x2 < · · · < xm = b such that for j = 1, 2, . . . , m

u∣
∣

[xj−1,xj ]

∈ C1[xj−1, xj ].

Here are three reasons to consider admissible classes with lower regularity:
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1. It is easier to find minimizers and prove minimizers exist—because you
are allowing more possibilities. (This is particularly important in the
direct methods of the calculus of variations which we will not really
cover, and certainly wont emphasize, in this course.)

2. It is easier to make modifications/variations of a given admissible func-
tion and remain in the admissible class.

3. Sometimes minimizers do not have the regularity you would expect.
For example sometimes minimizers turn out to be piecewise C1 instead
of C1. See Exercise 2.22 below.

Alternatives to the space of piecewise C1 functions may be found among the
spaces of functions with weak derivatives. These spaces are considered,
for example, in the text One-dimensional Variational Problems by Buttazzo,
Giaquinta, and Hildebrandt. The piecewise C1 functions, however, are a
quite traditional choice found, for example, in the classic text Introduction
to the Calculus of Variations by Hans Sagan.

Exercise 2.22 (Newton’s profile of minimal drag) Isaac Newton modeled the
drag on an axially symmetric object of maximum radius R as proportional to

N [u] =

∫ R

0

x

1 + u′(x)2
dx

where the graph of u ∈ ⊏[0, R] gives the rigid profile meeting the opposing
fluid medium. For example, if u(x) ≡ 0, then one is considering a flat
cylinder {(x, y, z) : x2 + y2 ≤ R2 and z ≤ 0} or

{(x, y, z) : x2 + y2 ≤ R2 and − L ≤ z ≤ 0}

moving vertically upward and

N [u] =
R2

2

can be viewed as giving a measure of the resistance encountered.

(a) If one caps the cylinder with a hemisphere, what does Newton’s resistance
measurement give? Newton mentioned the comparison (of the value
for the hemisphere to that for the cylinder) specifically and apparently
viewed it as an encouraging sign that his functional was measuring the
quantity he had in mind.
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(b) Compute the Newtonian resistance N [u] for the conical cap determined
by

u(x) =
H

R
(R− x).

In practice, it may be impractical to construct a nose cone of arbitrarily
large height H. Thus, we introduce the admissible class

A = {u ∈ ⊏
1[0, R] : u(0) = H, u(R) = 0, and u′ ≤ 0}

for H > 0 fixed. The next part gives some indication about the origin
of the monotonicity requirement u′(x) ≤ 0 for 0 ≤ x ≤ R.

(c) Plot the profile determined by u(x) = H sin2(2πnx/R) and compute
N [u].

(d) We may assume every function u ∈ A has u(x) ≡ H on some interval
0 ≤ x ≤ R0 < R. Among the admissible functions

u(x) =

{

H, 0 ≤ x ≤ R0,
H(R− x)/(R− R0), R0 ≤ x ≤ R,

which has the least Newtonian resistance N [u]?

There are two more exercises at the end of this section on Newton’s resis-
tance functional. The first suggests a kind of justification/derivation for the
functional itself, and the second gives a start at finding some actual mini-
mizers and proving that every minimizer satisfies u(x) ≡ H for 0 ≤ x ≤ R0

and some R0 > 0 and that

lim
xցR0

u′(x) < 0

so that a minimizer satisfies u ∈ ⊏1[0, R]\C1[0, R].
Let us now turn our attention to the vector space of perturbations. A

typical collection of perturbations is C∞
c (a, b) which is a relatively much

smaller vector space than

C1
0 [a, b] = {φ ∈ C1[a, b] : φ(a) = φ(b) = 0}.

The functions in C∞
c (a, b) are infinitely differentiable and have support com-

pactly contained in the interior interval (a, b). This requires a little explana-
tion.
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Open and Closed Sets; Support

We have mentioned the open interval (a, b) ⊂ R1 and the open disk

Br(x0, y0) = {(x, y) : (x− x0)
2 + (y − y0)

2 < r2} ⊂ R2.

These are both examples of open balls. Note in particular, that the open
interval can be expressed as the set of all points in R1 whose distance from
the center (a + b)/2 is less than the radius (b − a)/2. In fact open balls are
prototypical open sets in any metric space which is a set with a notion of
distance between pairs of points. More precisely, a set X is a metric space if
there is a function d : X ×X → [0,∞) satisfying

1. d(x, y) = d(y, x) for all x, y ∈ X . (symmetry)

2. d(x, y) = 0 if and only if x = y. (positive definite)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X . (triangle inequality)

The function d is called a distance function or metric (distance). Every finite
dimensional Euclidean space Rn is a metric space with

d(x,y) =

√

√

√

√

n
∑

j=1

(yj − xj)2

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). This is called the Eu-
clidean metric and the value of the Euclidean metric is also denoted |y− x|
or sometimes ‖y − x‖ if one is worried about confusion with the absolute
value function on R.

Using any metric (on a metric space X) one defines the open ball of radius
r > 0 and center p ∈ X by

Br(p) = {x ∈ X : d(x, p) < r}.

Also a subset U ⊂ X of any metric space X is said to be open if for each
p ∈ U , there is some r > 0 such that

Br(p) ⊂ U.

Exercise 2.23 Show that an open ball in any Euclidean space is open.
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Technically, there can be other notions of open sets and we should be a little
more careful and say a set is open with respect to the metric topology if the
condition above holds. For our purposes at the moment, however, we can
assume the only topologies of interest are metric topologies of the sort just
described.

Exercise 2.24 Show a finite intersection of open sets is open and any pos-
sible union of open sets is open.

Definition 3 The interior of any set (in a metric space) is the union of all
open balls inside that set. If A ⊂ X and X is a metric space, we denote the
interior of A by int(A) and

int(A) =
⋃

x∈X,r>0

Br(x)⊂A

Br(x).

Exercise 2.25 Show the interior of a set is always open.

A set A ⊂ X is defined to be closed if the complement

Ac = X\A = {x ∈ X : x /∈ A} is open.

Exercise 2.26 Show any intersection of closed sets is closed.

This brings us to a crucial construction: The closure of any subset A of a
metric space X is defined to be the smallest closed set containing A. That
is, the closure of A is

clos(A) = A =
⋂

C⊃A
C:closed

C.

Exercise 2.27 Show a set is closed if and only if the set is its own closure.

Definition 4 (support) Given a function u : A → R defined on a subset
A of the Euclidean space Rn, the support of u, denoted by supp(u), is the
closure of the set of points where u is nonzero. That is,

supp(u) = {x ∈ A : u(x) 6= 0}.
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Definition 5 A set A ⊂ X where X is a metric space is bounded if there
is some p ∈ X and some r > 0 such that

A ⊂ Br(p).

In the case where X = Rn is Euclidean space, we may take the center of the
bounding ball to be the origin 0. Then a set is bounded if there is some r > 0
such that

|x| < r for all x ∈ A.

Definition 6 A set K ⊂ Rn is compact if K is closed and bounded.

Definition 7 A function u : A→ R defined on a set A ⊂ Rn is said to have
compact support in A if supp(u) is compact and

supp(u) ⊂ int(A).

This condition is often written as supp(u)⊂⊂A, which is read “the function
u has support compactly contained in A” or “the function u is compactly
supported in A” for short.

We are now (almost) in a position to discuss C∞
c (a, b). We have mentioned

that the set of continuous real valued functions on [a, b] is denoted by C0[a, b],
and the set of continuously differentiable real valued functions on [a, b] is
denoted by C1[a, b]. These are vector spaces over R and C0[a, b] ⊃ C1[a, b].
Naturally, we can also require continuity or differentiability only at interior
points of (a, b), and the corresponding vector spaces are denoted by C0(a, b) ⊃
C1(a, b). We can also require the existence of more continuous derivatives:
The functions in Ck(a, b) have derivatives of order k which are continuous
at each point in (a, b), and we have an infinite collection of nested vector
subspaces:

C0(a, b) ⊃ C1(a, b) ⊃ C2(a, b) ⊃ · · ·

Showing strict inequality in each of these inclusions is one way to show each
of these vector subspaces is infinite dimensional.

C∞(a, b) =

∞
⋂

k=0

Ck(a, b).
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In some sense, most familiar functions are in this (kind of) space. Most
familiar functions have derivatives of all orders: polynomials, exponentials,
sine and cosine. The tangent function is in C∞(−π/2, π/2).

C∞
c (a, b) = {u ∈ C∞(a, b) : supp(u)⊂⊂(a, b)}.

If you haven’t been shown a function in C∞
c (a, b), or thought carefully about

it for a long time, then you probably do not know any nonzero functions in
this set.

Exercise 2.28 Show there exists a nonzero C∞ function with compact sup-
port.

2.28.1 Calculus of Variations—second pass

One advantage of using a very small perturbation space is that the theorems
above hold under less restrictive hypotheses. Notice that to require

F [u] ≤ F [u+ hφ] for every φ ∈ C1
0 [a, b]

is much more than requiring

F [u] ≤ F [u+ hφ] for every φ ∈ C∞
c (a, b)

simply because C∞
c (a, b) is effectively a subset of C1

0 [a, b].
Here is a somewhat more standard treatment of some of the results above

for an integral functional F : A → R defined on an admissible class in⊏1[a, b].
If F is given by

F [u] =

∫ b

a

F (x, u, u′) dx,

then the function F = F (x, z, p) is called the Lagrangian for the variational
problem. The first variation of F at u in the direction φ ∈ C∞

c (a, b) is defined
by

δuF [φ] =

[

d

dǫ

∫ b

a

F (x, u+ ǫφ, u′ + ǫφ′) dx

]

∣

∣

ǫ=0

.

Theorem 5 A function u ∈ A for which

δuF [φ] ≡ 0 for all φ ∈ C∞
c (a, b)

is called a weak extremal of F , and one has the first necessary condition
∫ b

a

[

∂F

∂z
φ+

∂F

∂p
φ′
]

dx = 0 for all φ ∈ C∞
c (a, b).
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The key tool for the proof of the next result is called the fundamental
lemma of the calculus of variations:

Lemma 6 If f : (a, b) → R is a continuous function and

∫ b

a

f(x)φ(x) dx = 0 for every φ ∈ C∞
c (a, b),

then f(x) = 0 for x ∈ (a, b).

Theorem 7 A weak extremal for F which is C2 on any open subinterval
(x0 − δ, x0 + δ) ⊂ (a, b) satisfies the ordinary differential equation

d

dx

(

∂F

∂p

)

=
∂F

∂z
(2.10)

on the interval (x0 − δ, x0 + δ).

The second order ordinary differential equation (2.10) is called the Euler-
Lagrange equation for the functional F .

There are various generalizations of these results, but understanding the
simple concept that minimization problems for integral functionals lead to
differential equations is a good start.

Exercise 2.29 Prove the fundamental lemma.

Exercise 2.30 Use the fundamental lemma (and integration by parts) to
prove the Euler-Lagrange equation holds for C2 weak extremals.

Local Minimizers

Exercise 2.9 illustrates that critical points can be local minimizers in finite
dimensional calculus without being global minimizers. The same thing can
happen in the calculus of variations, but up until this point we have not
introduced enough structure to make sense of the notion of local versus global
minimizers. The key is the introduction of a distance between elements in
the admissible class A. In particular, we already have discussed the notion of
a metric distance and we certainly want to have such a distance on A. Most
commonly, however, the metric distance we will use comes from an additional
abstract structure which it is well worth discussing:
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Definition 8 Given a vector space V over the field R, i.e., a real vector
space, a function ‖ · ‖ : V → [0,∞) is called a norm, and the vector space
V is called a normed vector space, if the following conditions hold:

1. ‖cv‖ = |c|‖v‖ for every c ∈ R and every v ∈ V (non-negative homo-
geneity)

2. ‖v‖ = 0 if and only if v = 0 (positive definite)

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality)

Exercise 2.31 Show that every normed vector space is a metric space with
metric distance d(v, w) = ‖v − w‖.
Exercise 2.32 Show that ‖u‖ = max{|u(x)| : a ≤ x ≤ b} defines a norm
on C0[a, b]. (You’ll need some theorems from 1-D calculus for this.) This is
called the “C zero” norm, the L∞ norm, the “sup” norm, and the uniform
norm; it goes by many names.

Exercise 2.33 Show C0
B(a, b) = {u ∈ C0(a, b) : sup{|u(x)| : a < x < b}} is

a vector subspace of C0(a, b) and

‖u‖C0 = sup{|u(x)| : a < x < b}
is a norm on C0

B(a, b) (the subspace of bounded continuous functions on
(a, b)).

Exercise 2.34 There are many important continuous functions which are
not in C0

B(a, b), and the sup norm is not a norm on C0(a, b). Consider
d : C0(a, b)× C0(a, b) → [0,∞) by

d(f, g) = min{1, sup{|f(x)− g(x)| : a < x < b}.
Is d a metric on C0(a, b)?

There are a good many important vector spaces, like C0(a, b), which are
not (at least in any natural way) normed spaces. Please note/recall that
normed spaces are required to be vector spaces but metric spaces, in general,
are not required to be vector spaces. If the notion of a metric, however,
is coupled with the condition of being a vector space by the introduction of
certain axioms one is led to (or may stumble upon) the theory of topological
vector spaces. Doing analysis in the framework of topological vector spaces
can become somewhat complicated, so we will try to avoid that, but it’s
perhaps worth knowing such a thing/structure is out there.
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Exercise 2.35 Consider [ · ] : C1[a, b] → [0,∞) by

[u] = max{|u′(x)| : a ≤ x ≤ b}.

The function [ · ] is called the C1 seminorm.

(a) Determine which properties of a norm [ · ] satisfies. Those are the defin-
ing properties of a seminorm.

(b) Show that ‖ · ‖1 : X → [0,∞) given by

‖v‖1 = ‖v‖+ [v]

where ‖ · ‖ is any norm on a vector space X and [ · ] is any seminorm
on X is a norm on X.

The sum of the C0 “sup” norm and the C1 seminorm is called the C1 norm
on C1[a, b].

(c) Define a C1 seminorm and a C1 norm on a suitable subspace C1
B(a, b)

of C1(a, b).

Definition 9 Let F : A → R be a functional defined on a admissible class
of functions A which is a subset of a normed vector space X containing the
subspace of variations V. An admissible function u ∈ A is said to be a local
minimizer of F relative to the norm on X if there exists some δ > 0 such
that the following holds:

If v ∈ A and ‖u− v‖X ≤ δ, then u− v ∈ V and

F [u] ≤ F [v].

This definition gives rise to the notion of local C0 minimizers (if one takes
the C0 norm on C0[a, b]) and of local C1 minimizers (if one happens to have
A ⊂ C1[a, b] and takes the C1 norm).

Theorem 8 (first order necessary conditions in the calculus of variations)
A local C0 minimizer u ∈ A ⊂ C1(a, b) ∩ C0(a, b) of the integral functional
F : A → R given by

F [u] =

∫ b

a

F (x, u, u′) dx
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is a weak extremal:
∫ b

a

[

∂F

∂z
φ+

∂F

∂p
φ′
]

dx = 0 for all φ ∈ C∞
c (a, b).

If the local C0 minimizer satisfies u ∈ C2(a, b), then u is a solution of the
Euler-Lagrange equation in the interior of the interval (a, b):

d

dx

(

∂F

∂p

)

=
∂F

∂z
a < x < b.

Additional Exercises

Exercise 2.36 (Newton’s drag functional) One can heuristically motivate
the interpretation of the quantity

N [u] =

∫ R

0

x
√

1 + u′(x)2
dx

as a measure of the resistance against a moving profile along the following
lines: To a moving point mass m having velocity v one can associate a mo-
mentum vector mv and a potential energy m|v|2/2. Assume we are given
a very small mass m at rest that encounters a large moving profile, associated
presumably to a large mass. We can shift reference frame and consider the
profile at rest and the small mass as moving and striking the profile with a par-
ticular orientation. In particular, if we assume the initial momentum vector
of the mass is −m|v|(0, 1) and the profile is given by {(x, u(x)) : 0 ≤ x ≤ R},
then the component of the momentum vector orthogonal to the profile at im-
pact is

[−m|v|(0, 1) · (sinψ,− cosψ)] (sinψ,− cosψ) = m|v| cosψ (sinψ,− cosψ)

where the inclination angle ψ is defined by

(cosψ, sinψ) =

(

1
√

1 + u′(x)2
,

u′(x)
√

1 + u′(x)2

)

as usual. Assume this component of the momentum is completely absorbed
by the profile. Accordingly, we assume the profile absorbs the kinetic energy
associated with this component of momentum.



2.1. CALCULUS OF VARIATIONS 55

(a) What is the absorbed kinetic energy from the mass m?

(b) Instead of a finite point mass m, approximate the absorbed energy with
a mass of the form

mij = ρ x∗j (θi − θi−1) (xj − xj−1)

where ρ is a constant areal mass density and x∗j (θi − θi−1) (xj − xj−1)
is a local area element given in polar coordinates. Summing over i and
j write an approximation for the total absorbed energy as a Riemann
sum converging to an integral over the disk BR(0).

(c) Show the integral expression from the last part is proportional to Newton’s
functional.

Hint:

∑

i,j

1

2
ρ x∗j |v|2 cos2 ψ (θi − θi−1) (xj − xj−1)

∼ ρ

2
|v|2

∑

i,j

x∗j
1 + u′(x∗j)

2
(θi − θi−1) (xj − xj−1).

Exercise 2.37 (flat tipped minimizers) We consider Newton’s profile of min-
imal drag problem with R = H = 1. Consider the function f : [1,∞) → R
by

f(t) =
t

(1 + t2)2

(

3

4
t4 + t2 − 7

4
− log t

)

.

Set t0 = f−1(1) and r0 = 4T/(1 + T 2)2.

(a) Find t0 and r0 numerically.

(b) Use mathematical software to plot the profile {(x, u0(x)) : 0 ≤ x ≤ 1}
satisfying u0(x) = 1 for 0 ≤ x ≤ r0 with the remainder of the graph
given parametrically by

(x(t), z(t)) = (0, 1) +
r0(1 + t2)2

4t
(1,−f(t)), 1 ≤ t ≤ t0.

(c) Show limxցr0 u
′(x) < 0.
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(d) Let R0 be fixed with 0 ≤ R0 < 1. Consider a function u : [0, 1] → [0, 1]
with

(i) u ∈ C0[0, 1],

(ii) u(x) ≡ 1 for 0 ≤ x ≤ R0,

(iii) u′(x) < 0 for R0 < x ≤ 1, and

(iv) u(1) = 0.

Note that the restriction

u∣
∣

[R0,1]

: [R0, 1] → [0, 1]

has an inverse w : [0, 1] → [R0, 1]. Assume w ∈ C1[0, 1] and set
v(t) = w(1− t). Show

N [u] =
v(0)2

2
+

∫ 1

0

v(t)v′(t)3

1 + v′(t)2
dt.

(e) Consider M : M → R by

M [v] =
v(0)2

2
+

∫ 1

0

v(t)v′(t)3

1 + v′(t)2
dt

on
M = {v ∈ C2[0, 1] : v(0) ≥ 0, v(1) = 1, and v′ ≥ 0}.

Compute the Euler-Lagrange equation and show the solution v leads to
the function u0 defined in part (b). (This is somewhat tricky, but at
least you should be able to show the function v0 obtained from u0 solves
the Euler-Lagrange equation.)

2.38 Partial Differential Equations

One generalization we do want to consider is exemplified by deriving the
equations of Laplace and Young for a capillary surface in a vertical tube. Let
us, in this instance, assume the tube has general cross-section U where U is
a bounded open subset of R2 having boundary (which is a topological term
we need to define) a smooth simple closed curve. What we mean by this is
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the following: The boundary of any set (in a metric space, e.g., Rn) is the
intersection of the closure of the set with the closure of the complement of
the set. That is,

∂U = U
⋂

R2\U .

Exercise 2.39 Show a x is in the boundary ∂A of any set A if and only if
for every r > 0

Br(x) ∩A 6= φ and Br(x) ∩Ac 6= φ.

There are a couple equivalent ways we can say what it means for an open
bounded set U ⊂ R2 to have a smooth simple closed curve as boundary. It
is no easy task to show they are equivalent, but we can state the conditions.

There exists a surjective2 twice continuously differentiable vector valued
function α : R → ∂Ω ⊂ R2 with the following properties

1. For some L > 0, the restriction

α∣
∣

[0,L)

: [0, L) → ∂Ω is one-to-one and onto,

2. α(L) = α(0), and

3. α(t+ L) = α(t) for all t ∈ R.

Being twice continuously differentiable here means x, y ∈ C2(R) where α(t) =
(x(t), y(t)).

Alternatively, we can define a homotopy of a loop as follows: Given a
loop, which is just a continuous function α : [0, L] → U with α(L) = α(0), a
homotopy of α (relative to U) is a continuous function h : [0, 1]× [0, 1] → U
satisfying the following

1. α(t) = h(t, 0) for 0 ≤ t ≤ 1 and

2. h(0, s) = h(1, s) for 0 ≤ s ≤ 1.

A homotopy h of the loop α is a fixed point homotopy if h(0, s) = α(0)
for 0 ≤ s ≤ 1. A homotopy if a contraction to a point if there is a point
p ∈ U for which h(t, 1) ≡ p for 0 ≤ t ≤ 1.

2Surjective means “onto” in the sense that for each p ∈ Ω, there is some t ∈ R with
α(t) = p.
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The open set U ⊂ R2 is simply connected if for every loop α : [0, 1] → U
there exists a fixed point homotopy (relative to U) which is a contraction of
α to α(0).

A bounded open set U ⊂ R2 has boundary a simple closed curve if (and
only if) the following hold:

1. U is simply connected, and

2. for each p ∈ ∂U , there exists some a > 0, a unit vector u = (u1, u2),
and a function g ∈ C2[−a, a] with g′(0) = 0 such that

U ∩ {p+ su+ tu⊥ : s, t ∈ [−a, a]}
= {p+ su+ tu⊥ : t ≥ g(s) and − a ≤ s ≤ a}.

In these sets u⊥ = (−u2, u1).

Exercise 2.40 A collection of open sets {Uα}α∈Γ where Γ is any indexing
set is called an open cover of a set A if

A ⊂
⋃

α∈Γ
Uα.

A subset A ⊂ Rn is compact if and only if it has the following property: Given
any open cover {Uα}α∈Γ of A, there exist finitely many sets Uα1 , Uα2 , . . . , Uαk

in the open cover such that

{Uα1 , Uα2 , . . . , Uαk
} is still an open cover of A.

This is called the Hiene-Borel Theorem. The finite subcollection of open sets
in this result is called a finite subcover.

Exercise 2.41 Show that the boundary of an open bounded subset of Rn is
compact.

Returning to the capillary tube problem: Let U be a bounded open sub-
set of R2 with boundary a simple closed curve. Let σ be a surface tension
constant with units (force)/distance. Let β ∈ (0, 1) be a dimensionless con-
stant adhesion coefficient, i.e., β has units 1. Let g be the usual gravitational
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constant. Given u ∈ C1(U), which means there exists an open set U ⊃ U
and an extension u : U → R with continuous partial derivatives

∂u

∂x
and

∂u

∂y
,

both in C0(U), such that
u∣
∣

U

= u,

we define the capillary energy of u to be

E [u] = σ

∫

U

√

1 + |Du|2 − σβ

∫

∂U
u+

ρg

2

∫

U
u2.

As in the 2-D case, the first term is called the free surface energy, the second
term is called the wetting energy, and the third term is called the gravitational
potential energy.

Exercise 2.42 Explain why

A[u] =

∫

U

√

1 + |Du|2

is the area functional.

Exercise 2.43 Obtain the gravitational energy as a limit of a Riemann sum
approximating an integral over the volume

{(x, y, z) : (x, y) ∈ U and 0 < z < u(x, y)}

(assuming u > 0).

2.43.1 The first variation of area

We wish to compute a variation
[

d

dǫ

∫

U

√

1 + |D(u+ ǫφ)|2
]

ǫ=0

.

Let us first recall that the vector function Du : U → R2 is the gradient
field or total derivative of u given by the vector of first partials:

Du =

(

∂u

∂x
,
∂u

∂y

)

,
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and when we write |Du|2 we are indicating the use of the Euclidean norm:

|Du|2 =
(

∂u

∂x

)2

+

(

∂u

∂y

)2

.

Thus, the value of the area functional
∫

U

√

1 + |Du|2

is an example of an integral of a real valued function of two variables x and
y over an open subset U ⊂ R2. Certainly such integrals are considered in a
course on multivariable calculus. It is likely that we will need to understand
such integrals, and what can be done with them, a bit better than they
are understood by most students who have taken such a course. In view of
this, I have typed up in the next section an exposition of certain aspects of
integration. It might be worth looking at before reading further. I have also
included a review of differentiation and verious kinds of derivatives which
may be consulted if desired or necessary.

Let us write A : C1(U) → R to denote the area functional and calculate
the first variation of area δA. The area of a perturbed graph given by
u+ ǫφ where φ ∈ C∞

c (U) is given by

∫

U

√

1 + |Du+ ǫDφ|2.

Thus, by the chain rule

d

dǫ

∫

U

√

1 + |Du+ ǫDφ|2 =
∫

U

(Du+ ǫDφ) ·Dφ
√

1 + |Du+ ǫDφ|2
,

and

δAu[φ] =

∫

U

Du ·Dφ
√

1 + |Du+ ǫDφ|2
=

∫

U
Tu ·Dφ

where Tu = Du/
√

1 + |Du|2 is the projection projection of the downward

unit normal field (ux, uy,−1)/
√

1 + |Du|2 encountered in Chapter 1. To the
real scaling φTu of this projection field and use the divergence theorem to
write

∫

U
div(φTu) =

∫

∂U
φTu = 0.
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owing to the fact that φ has support compactly contained in U . There is
a general product formula for the divergence applying to a real scaling of a
vector field, namely,

div(wv) = Dw · v + w div v.

Exercise 2.44 If U is an open subset of Rn with w : U → R satisfying
w ∈ C1(U) and v ∈ C1(U → Rn), then

div(wv) = Dw · v + w div v.

Prove this identity two different ways

(a) Use the definition of the divergence as a limit of flux density.

(b) Verify the formula in terms of standard rectangular coordinates.

This is a good time to pause and note that when we restrict to perturba-
tions φ ∈ C∞

c (U), we are considering what are called interior variations.
As pointed out in the previous section, this is a commonly considered and
convenient vector space of perturbations. In the capillary tube problem,
however, it is also important to consider more general variations.

Theorem 9 If u ∈ C2(U), then the interior variation of area at u is given
by

δAu[φ] = −
∫

U
div

(

Du
√

1 + |Du|2

)

φ for φ ∈ C∞
c (U).

Thus, we encounter the mean curvature operator

Mu = div Tu = div

(

Du
√

1 + |Du|2

)

of the previous chapter.

Exercise 2.45 Compute the interior variation of the full capillary energy E
to show that for u ∈ C2(U)

δEu[φ] =
∫

U

[

− div

(

Du
√

1 + |Du|2

)

+ f(u)

]

φ

for an appropriate function f : R → R and all φ ∈ C∞
c (U).
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Mean Curvature

Now let us consider a little surface geometry in coordinates. Say u ∈ C2(U)
has graph G = {(x, y, u(x, y)) : (x, y) ∈ U}. We have discussed the signed
curvature of a plane curve with

k =

(

u′√
1 + u′2

)′
=

u′′

(1 + u′2)3/2

when the curve is given as the graph of a function {(x, u(x)) : x ∈ (a, b)}. In
this context, the signed curvature can also be realized as the derivative, with
respect to arclength, of the inclination angle ψ with respect to the horizontal;
see Exercise 2.20. In fact,

sinψ =
u′√

1 + u′2

so that

k =
d

dx
[sinψ] =

d

ds
[sinψ]

ds

dx
= cosψ

dψ

ds

ds

dx
=
dψ

ds
.

Exercise 2.46 Reparameterize the graph {(x, u(x)) : x ∈ (a, b)} by arclength
to show

ds

dx
=

√
1 + u′2.

More generally, the curvature vector ~k of a space curve α : (a, b) → Rn

at a point α(t0) with t0 ∈ (a, b) is defined as follows: Reparameterize α by
arclength obtaining, for some ǫ > 0, a parameterization of (perhaps a portion
of) the same curve γ : (−ǫ, ǫ) → Rn defined on {s : |s| < ǫ} and satisfying
γ(0) = α(t0). Then,

~k =
d2γ

ds2
(0).

This definition assumes reparameterization by arclength is possible and that
the derivatives to be computed exist. Sufficient conditions for this to be the
case are the following:

1. α ∈ C2((a, b) → Rn) and

2. α′(t0) 6= 0.
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Exercise 2.47 The arclength of a curve α ∈ C1((a, b) → Rn) is

s =

∫ t

t0

|α′(τ)| dτ.

Assuming α′(t0) 6= 0, reparameterize α to obtain an arclength parameteriza-
tion γ : (−ǫ, ǫ) → Rn as in the definition above and compute

dγ

ds
.

Exercise 2.48 Given u ∈ C2(a, b) and α(x) = (x, u(x)), find the curvature

vector ~k of the graph G = {(x, u(x)) : x ∈ (a, b)} at each point, and find an
expression for the signed curvature of the graph with respect to the upward
normal.

Exercise 2.49 Assuming α ∈ C2((a, b) → Rn) with α′(t0) 6= 0, compute the

curvature vector ~k at α(t0) in terms of γ.

In physics, it is often convenient to express derivatives with respect to time
using a “dot” instead of a prime so that velocity v is given by the derivative
of position ẋ with respect to time and acceleration a is given by the derivative
of velocity ẍ with respect to time. This seems to be a tradition started by
Newton and it leaves open the prime notation for derivatives with respect to
space. A similar tradition is convenient when one makes curvature calcula-
tions like those above: We denote derivatives with respect to the parameter
t (or whatever parameter is used to define α) with a prime and derivatives

with respect to arclength with a “dot.” Thus, γ̇ = α′/|α′| and ~k = γ̈.
It will be noted that there is no immediately obvious notion of signed

curvature for a space curve. There are certain situations, however, where such
a notion does make sense. If that curve happens to lie in a two-dimensional
plane and a particular unit normal N (to the curve within that plane) is
specified at a point α(t0), then we may define the signed curvature of α at
α(t0) with respect to N by

k = ~k ·N

where ~k is the curvature vector to the curve at α(t0). The value of the signed
curvature in this context is sometimes denoted by kN .
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Exercise 2.50 Show the new notion of signed curvature for a graph {(x, u(x)) :
x ∈ (a, b)} agrees with the previous definition if we take as the specified nor-
mal

N =
(−u′, 1)√
1 + u′2

,

that is, the upward unit normal to the graph.

Perhaps this is a good start to understanding the curvature of curves.

Exercise 2.51 Find the curvature of the graph of the function u(x) =
√
r2 − x2

for |x| < r. Find the curvature of the graph of the function u(x) = −
√
r2 − x2

for |x| < r.

Let us return to our simple surface which is the graph of a function u:

G = {(x, y, u(x, y)) : (x, y) ∈ U}.

If we want to talk about the curvature of this surface, things are somewhat
(more) complicated. We note that there are many curves passing through
each point (x0, y0, u(x0, y0)) on the surface, and it is reasonable to imagine
that the curvatures of these curves are somehow related to the curvature of
the surface at this point. There are a several nominally different ways to
think about (and compute) the kind of curvature (mean curvature) that is
prescribed by the capillary equation. Probably we should think about at
least a couple of them.

Take the upward unit normal to the surface G is given by

N =
(−ux,−uy, 1)
√

1 + |Du|2
.

Exercise 2.52 Explain why the vectors Xx = (1, 0, ux) and Xy = (0, 1, uy)
are linearly independent tangent vectors to G and compute N using the cross
product Xx ×Xy.

We denote the tangent plane to G at X by TXG. Thus,

TXG = {aXx + bXy : (a, b) ∈ R2}.

Any nonzero tangent vector v = (v1, v2, v3) ∈ TXG determines a unique plane
Π = Π(v) orthogonal to v×N . Such a normal plane intersects the surface
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G in a curve, and we would like to compute the signed curvature of this curve
in the plane Π with respect to N at the point X = (x, y, u(x, y)).

To illustrate how this computation works, we make a specific choice of
unit tangent vector

v =
Xx

|Xx|
=

(1, 0, ux)
√

1 + u2x
.

Let us denote the associated plane by Πα where we imagine α : (−ǫ, ǫ) → R3

parameterizes the intersection curve on some interval (−ǫ, ǫ) with α(0) = X .
A unit normal to Π is

w = N × v.

Computing and writing this vector as a column vector we have

w =
1

√

1 + |Du|2
√

1 + u2x





−uxuy
1 + u2x
uy



 .

We also write

Πα = {(ξ, η, ζ) ∈ R3 : [(ξ, η, ζ)− (x, y, u)] ·w = 0}.

The intersection of Πα with the graph of u

G = {(ξ, η, u(ξ, η)) : (ξ, η) ∈ U}

in some small neighborhood of X = (x, y, u(x, y)) is a C2 curve. This follows
from the implicit function theorem. This is a touch tricky, so let’s see if
we can give the details of how it works: Consider the function Ψ : U → R2

by

Ψ

(

ξ
η

)

=

(

ξ
[(ξ, η, u(ξ, η))− (x, y, u)] ·w

)

.

I’ve written the arguments as columns here because they are (I think) a little
easier to visualize and compute with in that form. Notice Ψ(x, y) = (x, 0).
Also, the transformation Ψ has total derivative

DΨ =





1 0

(1, 0, ux(ξ, η)) ·w (0, 1, uy(ξ, η)) ·w



 .

In particular, at (ξ, η) = (x, y), we have detDΨ 6= 0. These are the hypothe-
ses of the inverse function theorem, which then tells us there is an open
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ball Bδ(x, y) ⊂ U such that Ψ restricted to Bδ(x, y) has a well-defined C2

inverse with domain V = Ψ(Bδ(x, y)) ⊂ R2 and (x, 0) ∈ V. We write the
second component of Psi−1 as φ, so that

Ψ−1

(

ξ
p

)

=

(

ξ
φ(ξ, p)

)

.

Setting η(ξ) = φ(ξ, 0) it is easy to check α : (x− δ, x+ δ) → R2 by

α(ξ) = (ξ, η(ξ), u(ξ, η(ξ)))

is a parameterization of the intersection curve near X with α′ = (1, η′, ux +
η′uy) 6= 0. What we have actually done here is give the proof of the implicit
function theorem in this case applied directly would say that if

∂

∂η

{

[(ξ, η, u(ξ, η))− (x, y, u)] ·w
}

∣

∣

(x,y)

6= 0,

then there is some δ > 0 for which the equation

[(ξ, η, u(ξ, η))− (x, y, u)] ·w = 0

determines η uniquely as a C2 function of ξ for x − δ < ξ < x + δ. We get
the same conclusion.

Reparameterizing by arclength, we can assume the intersection curve is
given locally by

γ(s) = (ξ(s), η(s), u(ξ(s), η(s)))

with γ(0) = X = (x, y, u). Parameterization by arclength means that the
tangent vector γ̇ = (ξ̇, η̇, ξ̇ux + η̇uy) is a unit vector where ux = ux(ξ, η) and
uy = uy(ξ, η). That is,

ξ̇2 + η̇2 + (ξ̇ux + η̇uy))
2 = 1. (2.11)

In the particular case under consideration, we are also assuming

γ̇(0) = v =
Xx

|Xx|
=

(1, 0, ux)
√

1 + u2x
.

Exercise 2.53 Use the inverse/implicit function theorem to generalize the
construction above with v any unit vector in TXG.
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Figure 2.2: Planes normal to the graph of a function of two variables

If we differentiate the relation [γ(s) − (x, y, u)] · w = 0, noting that the
vectors X = (x, y, u) and w are independent of the arclength s, we conclude
γ̇ ·w = 0. Using the expression for w computed above, we see this implies

−ξ̇uxuy + η̇(1 + u2x) + (ξ̇ux + η̇uy)uy = 0. (2.12)

We should be careful to recognize something about this dot product. Notice
the three components of γ̇ appearing here. Each involves dependence on
the arclength s with ξ̇ = ξ̇(s) and η̇ = η̇(s). Note very carefully, the third
component:

ξ̇ux + η̇uy = η̇(s)ux(ξ(s), η(s)) + η̇(s)uy(ξ(s), η(s)).

The remaining first partial derivatives in (2.12) are evaluated at (x, y). Thus,
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in the first and second terms

uxuy = ux(x, y)uy(x, y) and 1 + u2x = 1 + [ux(x, y)]
2 independent of s.

Similarly, the second factor in the third term is uy = uy(x, y), independent of
s, and not uy(ξ(s), η(s)). If we evaluate (2.12) at s = 0, however, there is a
cancellation, and we obtain the useful relation η̇(0)(1+ |Du|2) = 0 according
to which η̇(0) = 0. It follows from (2.11) that ξ̇(0) = ±1/

√

1 + u2x. With a

choice according to which γ̇(0) = ξ̇(0)Xu = v, we have

ξ̇(0) =
1

√

1 + u2x
.

As mentioned above, we would like to compute the curvature of the in-
tersection curve—the signed curvature as a plane curve (graph) in Πα with
respect to N . This value is given by

kα = γ̈ ·N = γ̈(0) ·NX .

We find

γ̈ = ξ̈(1, 0, ux) + η̈(0, 1, uy) + (0, 0, ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy).

Evaluating at s = 0, this becomes

γ̈(0) = ξ̈Xx + η̈Xy + (0, 0, ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy).

Since Xx and Xy are tangent vectors to G, both orthogonal to N at the point
X ∈ G, the dot product is given by

kα =
ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy

√

1 + |Du|2
=

uxx

(1 + u2x)
√

1 + |Du|2
. (2.13)

Let us now pause to think carefully (as carefully as we can) about this value.
In particular, let us attempt to compare this value to what we know about
the curvature of planar graphs. If N = (0, 0, 1), that is, if the tangent plane
TXG is horizontal with ux = uy = 0, then kα = uxx as we would expect.
Now, if ux is nonzero but uy = 0, then N = (−ux, 0, 1)/

√

1 + u2x, and

kα =
uxx

(1 + u2x)
3/2
, (2.14)
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and this matches precisely what we would expect for a planar graph according
to the familiar formula

k =
u′′

(1 + u′2)3/2

for the signed curvature. In this case, for the surface, the vector w is hor-
izontal. In fact according to our formula for w in this case we will have
w = (0, 1, 0). The normal plane is vertical and parallel to the x, z-plane,
and the intersection curve is given by α(ξ) = (ξ, y, u(ξ, y)). This is all as it
should be: a second derivative reduced/scaled by the reciprocal of the cube
of the length scaling factor.

The interesting, geometrically new, phenomenon here is how the curva-
ture of the intersection curve changes with the tilt in the other (y) coordinate
direction. First of all, when uy 6= 0 the Xx normal plane is not vertical and
parallel to the x, z-coordinate plane. The normal curvature, however, is still
(just) a scaling of uxx.

Exercise 2.54 Perhaps the simplest situation in which the phenomenon cap-
tured in (2.14) is operative and evident is when the graph G is the graph of a
circular cylinder. Start with the cylinder x2 + z2 = r2, and then express half
of this cylinder as a graph G, and tilt G using a rotation





x
y
z



 7→





1 0 0
0 cos θ − sin θ
0 sin θ cos θ









x
y
z



 .

Explain why it makes sense that the curvature of the tilted cylinder in the
normal planes determined by Xx at each point are given by (2.14). Does it
make any difference for, say the bottom half of the cylinder if one considers

u(x, y) = −
√
r2 − x2 − tan θ y?

Notice the vectors w and N also determine a unique plane

Πβ = {(ξ, η, ζ) : [(ξ, η, ζ)− (x, y, u)] · (1, 0, ux) = 0}

passing through X = (x, y, u(x, y)) ∈ G and orthogonal to v, i.e. contain-
ing w and N . The intersection Πβ ∩ G is also a planar curve that can be
parameterized by arclength with

γ(s) = (ξ, η, u(ξ, η))
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as above. Several of the computations above apply, but differentiating the
defining relation (γ −X) ·Xx = 0, we find

γ̇ ·Xx = (ξ̇, η̇, ξ̇ux + η̇uy) · (1, 0, ux) = 0

where, as above, ux = ux(ξ, η) and uy = uy(ξ, η) depend on s in the first
vector, but ux = ux(x, y) in the second tangent vector is independent of s.
Evaluating at s = 0 this time, we obtain

(1 + u2x)ξ̇(0) + uxuyη̇(0) = 0.

It follows that for some nonzero constant c we must have

ξ̇(0) = −cuxuy and η̇(0) = c(1 + u2x).

From the condition |γ̇| = 1 and the choice η̇(0) > 0, we find after some
simplification that

c =
1

√

1 + |Du|2
√

1 + u2x

so that

ξ̇(0) = − uxuy
√

1 + |Du|2
√

1 + u2x
and η̇(0) =

√

1 + u2x
√

1 + |Du|2
.

Substituting these values in the expression for γ̈(0) ·N from above, we have
the signed curvature of this intersection curve with respect to the normal N
at the point X satisfies

kβ =
ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy

√

1 + |Du|2

=
1

(1 + |Du|2)3/2
(

u2xu
2
y

1 + u2x
uxx − 2uxuy uxy + (1 + u2x) uyy

)

.

It is quite easy to see from this expression that

kα + kβ = Mu

is the quantity we have called the mean curvature of the graph.
We have shown
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The mean curvature given by the expression Mu is the sum of
the curvatures of two orthogonal planar curves lying on the graph
G of u, each taken as a signed curvature with respect to the surface
normal N which also lies in the (normal) plane containing each
curve.

The derivation above leaves open the possibility that one of the two nor-
mal planes determining one of the intersections curves must be the plane
Π(v) determined by the special tangent vector v = Xx/|Xx|. Thus, we can
ask: Is this quantity Mu something of fundamental geometric meaning as
curvature, or is it somehow dependent on the particular coordinates we have
used, and consequently, the first normal plane we have chosen?

Perhaps the derivation suggests, however, a more general construction:

Let v be any unit length vector in TXG, and let w = N × v. Let
kα be the signed curvature of the intersection of the normal plane
Π(v) orthogonal to w with respect to N , and let kβ be the signed
curvature of the intersection of the normal plane Π(w) orthogonal
to v with respect to N . Is the number

kα + kβ

always equal to Mu?

In fact, the suggested construction is correct:

If Πα and Πβ are any pair of orthogonal planes intersecting
along the normal line to a C2 surface S at a point X ∈ S, then
each of the two planes intersects S locally in a planar curve. The
two resulting planar curves have some signed curvatures kα and
kβ with respect to a choice of normal N , and the average of these
two numbers is called the mean curvature H of the surface.
The mean curvature is independent of the choice of orthogonal
planes and depends only on the surface S and the (unit) normal N
(chosen among two possibilities). According to this construction

H =
kα + kβ

2
and M = 2H. (2.15)

The last expression relating the mean curvature operator M and the value of
the mean curvature assumes the surface S is given by the graph of a function.
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In fact, every surface (a concept we have not actually defined carefully but
which one can hope3 is a relatively intuitively clear concept) can be expressed
as a union of graphs of functions, so in particular, coordinates ξ and η can
be chosen so that all points in the surface S near a given point X ∈ S are
congruent to a graph

G = {(ξ, η, u(ξ, η)) : (ξ, η) ∈ U}

for some open set U ⊂ R2. According to the above assertion, it does not
matter which graph is chosen to locally represent S.

There are various ways to see the mean curvature H is a geometric quan-
tity as described above. The following is one way:

Say we take a different direction v ∈ TXG and an orthogonal direc-
tion w = N × v ∈ TXG. Rather than try to generalize the computa-
tion above for v = Xx‖Xx| directly, note that this new tangent vector
v = (v1, v2, v3) must have some nonzero projection into the x, y-plane, namely
u1 = (v1, v2)/

√

v21 + v22.

Exercise 2.55 Explain how we know (v1, v2) 6= 0 ∈ R2.

We can represent G as a graph in new coordinates as follows: We first write
u1 = (cos θ, sin θ) determining the angle θ uniquely in the interval [0, 2π).
We then consider the function ũ : Ũ → R by

ũ(ξ, η) = u(x+ ξ cos θ − η sin θ, y + ξ sin θ + η cos θ)

on an appropriate domain Ũ ⊂ R2.

Exercise 2.56 Find the “appropriate” domain Ũ in terms of the domain
U ⊂ R2 for u ∈ C2(U), and show there exists a rigid motion ρ : R3 → R3

(translation and rotation) such that

G̃ = {(ξ, η, ũ(ξ, η)) : (ξ, η) ∈ Ũ}

is the (congruent) image of G under ρ, that is

G̃ = {ρ(X) : X ∈ G}
3If you do not know the technical definition of a surface and (for some reason) are not

interested in looking it up and understanding it at the moment, then you might write
down any example you can imagine being a surface and see if you can express every small
enough piece of that surface as the graph of a function. For example, one might start with
∂Br(0) = {(x, y, z) : x2 + y2+ z2 = r2}. Perhaps we will also remedy this deficiency soon.
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with (1, 0, ũξ) = ρ(v). Thus, the sum of the normal curvatures associated
with v and w is the same as calculating Mũ(0, 0), which we know to be

Mũ =
(1 + ũ2η)ũξξ − 2ũξũηũξη + (1 + ũ2ξ)ũηη

(1 + |Dũ|2)3/2 .

In view of the above construction/exercise we compute Mũ:

ũξ = ux cos θ + uy sin θ and ũη = −ux sin θ + uy cos θ.

The denominator (1 + |Dũ|2)3/2 in Mũ is easily calculated at this point and
found to be (1+ |Du|2)3/2, which is promising. The coefficients involving first
order terms are more complicated, but straightforward to compute:

1 + ũ2ξ = 1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ

ũξũη = −u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ

1 + ũ2η = 1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ.

Finally, for the second order derivatives we have

ũξξ = uxx cos
2 θ + 2uxy cos θ sin θ + uyy sin

2 θ

ũξη = −uxx cos θ sin θ + uxy(cos
2 θ − sin2 θ) + uyy cos θ sin θ

ũηη = uxx sin
2 θ − 2uxy cos θ sin θ + uyy cos

2 θ.

Algebraically, the calculation of the expression

(1 + ũ2η) ũξξ − 2ũξũη ũξη + (1 + ũ2ξ) ũηη

becomes somewhat long and cumbersome. With this in mind, we compute
the products giving the coefficients of the second order terms one by one.
The coefficient of uxx is the sum of three terms: The first is from the product
(1 + ũ2η)ũξξ and is given by

cos2 θ(1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ). (2.16)

The second is from −2ũξũηũξη and is

2 cos θ sin θ(−u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ). (2.17)

The third comes from (1 + ũ2ξ)ũηη:

sin2 θ(1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ). (2.18)
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It is not difficult to see that the sum of (2.16), (2.17), and (2.18) simplifies
to

1 + u2y.

Thus, we have established

Mũ =
1

(1 + |Du|2)3/2
[

(1 + u2y) uxx + · · ·
]

.

The coefficient of uxy is similarly the sum of three terms:

2 cos θ sin θ(1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ)

− 2(cos2 θ − sin2 θ)(−u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ)

− 2 cos θ sin θ(1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ).

This sum, as might be expected, simplifies to 2uxuy. Finally, the coefficient
of uyy is

sin2 θ(1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ)

− 2 cos θ sin θ(−u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ)

+ cos2 θ(1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ)

= 1 + u2x.

We have shown Mũ(0, 0) = Mu(x, y) is independent of the choice of orthog-
onal vectors v and w in TXG.

Geometric meaning and curvature

Let us return to the discussion surrounding (2.13) and attempt to think
about this expression a little more carefully and filling out a little more the
connection with the curvature of curves and the broader idea of what it
means for a quantity to be geometric.

If u : (a, b) → R has u ∈ C2(a, b) and graph a curve {(x, u(x)) : x ∈
(a, b)}, then the values of u are made geometric by the consideration of the
graph.

When you think of the distance ξ = ξ(t) traveled by someone walking,
or someone in a car, or a baseball, or a rocket, then that distance alone
(as a function of time) is analytic or physical but not necessarily geometric.
It becomes geometric when we plot the curve {(t, ξ(t)) ∈ R2 : t ∈ (a, b)}
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which is the graph of the distance as a function of time. Once we have this
graph, then the value ξ′(t) may be thought of as geometric: The slope of
the tangent line to the graph. Without the graph, the rate of change ξ′(t)
of the distance with respect to time is merely analytic or physical.

We are quite accustomed to identify the physical/analytic meaning with
the geometric meaning in this instance, and forget there is a difference. The
point of this discussion is that the situation changes with the second deriva-
tive u′′(x) of u ∈ C2(a, b). This quantity, the second derivative by itself,
has no geometric meaning.

Though this startling declaration may be obvious, it also may be quite
subtle for some people, so I will elaborate. Geometric meaning in relation to
the function u ∈ C2(a, b) is associated, and only associated, with the graph of
the function u, which is a curve. That curve, as a geometric object, may have
a relation to a fixed direction, like a direction specified as horizontal, given by
a quantity like slope or inclination. If we know which direction is horizontal,
and we know u′(x) with respect to this horizontal direction (measured by the
quantity x), then we know something about the geometry of the curve—the
inclination of the curve at the point (x, u(x)) on the curve—just as u(x) tells
us something about the orthogonal distance from (x, u(x)) to the horizontal.
If we know u′′(x), however, this tells us (almost) nothing about the geometry
of the graph and, since that is the only geometry we have, nothing geometric
(period).

As an illustration, consider the specific function ξ(t) = t2. In Figure 2.3 I
have plotted the graph of the function ξ along with three small disks focusing
on three different portions of the graph and having centers on specific points
(t, ξ(t)) on the graph. Now, if I were to tell you a particular point (t, ξ(t))
at the center of one of these disks is a point where ξ′′ = 2, could you look
at the three disks, and determine the point to which I was referring (from
the geometry)? In fact, you cannot determine anything geometric from the
information ξ′′(t) = 2. If you know time is measured in seconds and ξ is
measured in meters, you can tell something physical: The rate of change of
ξ′ with respect to time (or the acceleration) at this point (and every point)
is 2 meters per second. More generally, you can tell something analytic,
namely that the rate of change of ξ′ with respect to the quantity t (whatever
the appropriate units may happen to be) is 2. This kind of information can
be useful both computationally (analytically) and physically, but it is not
geometric.

Geometric information comes from the graph and the value of the second
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Figure 2.3: The graph of a “position” function ξ = ξ(t) = t2.

derivative is not simply related to the geometry of the graph. As we know,
one quantity

k =
u′′

(1 + u′2)3/2
,

a combination of the first and second derivatives called curvature, does give
precise quantitative geometric information. We may qualify our comments
by pointing out that u′′(x) does give some qualitative geometric informa-
tion: If u′′(x) is positive, we can infer the geometric convexity of the graph
of u with respect to the horizontal. It is the quantitative measure of that
convexity we cannot discern without the curvature. And, as we know, the
formula says that if the inclination of the graph is zero (i.e., has slope zero)
at a point, then u′′(x) gives the curvature, but if the inclination is nonzero,
then the number u′′(x) is strictly larger in absolute value than the curvature
and must be diminished by a factor

1

(1 + u′2)3/2
< 1.

This is how curvature works in relation to a second derivative. Why that
particular scaling factor is the correct one is difficult to see geometrically, but
that is what comes out from the computation using the chain rule. Maybe
you can find a nice geometric interpretation for the scaling factor.

Exercise 2.57 Consider the vectors u′′(−u′, 1)/
√
1 + u′2 and u′′(1, u′)/

√
1 + u′2
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normal and tangent to the graph of u ∈ C2(a, b). Can you express the curva-

ture vector ~k = u′′(−u′, 1)/(1 + u′2)2 geometrically in terms of one (or both)
of these vectors?

The expression

kα =
uxx

(1 + u2x)
√

1 + |Du|2

given in (2.13) is telling us something new (and geometric) about the curva-
ture of curves on a surface—and indirectly about the curvature of a surface.
Let a surface S be given locally as a graph

G = {(x, y, u(x, y)) : (x, y) ∈ U}

where U is an open subset of R2 as usual.

If we intersect the surface S with a vertical plane, say a plane
parallel to the x, z-plane, then the signed curvature of the inter-
section curve at a particular point is

uxx
(1 + u2x)

3/2
, (2.19)

and this value is always larger in absolute value than (or possibly
equal to) the normal curvature determined by the tangent vector
(1, 0, ux) at that point. If the slope in the orthogonal coor-
dinate direction at the point, as measured by uy, is zero, then
the value (2.19) is the normal curvature. If, however, uy 6= 0,
then the value given in (2.19) must be diminished by a factor

√

1 + u2x
√

1 + |Du|2
< 1. (2.20)

It will be noted that the factor in (2.20) is the ratio of the length scaling
factor for the coordinate intersection

{(ξ, y, u(ξ, y)) : (ξ, y) ∈ U}

to the area scaling factor for the surface. This is how the curvature of curves
given by the intersection with normal planes works on a surface.
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Exercise 2.58 Find the projection of the curvature vector

~kx =
uxx

(1 + u2x)
2
(−ux, 0, 1)

of the intersection of the vertical plane

Πx = {(ξ, y, ζ) : (ξ, ζ) ∈ R2}

with the graph
G = {(x, y, u(x, y)) : (x, y) ∈ U}

onto the normal N = (−ux,−uy, 1)/
√

1 + |Du|2 of the surface.

In 1776 Jeen Baptiste Marie Charles Meusnier de la Place discovered4 a
remarkable generalization of the construction we have given concerning kα.
The result is purely geometric and captures precisely what is happening.

Theorem 10 (Meusnier’s theorem) Let S be a surface containing a point
X ∈ S and having a unit tangent vector v ∈ TXS at X. If γ : (−ǫ, ǫ) → S
is a parameterization by arclength of any curve on the surface S with
γ(0) = X ∈ S, γ̇(0) = v, and well-defined curvature vector γ̈(0), then the
number

kN = γ̈(0) ·N,
where N is a choice of unit normal to S at X, is independent of the curve
γ. This is called the normal curvature of the surface S at the point X and
depends only on

1. the surface S,

2. the tangent direction v, and

3. the choice of unit normal to S (up to a sign).

Additional Exercises

Exercise 2.59 Compare the graphs of the functions u : R → R by u(x) = x2

and v : [x0 − r, x0 + r] → R by

v(x) = y0 −
√

r2 − (x− x0)2.

4The French name Meusnier is pronounced like “moon yay.”
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(a) Discuss the regularity of each function.

(b) Compute the curvature of the graph of each function.

(c) Given a point (x, u(x)) on the graph of u, find a center (x0, y0) and radius
r so that the graph of v “matches the graph of u to second order” at the
point (x, u(x)). Show the center and radius you have found are unique.

(d) Use numerical software to plot the graph of u and some osculating circles
determined by the graph of u.

2.60 Integration

We wish to discuss the integration of real valued functions on (somewhat)
general sets. The basic setup is this: You have a function

f : X → R

where X is a metric space with a measure. As we know, the metric on a
metric space (or distance function) allows one to measure distances between
points and diameters of sets with diam : P(X) → [0,∞] by

diam(A) = sup{d(x, y) : x, y ∈ A}.

Here we have used P(X) to denote the collection of all subsets of X . This
particular set is also called the power set of X and is sometimes denoted
2X .

A measure µ is usually different from the diameter associated with a
metric, though these functions can agree, for example on intervals in R where
the measure of an integral (and the diameter of an interval) is its length.
Ideally, we can also measure all sets with µ : P(X) → [0,∞], and little
harm is done (usually) if we imagine that to be the case. Technically, it
is sometimes only possible to define a measure on some proper subset M of
P(X) called the collection of measurable sets. Measurable sets should have
the following properties:

1. φ,X ∈ M.

2. If A ∈ M, then Ac ∈ M.
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3. If A1, A2, A3, . . . comprise a (countable) sequence of sets in M, then the
union should also be measurable:

∞
⋃

j=1

Aj ∈ M.

The measure µ : M → [0,∞] should have the following properties:

1. µφ = 0.

2. If A1, A2, A3, . . . comprise a (countable) sequence of pairwise disjoint
sets in M, then

µ
∞
⋃

j=1

Aj =
∞
∑

j=1

µAj.

The second property is called countable additivity.
Given a set X (with a metric and a measure) you can think of an integral

as a limit
∫

X

f = lim
‖P‖→0

∑

j

f(x∗j)µAj

where P = {Aj}∞j=1 is a (finite) partition of X , that is

X =
k
⋃

j=1

Aj and µ(Ai ∩Aj) = 0 for i 6= j,

and ‖P‖ = maxj diam(Aj).
Two important possibilities (for integration) are the following:

1. X = U is an open subset of Rn with µ = L
n given by n-dimensional

volume measure (or Lebesgue measure) and d the Euclidean metric.
We call this integration on flat space.

2. X = ∂U is the smooth boundary of an open subset of Rn with µ = Hn−1

given by (n−1)-dimensional Hausdorff measure on Rn (and d again the
Euclidean metric). These are examples of integration on manifolds.

If you do not know what it means for the boundary of an open subset of Rn

to be “smooth,” (or what it means to be a “manifold”) do not worry. We
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can give precise definitions later. You can just think of the boundary of the
disk S1 = {(x, y) ∈ R2 : x2 + y2 = 1} in the case n = 2 where you should
have a pretty good idea of how one-dimensional Hausdorff measure H1 should
work. You can also think of the boundary of the ball S2 = {(x, y, z) ∈ R3 :
x2 + y2+ z2 = 1} in the case n = 3 on which one would use two-dimensional
Hausdorff measure, that is area measure for surfaces in R3.

In practice, computation of an integral on a higher dimensional flat space
is often reduced to the computation of iterated integrals on lower dimen-
sional spaces by some form of Fubini’s theorem:

Theorem 11 (Fubini) If f : X1 × X2 → R is defined on the product X1 ×
X2 = {(x1, x2) : xj ∈ Xj, j = 1, 2} of measurable metric spaces X1 and X2,
then

∫

X1×X2

f =

∫

X1

(
∫

X2

f

)

=

∫

X2

(
∫

X1

f

)

where the integrand of
∫

X2
f is taken to mean the function g : X2 → R given

by g(x) = f(x1, x) for each (fixed) x1 ∈ X1, and the integrand of
∫

X1
f is

interpreted similarly.

Integrals over manifolds are usually computed using a parameterization
and a change of variables formula. To describe such a computation, in
general terms, we change notation slightly: Let U ⊂ Rn be a flat domain of
integration and

X : U → Rk an injection onto its image M = X(U).

Here M is assumed to be a manifold (or a subset of a manifold) and the
function X is a parameterization; this is almost the definition of a manifold.
Then we seek a change of variables formula which looks like this:

∫

M

f =

∫

U
(f ◦X) σ.

In this formula:

1. f :M → R is a real valued function on M , as expected,

2. f ◦X : U → R is the composition given by

f ◦X(p) = f(X(p)),

and
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3. σ is a scaling factor for the measures involved.

You can think of σ (roughly) according to the following description:
Using the measure µ on M , the measure of a set A ⊂M is

µA =

∫

A

1 =

∫

X−1(A)

σ (2.21)

where σ : U → R is a (scaling) function allowing the computation of µA by
integration on the corresponding (flat) preimage

X−1(A) = {p ∈ U : X(p) ∈ A}.

The area scaling relation (2.21) is required to hold for all (measurable) sets
A in such a way that the value of σ can be recovered by taking a limit

σ(p) = lim
A→{p}

µA

µU [X−1(A)]
(2.22)

where µU is the measure on U and the limit is taken as A tends to {p} as a
set. You may recognize (2.22) as defining a kind of derivative of the measure
µ.

Exercise 2.61 Consider the polar coordinates map Φ : (0,∞) × R → R2.
This function is a smooth bijection on any restriction to a half strip (0,∞)×
[θ0, θ0 + 2π). Let A be the image under Φ of a rectangle R = [r0, r0 + ǫ] ×
[θ0, θ0 + δ] for some r0 > 0 and any θ0. That is,

A = {Φ(r, θ) : r0 ≤ r ≤ r0 + ǫ, θ0 ≤ θ ≤ θ0 + δ}.

Compute the area of A and the limit

lim
ǫ,δ→0

L
2A

L2R

where L
2 denotes area measure in the plane, i.e., 2-dimensional Lebesgue

measure.

Let’s try to illustrate the notions of integration just introduced using an
example. Say we want to integrate on the surfaceM = S shown in Figure 2.4.
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Figure 2.4: A parameterized surface and the associated scaling factor.

This surface is parameterized by

Φ(r, θ) =
r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)





on the rectangle U = [1, 2]× [0, π/2]. A small square [r0, r0 + ǫ]× [θ0, θ0 + ǫ]
in the rectangle U has image approximated by the image of the linearization:

Φ(r, θ) ∼ Φ(r0, θ0) + dΦ(r0,θ0)(r − r0, θ − θ0).

The linear part L = dΦ(r0,θ0) : R
2 → R3 is given by

Lv = DΦ(r0, θ0)v
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where DΦ is the total derivative matrix, in this case

DΦ =





















∂Φ1

∂r

∂Φ1

∂θ

∂Φ2

∂r

∂Φ2

∂θ

∂Φ3

∂r

∂Φ3

∂θ





















=
1

4













(2 +
√
2) cos θ − (2−

√
2) sin θ −r[(2 +

√
2) sin θ + (2−

√
2) cos θ

(2 +
√
2) sin θ − (2−

√
2) cos θ r[(2 +

√
2) sin θ + (2−

√
2) sin θ]

2(cos θ + sin θ) 2r(cos θ − sin θ)













.

The image L([0, ǫ]× [0, ǫ]) is a parallelogram spanned by the vectors

w1 =
ǫ

4













(2 +
√
2) cos θ0 − (2−

√
2) sin θ0

(2 +
√
2) sin θ0 − (2−

√
2) cos θ0

2(cos θ0 + sin θ0)













and

w2 =
ǫr0
4













−[(2 +
√
2) sin θ0 + (2−

√
2) cos θ0]

(2 +
√
2) sin θ0 + (2−

√
2) sin θ0

2(cos θ0 − sin θ0)













.

The area of this parallelogram is given by

|w1||w2| sinA = |w1 ×w2|

where A is the angle between w1 and w2 with

sinA =
|w1 ×w2|
|w1||w2|

.
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Calculating, we find

|w1||w2| sinA = |w1 ×w2| = ǫ2r0.

Thus, the linearization takes a square of area ǫ2 (with corner at (r0, θ0) ∈ U
precisely onto a parallelogram of area ǫ2r0. Using this relation, we can decom-
pose U into many small squares Uj (as indicated for example in Figure 2.5)
with images Φ(Uj) partitioning S and observe

∑

j

f(q∗j )µS [Φ(Uj)] ∼
∑

j

f(q∗j ) r
∗
j µU [Uj ]

=
∑

j

f(q∗j ) r
∗
j L

2[Uj ] (2.23)

∼
∑

j

f ◦ Φ(p∗j) r∗j L2[Uj ]

where p∗j = (r∗j , θ
∗
j ) ∈ Uj and we recall that L2 denotes area measure, i.e., two-

dimensional Lebesgue measure, in the plane. Taking the limit as the norms
of our partitions tend to zero, we obtain the familiar change of variables
formula

∫

S
f =

∫

U
(f ◦ Φ) r.

Taking the special case f ≡ 1, we obtain (2.21) in the form

H2(A) =

∫

Φ−1(A)

r for subsets A of the surface S.

We may continue with this calculation using Fubini’s theorem to write the
flat integral on the right in terms of iterated integrals:

∫

S
f =

∫

r∈[1,2]
r





∫

θ∈[0,π/2]
f





r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)













on the rectangle U = [1, 2]× [0, π/2].
Assuming f is a continuous (Riemann integrable) function, we can also

write
∫

S f in terms of familiar Riemann integrals:

∫

S
f =

∫ 2

1

r





∫ π/2

0

f





r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)







 dθ



 dr.
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Exercise 2.62 Let X : U → Rk be a bijection onto the image manifold
M = X(U) where U is a (flat) domain of integration in Rn.

(a) Write down a measure scaling limit relation like (2.22) involving the
measure µ on M and the measure L

n on U .

(b) Carefully justify the change of variables formula
∫

M

f =

∫

U
(f ◦X) σ

along the lines of (2.23).

Here are two change of variables formulas that cover many cases of inter-
est:

Theorem 12 If U and W are open sets of Rn and Φ : U → W is a change
of variables, i.e., a differentiable bijection (diffeomorphism), then

∫

W
f =

∫

U
f ◦ Φ | detDΦ|.

The total derivative DΦ is an n× n matrix, and the scaling factor is

σ = | detDΦ|.

Theorem 13 If U is an open subset of Rn and X : U → Rk parameterizes
a smooth manifold M = X(U), then

∫

M

f =

∫

U
f ◦X

√

det(DXT DX)

where DX is the k × n matrix which is the total derivative of X and DXT

is the transpose of DX. The matrix DXT DX is a n × n, square, positive
definite matrix with det(DXT DX) > 0. The scaling factor is

σ =
√

det(DXT DX)

Exercise 2.63 Apply Theorem 13 to the parameterization

Φ(r, θ) =
r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)





to determine the scaling factor for integration on the surface S given above.
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2.63.1 Special Integrands

The general theory of integration as presented above is not really complete
in at least two respects. The major omission, perhaps, is that we have not
discussed measures and the construction of specific measures in any detail.
Closely related to this omission is the fact that we have not discussed con-
ditions under which the limit in the Riemann style integral we have defined
converges. It would also be natural to discuss alternatives to the Riemann
style limit, but we will not include that discussion here. Hopefully it will be
adequate for our purposes to know such questions can be addressed.

Say U ⊂ Rn is an open subset of Rn and ∂U is a smooth (n − 1)-
dimensional manifold upon which integration is possible and upon which
there is a well-defined outward unit normal field N . Assume, further-
more, that v : U → Rn is a smooth vector field. Under these circumstances

∫

∂U
v ·N

is called the outward flux integral of v with respect to U .

Exercise 2.64 Let U be an open subset of R2 and consider a “window”

U = {(x, y, z) ∈ R3 : (x, y) ∈ U}.

Let v = (0, 0, v) be a smooth vertical field on R3 with units given by

[v] =
mass

area time

where [ · ] denotes the units of a quantity. A field in R3 with these units is
called a mass flow field. If we take N = e3 = (0, 0, 1) what is the physical
significance of

∫

U
v ·N?

Note: This integral is also called a flux integral.

Exercise 2.65 Let U be a rectangular “window”

U = {(x, y, z) ∈ R3 : (x, y) ∈ [a, b]× [c, d]}
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as described in the previous exercise. Let v be a constant constant mass flow
field on R3 with third component v3 > 0. If we take N = e3 = (0, 0, 1),
explain the physical significance of

∫

U
v ·N

and draw a picture of this quantity in relation to a picture (you’ve drawn) of
the mass which has passed through U in one unit of time.

Exercise 2.66 If v : R3 → R3 denotes the identity (or outward radial) field
on R3 given by v(x) = x, compute the outward flux integral

∫

∂Br(0)

v ·N

for r > 0.

The Divergence

Let us assume again that U is an open subset of Rn with smooth boundary ∂U
and outward unit normal fieldN . Also, we assume, as before that v : U → Rn

is a smooth vector field. Taking a sequence of subdomains V converging as
sets to a singleton {p} with p ∈ U , we define div v : U → R by

divv(p) = lim
V→{p}

1

Ln

∫

∂V
v ·N.

Theorem 14 (divergence theorem)

∫

U
div v =

∫

∂U
v ·N.

Outline of the proof: Partition U into small pieces Uj as indicated (in the
two-dimensional case) in Figure 2.5. Call the partition P. Then

∫

∂U
v ·N =

∑

j

∫

∂Uj

v ·N
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Figure 2.5: Proof of the divergence theorem in the plane; partitioning a
region

where N = Nj is the outward unit normal to Uj in the integrals on the right.
Notice how the integrals over the intersections of adjacent pieces cancel one
another. We can write this as
∫

∂U
v ·N =

∑

j

(

1

µUj

∫

∂Uj

v ·N
)

µUj = lim
‖P‖→0

∑

j

(

1

µUj

∫

∂Uj

v ·N
)

µUj.

The measure µ, in this case, is Ln. If ‖P‖ is small there is, for each j, some
evaluation point p∗

j ∈ Uj such that

1

µUj

∫

∂Uj

v ·N is close to divv(p∗
j ).

Naturally, we need the differences of these quantities to be uniformly small
in j. Given that we can write

∫

∂U
v ·N = lim

‖P‖→0

∑

j

(div v(p∗
k)) µUj =

∫

U
div v. �

Exercise 2.67 Let U ⊂ R2 be a set containing a rectangle

R = {p+ s(1, 0) + t(0, 1) : (s, t) ∈ [−ǫ, ǫ]× [−δ, δ].
Assume v : U → R2 is a C1 vector field on U .
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(a) Use the mean value theorem to express the flux integral

∫

∂R

v ·N

as a sum

2δ

∫ ǫ

−ǫ

f1(s) ds+ 2ǫ

∫ δ

−δ

f2(t) dt

for appropriate functions f1 and f2.

(b) Use your result to determine the value of

div v(p) = lim
ǫ,δ→0

1

µR

∫

∂R

v ·N

in rectangular coordinates.

The divergence theorem is the version of integration by parts we need to
find/derive partial differential equations as Euler-Lagrange equations in the
calculus of variations. Such partial differential equations are called varia-
tional PDE.

Derivatives and the Gradient

Our proof of the divergence theorem relies heavily on the convergence of the
limit in the definition of the divergence, which we have not shown. In fact,
some (not so restrictive) conditions should be satisfied by the vector field
v and the regions V ⊂ U with V → {p}. We will show the limit exists for
several different kinds of regions and for several different kinds of coordinates.
It will be noted that the divergence is a differential expression (or a kind of
derivative) though it was defined in terms of an integral expression/quantity.
As a consequence, filling in the deficiency of showing the divergence exists
will benefit from some preliminary discussion of derivatives.

The starting point for essentially all derivatives is the limit of the diffence
quotient

u′(x) = lim
h→0

u(x+ h)− u(x)

h
(2.24)

for a real valued function u : (a, b) → R of one variable, when this limit
exists. This quantity is interpreted (physically) as the (instantaneous) rate
of change of the quantity measured by u with respect to the change in the
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independent variable x and (geometrically) as the slope of the tangent line
to the graph of u.

Exercise 2.68 Assume x = x(t) measures distance (length) and t measures
time.

(a) Use the formula

average rate =
total net distance

total ellapsed time

to find and expression for the average rate of change of x over a finite
time interval [a, b].

(b) Interpret your answer geometrically in terms of points on the graph of
the function x : [a, b] → R.

Given a function u : U → R of two or more variables defined on an open sub-
set U ⊂ Rn, a natural generalization of (2.24) is the directional derivative
given by

Dvu(x) = lim
h→0

u(x+ hv)− u(x)

h
(2.25)

where v is a (tangent) vector at x ∈ U . There are some differences between
this kind of difference quotient and (2.24) and several remarks are in order.
First of all, it will be remarked that to specialize (2.25) to the one-dimensional
case and obtain the same derivative, one must make the particular choice
v = 1 ∈ R. Thus, our generalization is not only a generalization in dimension
but also in the generality of the notion considered. Illustrating this latter
generalization, here are two special cases of note:

1. If v is a unit vector, that is, |v| = 1, then the value of Dvu(x) gives the
instantaneous rate of change of the function u in the direction v. Many
authors restrict the definition (2.25) to only this case. In particular, in
this case one may construct a “graph” over the line {x+ tv} given by
taking some (small) ǫ > 0 and considering

G = {(t, u(x+ tv)) : |t| < ǫ}.

The difference quotient (2.25) is then recognized as the slope of the
secant line to the graph G determined by the points (h, u(x+hv)) and
(0, u(x)) as indicated in Figure 2.6.
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Figure 2.6: Difference quotient.

Exercise 2.69 In two dimensions, when U ⊂ R2, the graph

G = {(x, y, u(x, y)) : (x, y) ∈ U}

of the function u : U → R is a surface, and the illustration of Fig-
ure 2.6 can be realized in a somewhat different form. Draw such an
illustration and interpret the difference quotient in (2.25) in terms of
your illustration.

2. If v is taken to be a standard unit basis vector ej , then the resulting
directional derivative has a special name and notation. First of all,
recall that the standard unit basis vector ej is the vector in Rn with
zeros in all entries except for the j-th entry, which is 1. The vector ej
is also called the standard coordinate vector (with respect to a choice
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of rectangular coordinates). In this case we write

∂u

∂xj
= Deju

and call this quantity a partial derivative. The notations

Dxj
u, Dju, uxj

, and Deju (2.26)

are also used to denote this same quantity. In two dimensions e1 =
(1, 0), e2 = (0, 1), and another usual notation is given by

∂u

∂x1
=
∂u

∂x
and

∂u

∂x2
=
∂u

∂y
.

Similarly, in three dimensions one finds

∂u

∂x1
=
∂u

∂x
,

∂u

∂x2
=
∂u

∂y
and

∂u

∂x3
=
∂u

∂z
.

Each of the above notations, especially those in (2.26), should be con-
sidered carefully and compared to the meaning of this kind of derivative.

Exercise 2.70 How does your illustration and explanation from Exer-
cise 2.69 change in the case v = ej is a standard unit basis vector in
R2?

We have not followed other authors in restricting the directional derivative
Dvu to unit vectors v. As a consequence, Dvu(x) does not always give the
instantaneous rate of change of the quantity u in the direction v at x, and
we need (perhaps) to be a little careful. First notice v = 0 implies Dvu = 0,
and this quantity indicates nothing about the local behavior of u near x.
Nevertheless, we obtain a well-defined (zero) value in this case. If v 6= 0,
then

Dvu(x) = |v| lim
h→0

u(x+ (h|v|)(v/|v|))− u(x)

h|v| = |v|Dv/|v|u

is the scaling of the rate of change of u in the unit direction v/|v| by the
factor |v|. This can be recognized as a familiar form of the chain rule which
says the derivative (u ◦ v)′(x) of a composition u ◦ v : (a, b) → R where
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v : (a, b) → (c, d) and u : (c, d) → R is the product of the instantaneous rate
of change of u at v(x) and the instantaneous rate of change of v at x:

(u ◦ v)′(x) = u′(v(x)) v′(x), (2.27)

or (as it is often cryptically expressed)

du

dx
=
du

dv

dv

dx
.

In the multivariable case of Dvu, the composition is one with u and the
vector valued function α(t) = x+ tv with velocity vector α′ = v is constant.
To be explicit

d

dt
u(α(t))∣

∣

t=0

= Dv/|v|u(α(0)) |α′(0)|. (2.28)

Exercise 2.71 Notice that in comparing the one-dimensional chain rule (2.27)
with the chain rule we have derived/observed for directional derivatives (2.28)
one contains a norm/absolute value which is conspicuously missing in the
other.

(a) If one applies the definition of a directional derivative (2.25) to a func-
tion u : (a, b) → R of one variable using only unit vectors v, what is
the difference between Dvu and u′? Put another way, how many points
are there in the boundary of the one-ball Br(0) = {x ∈ R : |x| = 1}?

(b) Explain why there are no absolute values in (2.27).

In the context of higher dimensional directional derivatives defined by
(2.25) certain additional constructions (often overlooked in 1-D calculus) are
of interest. It may first be noted that the expression Dvu(x) has several
possible quantities which can be considered as “arguments.” Perhaps the
simplest way to think about this quantity is with u : U → R and v ∈ Rn

fixed and argument x ∈ U . Thus, Dvu becomes a real valued function on U .
This naturally opens the door for repetition of the construction (directional
differentiation) and consideration of higher order directional derivatives.
Naturally, some regularity is required to compute derivatives as limits of
difference quotients. The absolute value function is not differentiable at x = 0
in this sense, and we have already introduced the continuity/differentiability
classes C0, C1, C2, . . . in one dimension. We turn to partial derivatives for
the analogue in higher dimensions:
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Definition 10 A function u : A → R defined on any subset A ⊂ Rn is
continuous at x0 ∈ A if for any ǫ > 0, there is some δ > 0 such that

|u(x)− u(x0)| < ǫ whenever x ∈ A and |x− x0| < δ.

The function u : A → R is said to be continuous on A if u is continuous
at each point x0 ∈ A.

Exercise 2.72 Show that if the domain of a function u : U → R is an open
subset U ⊂ Rn, then the condtion x ∈ U may be omitted from the definition.
In other words, consider the alternative definition: u is continuous at x0 ∈ U
if for any ǫ > 0, there is some δ > 0 such that

|u(x)− u(x0)| < ǫ whenever |x− x0| < δ.

Show a function continuous according to this definition is continuous with
respect to the “official” definition above.

Definition 11 Given an open set U ⊂ Rn, the set C1(U) consists of the real
valued functions u : U → R for which the partial derivatives satisfy

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn
∈ C0(U).

Exercise 2.73 Show that u ∈ C1(U) implies u ∈ C0(U).

Definition 12 Given an open subset U ⊂ Rn and a natural number k ≥ 2,
the set Ck(U) consists of the real valued functions u : U → R for which the
partial derivatives satisfy

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn
∈ Ck−1(U).

Exercise 2.74 If U is an open subset of Rn and u ∈ C2(U), then (show)

DvDwu = DwDvu for any vectors v,w ∈ Rn.

Definition 13 If A is any subset of Rn and k is a natural number with
k ≥ 1, then Ck(A) consists of those functions u : A → R for which the
following holds: There exists an open set U ⊂ Rn and an extension u ∈ Ck(U)
for which
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1. A ⊂ U , and

2. the restriction of u to A is u:

u∣
∣

A

= u.

Exercise 2.75 If u ∈ C0(A), then does there (necessarily) exist an extension
u : U → R with U some open subset satisfying

1. A ⊂ U , and

2. the restriction of u to A is u:

u∣
∣

A

= u,

and u ∈ C0(U)?

Returning to the possible arguments of Dvu(x), in addition to Dvu : U →
R, we may consider u and x fixed, so that Dvu(x) is considered a function
of v. This point of view brings to light a distinction which is usually lost
(or ignored) in calculus that the collection of vectors v is ususally distinct
from the set of arguments x ∈ U ⊂ Rn for the function u. Technically,
the directions v available for computing Dvu(x) include all vectors in the
tangent space to the domain U at x which is TxU = Rn. When the
value of the directional derivative is considered as a function of the direction
of differentiation v in this way, the result is called the differential of u at x
and is denoted by

dux : Rn → R.

While u : U → R, we have a collection of differential functions (one for each
x ∈ U) with dux : Rn → R. In addition to having the distinction of having
all of Rn for domain, we have given an argument above showing homogeneity
with respect to scaling along the following lines:

Exercise 2.76 Show that the differential dux : Rn → R, as we have defined
it, satisfies

dux(av) = a dux(v) for each v ∈ Rn and a ∈ R.
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This suggests, at the very least, we should consider the possibility that the
functions dux might be linear. It follows from Exercise 2.76, in fact, that
in the case n = 1 the differential map is linear. At this point it should
be confessed that I have again departed, to a certain extent, from standard
usage in not making the linearity of a differential an apriori requirement. As
I now examine this point in more detail, let me start by recalling that in 1-D
calculus the functions in Diff(a, b), considered as a special case of functions
u : U → R where U might be a higher dimensional domain, are both the
functions that are differentiable at each point and the functions that have
all partial derivatives (of which there is only one) existing at each point, and

C0(a, b) % Diff(a, b) % C1(a, b). (2.29)

In higher dimensions it is customary to make a distinction so that the differ-
entiable functions on a domain U in a higher dimensional space and those
with all first order partial derivatives existing at each point x in U are
not the same thing. With this in mind, we introduce the set of functions
u : U → R with all first order partial derivatives existing at every point x in
an open subset U ⊂ Rn and call it pDiff(U). These may be informally called
the collection of partially differentiable functions on U , and we can also
write for (2.29)

C0(a, b) % Diff(a, b) = pDiff(a, b) % C1(a, b).

For U ⊂ Rn (any n) and u ∈ pDiff(U), there is a linear function Lx : Rn → R
associated to u at the point x with values given by

Lx(v) = Du(x) · v = 〈Du(x),v〉Rn

where Du : U → Rn represents the vector field on U given in standard
coordinates by

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

.

This vector of first partial derivatives is also called the total derivative
of u or the gradient vector. It should be noted that this is a coordinate
dependent expression for the gradient, and we will discuss an important
coordinate free version of the gradient vector below. For now, however, we
have a linear function Lx at each point x ∈ U associated with each function
u in

pDiff(U) % C1(U).
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The difference between the one dimensional case and the higher dimensional
cases starts to become apparent now since there is no simple inclusion relating
pDiff(U) and C0(U) when U ⊂ Rn and n > 1.

Exercise 2.77 Find a function u ∈ pDiff(U)\C0(U). Find a function u ∈
C0(U)\ pDiff(U).

The notion of differentiability in higher dimensions involves another linear
function, potentially different from both Lx and dux mentioned above, and
more explicitly based on first order approximation:

Definition 14 Given an open subset U ⊂ Rn, a function u : U → R is
differentiable at x ∈ U if there exists a linear function ℓ : Rn → R for
which

lim
v→0

u(x+ v)− u(x)− ℓ(v)

|v| = 0.

The collection of functions u : U → R which are differentiable at each point
x ∈ U is denoted by Diff(U).

Exercise 2.78 Show that the definition of Diff(U) in the special case n = 1,
with U an interval (a, b), is consistent with the previous definition of Diff(a, b)
based on the limit of the difference quotient.

It is, thus, with this notion we obtain a higher dimensional version of (2.29):

C0(U) % Diff(U) % C1(U).

In order to verify the inclusion on the right we recall the mean value the-
orem for functions of one variable:

Theorem 15 Given u ∈ C0[a, b] ∩ C1(a, b), there exists some x∗ ∈ (a, b)
with

u′(x∗) =
u(b)− u(a)

b− a
. (2.30)

In the special case u ∈ C1[a, b] there is a simple proof of (2.30) using (mainly)
the fundamental theorem of calculus and the chain rule. The construction is
useful in many contexts, so we present it:

u(b)− u(a) =

∫ 1

0

d

dt
u((1− t)a + tb) dt =

∫ 1

0

u′((1− t)b+ ta)(b− a) dt.
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The quantity
∫ 1

0

u′((1− t)b+ ta) dt

is the average value of the integrand u′((1 − t)b + ta) which is a continuous
function of t, and it follows that for some t∗ ∈ (0, 1)

∫ 1

0

u′((1− t)b+ ta) dt = u((1− t∗)b+ t∗a).

Now, in the case u ∈ C1(U), we claim the linear function Lx given by the
Euclidean inner product with the vector of partial derivatives Du(x) gives
the linear approximation required by the definition of differentiability. To
see this, let v = (v1, v2, . . . , vn) and note that by the mean value theorem

u(x+ v1e1)− u(x) = De1u(x
∗
1)v1

where x∗
1 = x+ v∗1e1 and v∗1 is between 0 and v1. Similarly,

u(x+ v2e2 + v1e1)− u(x+ v1e1) = De2u(x
∗
2)v2

where x∗
2 = x+ v∗2e2+ v1e1 and v

∗
2 is between 0 and v2. Repeating this appli-

cation of the mean value theorem along the remaining standard coordinate
directions, we obtain

u(x+ v)− u(x) =

n
∑

k=2

[

u

(

x+

k
∑

j=1

vjej

)

− u

(

x+

k−1
∑

j=1

vjej

)]

+ u(x+ v1e1)− u(x)

=
n
∑

j=1

Deju(x
∗
j)vj

for points x∗
1,x

∗
2, . . . ,x

∗
n tending to x as v tends to 0. This can be written as

u(x+ v)− u(x) = 〈D∗u,v〉Rn

where D∗u = (De1u(x
∗
1), De2u(x

∗
2), . . . , Denu(x

∗
n)). Therefore,

u(x+ v)− u(x)− Lx(v) = 〈(D∗u−Du(x),v〉Rn .
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The Cauchy-Schwarz inequality says that for any vectors v and w in Rn, we
have

|〈v,w〉Rn| ≤ |v||w|.
Applying this inequality we have

|u(x+ v)− u(x)− Lx(v)| ≤ |D∗u−Du(x)||v|

and
∣

∣

∣

∣

u(x+ v)− u(x)− Lx(v)

|v|

∣

∣

∣

∣

=
|u(x+ v)− u(x)− Lx(v)|

|v| ≤ |D∗u−Du(x)|.

By the continuity of the partial derivatives

limv→0|D∗u−Du(x)| = 0

since

Deku(x
∗
k) =

∂u

∂xk

(

x + v∗kek +
∑

j 6=k

vjej

)

and v∗k is between 0 and vk. �

The argument above not only shows that u ∈ C1(U) is differentiable, but
the approximating linear function ℓ in the definition of differentiability can
be taken to be the particular linear function Lx obtained using the inner
product with the total derivative/gradient vector Du(x).

A multivariable chain rule

Let u ∈ C1(U) where U is an open subset of R2.

2.78.1 Coordinates and inner product spaces

The relation of vectors and other mathematical constructions to coordinates
is often first encountered (and usually not fully appreciated) in a course on
linear algebra. The basic idea is also operative in elementary geometry where
a circle with a given radius and center can be considered without coordinates
and, yet, if one wishes to make certain computations introducing coordinates
for the center of a circle is seemingly unavoidable. A similar situation prevails
with vectors, linear transformations, and other mathematical constructions.
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Two such constructions we wish to consider here are the gradient of a real
valued function (of several variables) and the divergence of a vector field. It
will be noted that in the first case, we have used coordinates to define the
gradient:

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

.

The divergence, on the other hand, we have defined in a manner that did not
use coordinates:

÷v(x) = lim
V→{x}

1

Ln(V)

∫

V
v · n.

Technically, the dot product appearing in this definition involves coordinates
if by v · n we mean

v · n =

n
∑

j=1

vjnj .

The dot product itself, however, can be considered without coordinates, and
this distinction may be indicated by the use of a different notation.

Definition 15 An inner product space is a vector space V equipped with
a function 〈 · , · 〉 : V × V → R having the following properties:

(i) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V . (symmetric)

(ii) 〈av+ bw, z〉 = a〈v, z〉+ b〈w, z〉 for all a, b ∈ R and v,w, z ∈ V . (bilin-
ear)

(iii) 〈v,v〉 ≥ 0 with equality if and only if v = 0. (positive definite)

Multi-index notation

The last notation for a partial derivative given in (2.26) deserves special no-
tice. Though Deju bears a strong superficial resemblance to the standard
notation Deju for a partial derivative, something quite different is in mind.
Though not immediately of interest in regard to our present discussion of
first order partial derivatives, the multi-index notation is quite useful in
certain applications, most notably for writing down higher order Taylor ap-
proximations in several variables, so let us briefly explain it in passing. The
superscript vector in Dβu can not only be taken as one of the standard unit
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basis vectors to indicate a single directional derivative in that direction, but
β denotes a multi-index which is an element in the set

Nn
0 = {(β1, β2, . . . , βn) : βj ∈ N0 for j = 1, 2, . . . , n}

and N0 = {0, 1, 2, . . .} denotes the nonnegative integers. In words, Dβu
indicates the result of taking βj partial derivatives of u with respect to ej
for j = 1, 2, . . . , n. It is assumed, when this notation is used, that u is
continuously (partial) differentiable β1+β2+· · ·+βn times in any combination
of standard directions. In this context, the sum

∑

βj is denoted ‖β‖ and
called the norm of the multi-index β, and a function with this regularity
on an open subset U ⊂ Rn is said to be in C‖β‖(U). It can then be proved
that the order of application of the partial derivatives does not effect the
result, so we can write

Dβu =
∂‖β‖u

∂β1x1∂β2x2 · · ·∂βnxn
. (2.31)

This may seem complicated, but consider the simplicity and economy of
notation obtained in (2.31). Returning to Deju and Deju, the former denotes
taking a directional derivative in the direction of the vector ej , which happens
to be a partial derivative. Thus, Deju is simply a special case of Dvu as
explained above. The expression Deju on the other hand means “one partial
derivative with respect to the variable xj” where Dβu has the more general
meaning “βj derivatives with respect to xj for j = 1, 2, . . . , n.”

Definition 16 Given an open subset U ⊂ Rn and a natural number k ≥ 1,
the set Ck(U) consists of all functions u ∈ Ck(U) such that each partial
derivative Dβu with |β| ≤ k has a continuous extension vβ ∈ C0(U) to the
closure of U :

vβ∣
∣

U

= Dβu.

Exercise 2.79 Definition 13 and Definition 16 overlap when A = U is the
closure of an open subset of Rn. Are they consistent with one another in this
case?



Chapter 3

2-D Capillary Surfaces

Here we consider first the 2-D version of the Young-Laplace equations which
we restate:















(

u′

√
1+u′2

)′
= κu for |x| < r

u′(±r)√
1+u′(±r)2

= ± cos γ.

(3.1)

Here r > 0 is a given fixed constant. Similarly, κ > 0 and γ with |γ| < π/2
are assumed given and fixed. For most of our considerations, and exclusively
for our initial considerations, we will assume 0 < γ < π/2. As mentioned
above, (3.1) is a two point boundary value problem for the ODE of
prescribed signed curvature

k =

(

u′√
1 + u′2

)′
= κu.

The problem is strongly variational in the sense that solutions turn out to be
minimizers of the 2-D capillary energy discussed in the last chapter. Under
the assumption |β| < 1 on the adhesion coefficient β, we showed cos γ = β.
There seems to be no immediate physical restriction leading to the assump-
tion |β| < 1 or even |β| ≤ 1, and the material of this chapter should put us in
a position to consider the possibilities |β| = 1 and |β| > 1, each of which has
it’s own associated peculiarities. Note in particular that some modification of
the boundary condition in the Young-Laplace problem (3.1) as stated above
is required for the consideration of cos γ = ±1.

Returning to our comment that (3.1) is a two point boundary value prob-
lem for the ODE k = κu, we note that two point boundary value problems

103
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are not usually contemplated in the standard existence and uniqueness theo-
rem(s) for ODEs, but rather an initial value problem is the one tradition-
ally considered. Naturally, we will want to prove an existence and uniqueness
theorem for (3.1) though our initial considerations are based on the assump-
tion that a solution exists. These considerations will give us an opportunity
to review carefully an existence and uniqueness theorem for initial value
problems involving nonlinear systems of ODEs as well as various well-known
results from elementary calculus. These will provide indespensible tools in
our study, so they should be known and understood “inside and out” so to
speak. Our solution u = u(x), which we will initially assume to exist, will be
initially assumed to satisfy

u ∈ C2(−r, r) ∩ C1[−r, r]. (3.2)

It may be noted that consideration of | cos γ| = 1 might require u ∈ C2(−r, r)∩
C0[−r, r]. Under the assumption | cos γ| < 1, we will soon be able to show so-
lutions satisfying the regularity condition (3.2) satisfy, in fact, u ∈ C2[−r, r]
and even u ∈ C∞[−r, r].

It seems to me a strong geometric understanding, as well as some tech-
nical/calculational aspects, of the notions of inclination angle and curvature
are indespensible at this point. In particular, it should be recalled that the
curvature is given by

k =

(

u′√
1 + u′2

)′
=

u′′

(1 + u′2)3/2
=

d

dx
sinψ =

dψ

ds

where

s =

∫ x

0

√

1 + u′(ξ)2 dξ

is the arclength measured along the interface curve and ψ is the inclination
angle defined by

(cosψ, sinψ) =

(

1√
1 + u′2

,
u′√

1 + u′2

)

as usual.
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3.1 Basic Properties

3.1.1 Getting Started

We begin by carefully establishing and emphasizing the assertions surround-
ing Exercises 1.13 and 1.14 of the introductory chapter. In particular, if
we assume 0 < γ < π/2, then any solution must be positive, convex, and
symmetric. In symbols:

1. u(x) > 0 for |x| ≤ r,

2. u′′(x) > 0 for |x| ≤ r,

3. u(−x) = u(x) for |x| ≤ r, and consequently

4. u has a unique minimum at x = 0 with

u′(x) < 0 for −r ≤ x < 0, u′(0) = 0, and u′(x) > 0 for 0 < x ≤ r.

We give two approaches to the positivity. The first uses the well-known
intermediate value theorem:

Theorem 16 (intermediate value theorem) if f ∈ C0[a, b] and v ∈ R satis-
fies

f(a) < v < f(b) or f(b) < v < f(a),

then there exists some x∗ ∈ (a, b) with f(x∗) = v.

Under the assumption 0 < γ < π/2, we know 0 < cos γ < 1, and the
boundary condition

u′(±r)
√

1 + u′(±r)2
= ± cos γ

implies u′(−r) < 0 < u′(r). Thus, applying the intermediate value theorem
to u′, we obtain some x∗ with |x∗| < r and

u′(x∗) = 0.

We next use some version of the local existence and uniqueness theorem
for initial value problems for ODEs. This theorem is usually stated
for systems of ODEs, so we will state it that way first. Also, our ODE is
autonomous, so we will only state a result in that case.
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Theorem 17 (local existence and uniqueness for ODEs) Let F : Rn → Rn

is a C1 vector field, which means each of the coordinate functions fj in F =
(f1, f2, ..., fn) for j = 1, 2, . . . , n satisfies fj ∈ C1(Rn). If x0 ∈ Rn and t0 ∈ R,
then there exists some δ > 0 such that the initial value problem

{

x′ = F(x), |t− t0| < δ
x(t0) = x0

has a unique solution x : (t0 − δ, t0 + δ) → Rn with each coordinate function
xj in x = (x1, x2, . . . , xn) for j = 1, 2, . . . , n satisfying xj ∈ C1(t0− δ, t0+ δ).

We will apply this result in the case n = 2 to our second order nonlinear ODE
of prescribed signed curvature. Thus, a more directly applicable statement
is the following:

Theorem 18 (local existence and uniqueness for regular second order ODEs)
Let f : R2 → R satisfy f ∈ C1(R2). If (t0, u0, u

′
0) ∈ R3, then there exists

some δ > 0 such that the initial value problem

{

u′′ = f(u, u′), |t− t0| < δ
u(t0) = u0, u′(t0) = u′0

has a unique solution u ∈ C2(t0 − δ, t0 + δ).

Exercise 3.2 Assume Theorem 17 and prove Theorem 18.

For our application of Theorem 18 we will take

f(u, u′) = κu(1 + u′2)3/2

and write the 2-D capillary equation as

u′′ = u(1 + u′2)3/2.

We show first that u(x∗) > 0. Our proof is by contradiction. We consider
two distinct complementary cases:

1. u(x∗) = 0.

2. u(x∗) < 0.
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It is especially attractive to consider these two cases because an immediate
explicit solution is available in the first case.

If u(x∗) = 0, then since u′(x∗) = 0, we can consider the initial value
problem

{

u′′ = cu(1 + u′2)3/2, |x| < r
u(x∗) = 0, u′(x∗) = 0.

One solution of this problem, in this case is u0 ≡ 0. It will be noted, in fact,
that the constant function u0 satisfies the global initial value problem

{

u′′ = cu(1 + u′2)3/2, x ∈ R
u(x∗) = 0, u′(x∗) = 0.

The existence and uniqueness theorem does not give us uniqueness im-
mediately on the entire interval, but it does tell us that our original solution
u ∈ C2(−r, r) ∩ C1[−r, r] satisfies

u(x) ≡ u0 = 0 for |x− x∗| < δ

where δ > 0 is some positive number given by Theorem 18. We wish to
show, of course, that u(x) ≡ 0 for |x| ≤ r. This will then imply u′(±r) = 0
contradicting our assumption/boundary condition

u′(±r) = ± cos γ
√

1 + u′(±r)2 6= 0.

We have shown the two sets

A = {a ∈ [−r, x∗) : u(x) ≡ 0 for a < x ≤ x∗}

and
B = {b ∈ (x∗, r] : u(x) ≡ 0 for x∗ ≤ x < b}

are both nonempty with

(x∗ − δ, x∗) ⊂ A and (x∗, x∗ + δ) ⊂ B.

Letting a0 = inf A and b0 = supB, we can attempt to apply the existence
and uniqueness theorem again at the points a0 and b0. The requirements for
such an application at x = a0 are the following:

1. u(a0) = 0, and
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2. u′(a0) = 0.

It is relatively easy to show u(x) ≡ 0 for a0 < x ≤ x∗, that is, a0 ∈ A. In fact,
if this were not the case, then there would exist some x1 with a0 < x1 < x∗
and u(x1) 6= 0. This means every point a′ with r ≤ a′ < x1 satisfies a′ /∈ A
and a0 = inf A ≥ x1. This contradicts the inequality a0 < x1. Finally, we
obtain by continuity

u(a0) = lim
xցa0

u(x) = 0.

Exercise 3.3 Show u(b0) = 0.

It follows, furthermore, from the definition of the derivative that

u′(a0) = lim
hց0

u(a0 + h)− u(a0)

h
= 0.

Therefore, the existence and uniqueness theorem gives us some δ0 > 0 for
which the initial value problem

{

u′′ = cu(1 + u′2)3/2, |x− a0| < δ0
u(a0) = 0, u′(a0) = 0

has a unique solution. That solution is, of course, u0 ≡ 0. If we assume, at
this point, that −r < a0 < x∗, then our application gives us a value

a1 = max{−r, a0 − δ0}

for which u(x) ≡ u0 for a1 < x ≤ x∗. This, again contradicts the definition
of a0 because we find

a0 ≤ a1 = max{−r, a0 − δ0} < a0.

We conclude a0 = −r and u(x) ≡ 0 for −r ≤ x ≤ x∗.

Exercise 3.4 Carry out the details to show u(x) ≡ 0 for x∗ ≤ x ≤ r.

We have ruled out the case u(x∗) = 0. Next we consider the case u(x∗) <
0. In this case, we can apply the following sufficiency condition for a strict
local maximum from calculus:
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Theorem 19 If f ∈ C2(a, b) and x∗ ∈ (a, b) satisfy

u′(x∗) = 0 and u′′(x∗) < 0,

then there exists some δ > 0 for which u(x) ≤ u(x∗) for |x − x∗| < δ with
equality only for x = x∗.

Exercise 3.5 Prove Theorem 19.

It follows, in fact, that

u′′(x) = κu(x)(1 + u′(x)2) ≤ κu(x∗)(1 + u′(x)2) < 0 for |x− x∗| < δ

so that −u is convex on the interval x∗ − δ < x < x∗ + δ with

u′(x) = u′(x∗) +

∫ x

x∗

u′′(ξ) dξ > 0 for x∗ − δ < x < x∗

and

u′(x) = u′(x∗) +

∫ x

x∗

u′′(ξ) dξ < 0 for x∗ < x < x∗ + δ.

The condition u′′(x) < 0 and the monotonicity conditions on u′(x) extend to
the entire interval [−r, r] in this case, so that u(x∗) is a strict global maximum
value. In order to see this, we will use the mean value theorem:

Theorem 20 (mean value theorem) if f ∈ C1(a, b) ∩ C0[a, b], then there
exists some x ∈ (a, b) with

f ′(x) =
f(b)− f(a)

b− a
.

Assume there is some x ∈ (x∗, r] with u(x) ≥ u(x∗). Let

x1 = inf{x ∈ (x∗, r] : u(x) ≥ u(x∗)}.

By continuity u(x1) ≥ u(x∗), and according to the local behavior at x∗ we
know x1 ≥ x∗ + δ > x∗. Note also that u(x) < u(x∗) for x∗ < x < x1. By
the mean value theorem there exists x2 ∈ (x∗, x1) with u′(x2) ≥ 0. By a
second application of the mean value theorem there exists x3 ∈ (x∗, x2) with
u′′(x3) ≥ 0. But then

u′′(x3) = κu(x3)(1 + u′(x3)
2)3/2 ≤ κu(x∗)(1 + u′(x3)

2)3/2 < 0
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which is a contradiction. This means there is no x ∈ (x∗, r] with u(x) ≥ u(x∗).
Similarly, u(x) < u(x∗) < 0 for −r ≤ x < x∗. We conclude

u′′(x) = κu(x)(1 + u′(x)2) ≤ κu(x∗)(1 + u′(x)2) < 0 for |x| < r.

Finally using the fundamental theorem of calculus to write

u′(x) = u′(x∗) +

∫ x

x∗

u′′(ξ) dξ

as above, we obtain u′(x) > 0 for −r < x < x∗ and u
′(x) < 0 for x∗ < x < r.

It follows by continuity that u′(−r) ≥ 0 and u′(r) ≤ 0. Each of these
inequalities contradicts the boundary condition

u′(±r) = ± cos γ
√

1 + u′(±r)2 6= 0.

We have obtained the contradiction according to which we can assert u(x∗) >
0 whenever 0 < γ < π/2 and u′(x∗) = 0 for some x∗ ∈ (−r, r). Technically, we
have not shown, as claimed in the second (contradictory) case, that u′(−r) >
0, u′(r) < 0, and u′′(±r) < 0. In fact, on the face of it, the condition u′′(±r)
does not really make sense at least until we obtain an extension ū of u to an
open interval containing ±r where ū′′ is well-defined.

Exercise 3.6 Show that if u′(x∗) = 0 with u(x∗) < 0 and u ∈ C2(−r, r) ∩
C1[−r, r] satisfies the 2-D capillary equation

u′′

(1 + u′2)3/2
= κu,

on (−r, r), then u′(−r) > 0 and u′(r) < 0. Show, moreover, that there exists
some δ > 0 and an extension ū ∈ C2(−r − δ, r + δ) satisfing

ū∣
∣

[−r,r]

≡ u and ū′′(±r) < 0.

In fact, show (you can take) ū ∈ C∞(r − δ, r + δ).

Exercise 3.7 It may be noted that we did not use the existence and unique-
ness theorem for ODEs in the (contradictory) case u(x∗) < 0. Can you obtain
a contradiction in the case u(x∗) = 0 of the proof above without using the
existence and uniqueness theorem?
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Let us make a new start at this point, and give a second somewhat differ-
ent approach to showing u(x∗) > 0. This approach is based on the extreme
value theorem from calculus:

Theorem 21 (extreme value theorem) If f ∈ C0[a, b], then there exists some
x∗ ∈ [a, b] such that the absolute minimum of f is attained at x∗. That is,

u(x∗) ≤ u(x) for x ∈ [a, b].

We claim first that the point of absolute minimum for u cannot occur at one
of the boundary points x = ±r. Take, for example, x = −r. We know from
the boundary condtion that

u′(−r) = − cos γ
√

1 + u′(−r)2 < 0.

Therefore, the Taylor approximation formula (or the mean value theorem
along with continuity) tells us

u(x) = u(−r) + u′(ξ)(x+ r) < u(−r) when |x+ r| is small enough

and where ξ is some point satisfying −r < ξ < x. This means there is not
even a local minimum at x = −r. A similar observation applies to the other
endpoint x = r.

Therefore, the global min point x∗ from the extreme value theorem is an
interior point satisfying −r < ξ < r. To such a min value we may apply
the necessary condition for a minimum from calculus:

Theorem 22 (first order necessary condition) If f ∈ C1(a, b) has a local
interior minimum at x ∈ (a, b), then f ′(x) = 0.

This tells us u′(x∗) = 0, and we can proceed somewhat as before: If u(x∗) = 0,
then u ≡ 0 by the existence and uniqueness argument. But if u(x∗) < 0, we
can obtain an immediate contradiction because

u′′(x∗) = κu(x∗)(1 + u′(x∗)
2) < 0.

(This gives us the hypotheses of the sufficient condition for a strict local
maximum as described above—so of course, a strict local maximum cannot
also be an interior local minimum.)

Alternatively, we could use the second order version of the necessary
condition:
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Theorem 23 (second order necessary condition) If f ∈ C2(a, b) has a local
interior minimum at x ∈ (a, b), then f ′(x) = 0 and f ′(x) ≥ 0.

We have established the existence of an interior point x∗ ∈ (−r, r) satis-
fying

u′(x∗) = 0 and u(x∗) > 0.

We may assume u(x∗) is the global minimum value of u. We can also prove
u(x∗) < u(x) for x ∈ [−r, r]\{x∗} directly using the reasoning above once we
know u(x∗) > 0 (which we have established) and the convexity

u′′(x) = κu(x)(1 + u′(x)2)3/2 ≥ κu(x∗)(1 + u′(x)2)3/2 > 0.

Thus, we have our first lower bound for u:

u(x) > 0 for |x| < r.

It is not a stellar lower bound, but it is a useful one. Before we attempt to
improve our lower bound, let us establish symmetry.

Theorem 24 Any solution of (3.1) satisfies u(−x) = u(x). In particular, if
0 < γ < π/2, then the unique global min occurs at x = 0 with value u(0) > 0.

Proof: As above, we continue to restrict attention to the case 0 < γ < π/2.
We have established the positivity u > 0 and the consequent convexity u′′ > 0
with a unique global interior minimum point x = x∗. Let us assume by way
of contradiction that −r < x∗ < 0. Then the minimum is closer to the left
wall x = −r. We construct another solution of the capillary equation as
follows:

ũ(x) =

{

u(2x∗ − x), −r ≤ x ≤ x∗
u(x), x∗ ≤ x ≤ r.

This is the function obtained by reflecting the values of u to the right of the
minimum across the line x = x∗.

Notice the value ũ(x∗) is well-defined though the cases overlap. We may
conclude from this that ũ ∈ C0[−r, r]. Also, it is clear that u ∈ C2(−r, x∗)∩
C2(x∗, r). We need to determine the regularity at the reflection point x = x∗.

The derivative of ũ at x = x∗ from the right is well-defined and given by

ũ′(x+∗ ) = u′(x∗) = 0.
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The derivative of ũ at x = x∗ from the left is also well-defined and

ũ′(x−∗ ) = −u′(x∗) = 0.

This implies ũ ∈ C1[−r, r]. Similarly,

ũ′′(x+∗ ) = u′′(x∗)

and
ũ′′(x+∗ ) = (−1)(−1)u′′(x∗) = u′′(x∗).

Thus, ũ ∈ C2[−r, r] is a global solution of the 2-D capillary equation.
By the local uniqueness for ODEs, there is some δ > 0 such that

ũ(x) ≡ u(x) for x∗ − δ < x < x∗ + δ.

We define sets

A = {a ∈ [−r, x∗] : ũ(x) = u(x) for a < x ≤ x∗}

and
B = {b ∈ [x∗, r] : ũ(x) = u(x) for x∗ ≤ x < b}.

Letting a0 = inf A and b0 = supB, we see that a0 ∈ A, b0 ∈ B, and,
according to the local existence and uniqueness theorem, there is no other
possiblity than a0 = −r and b0 = r. That is, ũ ≡ u.

In particular, u is symmetric with respect to the line x = x∗ satisfying

u(2x∗ − x) = u(x) for −r ≤ x ≤ 2x∗ + r.

This implies u′(2x∗ + r) = −u′(−r). In particular,

u′(2x∗ + r)
√

1 + u′(2x∗ + r)2
= − u′(−r)

√

1 + u′(−r)2
= cos γ.

Finally, by the convexity u′′(x) > 0 and using our assumption x∗ < 0,

u′(r) > u′(2x∗ + r).

Since the function
f(p) =

p√
1 + p2
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is strictly increasing and well-defined for all p, we conclude

u′(r)
√

1 + u′(r)2
> − u′(2x∗r)

√

1 + u′(2x∗ + r)2
= cos γ.

And this is a contradiction of the right boundary condition. We conclude
x∗ ≥ 0.

Exercise 3.8 Give your own argument (better than mine above) that x∗ ≤ 0.

We conclude that x∗ = 0. The symmetry following from reflection and
the uniqueness theorem for ODEs now implies u(x) = u(−x). �

3.8.1 Comparison to circular arcs

Now things get fun. Let σ : [−1/(κu(0)),−1/(κu(0))] → R by

σ(x) = u(0) +
1

κu(0)
−
√

1

κ2u(0)2
− x2.

It will be noted that the minimum of the 2-D meniscus, which we have
shown to be located at (0, u(0)) with u(0) > 0 determines a radius of cur-
vature according to the equation k = κu(0). That radius is 1/(κu(0)), and
σ determines a lower semi-circular graph tangent to the graph of u at the
minimum of the 2-D meniscus with

(

σ′
√
1 + σ′2

)′
=

σ′′

(1 + σ′2)3/2
≡ κu(0).

We wish to show the following:

1. σ(x) is defined on the entire interval −r < x < r with σ ∈ C2[−r, r],
that is,

1

κu(0)
> r.

2. σ(x) ≤ u(x) for |x| ≤ r with equality only for x = 0.

This is a much nicer lower bound than u(x) > 0. In fact, we already have,
or can easily obtain, something a little better:

u(x) > u(0) > 0 for 0 < |x| ≤ r.
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We also know, and have essentially used, that u′′(x) > 0 for |x| < r, or more
precisely,

u′′(x)

(1 + u′(x)2)3/2
≥ u′′(0)

(1 + u′(0)2)3/2
= κu(0) > 0.

We now sharpen these estimates as follows:

Theorem 25 If u ∈ C2(−r, r) ∩ C1[−r, r] satisfies














(

u′

√
1+u′2

)′
= κu for |x| < r

u′(±r)√
1+u′(±r)2

= ± cos γ,

then

r <
1

κu(0)
,

σ(x) < u(x) for 0 < |x| ≤ r

and
σ′(x) < u′(x) for 0 < x ≤ r.

Proof: We will again use the important fact, mentioned above, that f : R →
(−1, 1) by

f(p) =
p

√

1 + p2
(3.3)

is strictly increasing with f ′(p) > 0. For this argument, let us set

r0 = min

{

r,
1

κu(0)

}

.

If we assume, by way of contradiction that

there is some x0 with 0 < x1 < r0 and u′(x0) ≤ σ′(x0), (3.4)

then by the monotonicity of f we get

f(u′(x0)) =
u′(x0)

√

1 + u′(x0)2
≤ σ′(x0)
√

1 + σ′(x0)2
= f(σ′(x0)).

By the mean value theorem applied to

g(x) =
u′(x)

√

1 + u′(x)2
− σ′(x)
√

1 + σ′(x)2
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which satisfies g(0) = 0 and g(x0) ≤ 0, there is some x1 with 0 < x1 < x0
and g′(x1) ≤ 0. That is,

κu(x1) =
u′′(x1)

(1 + u′(x1)2)3/2
≤ σ′′(x1)

(1 + σ′(x1)2)3/2
= κu(0).

This contradicts our previous result that u(x1) > u(0). We have established,
so far, that

σ′(x) ≤ u′(x) for 0 ≤ x < r0 with equality only for x = 0. (3.5)

Integration now gives

σ(x) ≤ u(x) for 0 ≤ x ≤ r0 with equality only for x = 0.

If we assume

r0 = min

{

r,
1

κu(0)

}

=
1

κu(0)
,

then we find from (3.5)

u′
(

1

κu(0)

)

= lim
xրr0

u′(x) ≥ lim
xրr0

σ′(x) = +∞

which is a contradiction since u ∈ C1[0, r0]. Therefore,

1

κu(0)
> r

and the inequality of (3.5) extends with strict inequality to x = r. �

Nathan Soedjak’s Proof

Here is another, rather more elegant, proof: We know u′(x) > 0 for x > 0,
and this means u(x) > u(0) for x > 0. We then have from the prescribed
curvature equation

κu(0) =

(

σ′(x)
√

1 + σ′(x)2

)′

≤
(

u′(x)
√

1 + u′(x)2

)′

= κu(x)
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for x ≥ 0 with strict inequality for x > 0. If we denote by ψσ the inclination
angle along the graph of σ and recall that

sinψ =
u′√

1 + u′2
,

then integrating from x = 0 to x > 0, we have

sinψσ(x) < sinψ(x).

Since sine is monotone increasing on [0, π/2), we get

0 < ψσ(x) < ψ(x) <
π

2
for 0 < x ≤ r.

Similarly the tangent function is monotone increasing on [0, π/2), so

σ′(x) = tanψσ(x) < tanψ(x) = u′(x) ≤ u′(r) <∞ for 0 < x ≤ r.

This proves all the assertions of Theorem 25 because we also have

σ(x) = σ(0)+

∫ x

0

σ′(t) dt < u(0)+

∫ x

0

u′(t) dt = u(x) for 0 < x ≤ r. �

We have obtained a lower bound on u(r) in terms of a lower semi-circular
arc given by

σ(x) = u(0) +
1

κu(0)
−

√

(

1

κu(0)

)2

− x2.

We have shown, in particular, that the radius of this arc is greater than the
radius r of the tube which means

r <
1

κu(0)
or equivalently u(0) <

1

κr
. (3.6)

Note that this estimate for u(0) is a bound from above. We would really like
to obtain a lower bound for u(0) which tells us the limit of u(0) = u(0; r) as
r tends to zero. In view of the fact that a semi-circular arc lying everywhere
below the graph of u = u(r) gave us the upper bound (3.6) on u(0), it may
not be surprising that a semi-circular arc lying everywhere above the graph
of u will yield a lower bound on u(0). In fact, this will turn out to be the
case.
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Since we are going to consider comparisons of u with other circular arcs,
we henceforth denote the function whose graph is the lower semi-circular arc
above by σ0, so

σ0(x) = u(0) +
1

κu(0)
−

√

(

1

κu(0)

)2

− x2.

Figure 3.1: Upper and Lower Comparison Circles

Other circular arcs

We have obtained one comparison of the 2-D capillarity meniscus with a
circular arc. It follows from this comparison that there holds, in particular,

∫ r

−r

σ(x) dx <

∫ r

−r

u(x) dx.

In order to understand the consequences of this comparison of “raised vol-
umes,” we will calculate the integral on the left explicitly. Since we will make
other comparisons of circular arcs where the same calculation will be used,
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it is convenient to consider the calculation somewhat more generally. Recall
that we have denoted the particular circular comparison arc considered above
by σ0 instead of σ. We now consider the family of all lower circular arcs with
center on the line x = 0 and write each such arc as the graph of a function
σ : [−a, a] → R by

σ(x) = z0 + a−
√
a2 − x2 (3.7)

where a > 0 is the radius of the spherical arc and z0 is the lowest (central)
point. By taking z0 = u(0), we obtain a curve tangent to the capillary
interface. Let us also denote various quantities associated with such a circular
arc by using a subscript σ. The use of this notation should become clear
below. We are primarily interested in the case a ≥ r in which σ is defined
on [−r, r]. In this case,

σ′(r) =
r√

a2 − r2
(3.8)

with

sinψσ(r) =
σ′(r)

√

1 + σ′(r)2
=
r

a
(3.9)

where the quantity ψσ is the inclination angle as a function of x along the
circular arc. The first expression σ′(r) of the inclination is only defined for
a > r, but the second expression sinψσ is defined for a ≥ r. In either case
we see

d

da
σ′(r) = − ar√

a2 − r2
< 0 and

d

da
sinψσ(r) = − r

a2
< 0. (3.10)

That is, the inclination of the circular arc at x = r is decreasing with a with
ψσ(r) = ψσ(r; a) taking the values π/2 at a = r and limiting to ψσ = 0
as a → +∞. The corresponding “contact angle” for the circular arcs with
radius a ≥ r is given by

γσ =
π

2
− ψσ(r).

This is the angle at which the circular arc meets the vertical line x = r
measured from inside the enclosed region {(x, z) : 0 < z < σ(x), |x| < r},
and this angle γσ = γσ(a) increases from 0 (when a = r) to π/2 (when a
tends to +∞).

Recall that the contact angle γ satisfies

γ =
π

2
− ψ(r)
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where ψ = ψ(x) is the inclination angle of the capillary graph as a function
of x given by

(cosψ, sinψ) =

(

1
√

1 + u′(x)2
,

u′(x)
√

1 + u′(x)2

)

.

The semi-circular enclosed region

We now calculate the area of

{(x, z) : 0 < z < σ(x), |x| < r}

under the assumption a ≥ r. On the one hand, we can do this directly by
integration:

∫ r

−r

σ(x) dx = 2

∫ r

0

σ(x) dx

= 2(z0 + a)r − 2

∫ r

0

√
a2 − x2 dx

= 2(z0 + a)r − 2a2
∫ sin−1(r/a)

0

cos2 θ dθ

= 2(z0 + a)r − a2
∫ sin−1(r/a)

0

[1 + cos(2θ)] dθ

= 2(z0 + a)r − a2 sin−1(r/a)− a2
∫ sin−1(r/a)

0

cos(2θ) dθ

= 2(z0 + a)r − a2 sin−1(r/a)− a2

2
sin(2θ)∣

∣

sin−1(r/a)

0

= 2(z0 + a)r − a2 sin−1(r/a)− ar cos(sin−1(r/a))

= 2(z0 + a)r − a2 sin−1
(r

a

)

− r
√
a2 − r2.

We have used the trigonometric substitution x = a sin θ according to which
dx = a cos θ dθ and

√
a2 − x2 = a cos θ. This same value can be obtained

using elementary geometry, which also provides a check on our integration:
The enclosed area above is given by removing the area of the segment

{(x, z) : σ(x) < z < σ(r), |x| < r}
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from the rectangle [−r, r]×[0, σ(r)]. The area of the segment is the area Asector

of the corresponding sector in the circle determined by the angle 2ψσ(r) =
2 sin−1(r/a) with the area of a triangular region of area r

√
a2 − r2 removed:

Asegment = Asector − r
√
a2 − r2 = a2 sin−1

(r

a

)

− r
√
a2 − r2

since
Asector

πa2
=

2ψσ(r)

2π
.

According to this geometric calculation, the area of the enclosed region is

∫ r

−r

σ(x) dx = 2rσ(r)−Asegment

= 2r(z0 + a)− 2r
√
a2 − r2 − a2 sin−1

(r

a

)

+ r
√
a2 − r2

= 2r(z0 + a)− r
√
a2 − r2 − a2 sin−1

(r

a

)

in agreement with our direct calculation by integrating.

We note finally the alternative expression for the area of the segment

Asegment =
a2

2
(2ψσ(r)− sin(2ψσ(r))]

and
∫ r

−r

σ(x) dx = 2r(z0 + a)− a2

2
(2ψσ(r) + sin(2ψσ(r))] .

Applying this discussion to σ0, which gives a circular arc of curvature
κu(0) matching the lowest point on the meniscus, we know

2 cos γ

κ
=

∫ r

−r

u(x) dx (3.11)

>

∫ r

−r

σ0(x) dx

= 2r

(

u(0) +
1

κu(0)

)

− r

√

1

κ2u(0)2
− r2 − 1

κ2u(0)2
sin−1 (rκu(0)) .
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An upper semi-circular arc

We next turn our attention to the lower semi-circular arc determined by σ
with z0 = u(0) and a1 = r/ cos γ > r. Here we are starting with a radius
a = a1 > r, so the extent of domain of

σ1(x) = u(0) +
r

cos γ
−
√

r2

cos2 γ
− x2 (3.12)

is not in question. The relation between the curvature

1

a1
=

cos γ

r

of the circular arc determinded by σ1 and κu(0), however, is not immediately
clear.

Lemma 26 The curvature of the semi-circular arc determined by σ1 with
radius a1 = r/ cos γ satisfies

cos γ

r
> κu(0) or equivalently a1 =

r

cos γ
<

1

κu(0)
(3.13)

where we recall 1/(κu(0)) is the radius of the lower semi-circular arc deter-
mined by σ0.

Proof: Note that a general semi-circular arc with radius a > r determined
by a function σ as given in (3.7) satisfies

sinψσ(r) =
r

a

and computed in (3.9) above. Theorem 25 also gives

0 < ψ0(r) <
π

2
− γ = ψ1(r) = ψ(r) <

π

2

where ψ0 is the inclination of the semi-circular graph determined by σ0 at
x = r. Applying (3.9) to σ0 and σ1 we have

cos γ =
r

a1
= sinψ1(r) > sinψ0(r) = κu(0) r.

It follows then that a1 < 1/(κu(0)) as desired. �
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Finn’s proof of the corresponding result for axially symmetric capillary
surfaces is slightly different. In this case Finn would say

σ′
1(r) = u′(r) > σ′

0(r).

The calculation of σ′ given in (3.8) allows us to write this as

r√
a1 − r2

>
r

√

(

1
κu(0)

)2

− r2
.

Rearranging this inequality gives

a1 <
1

κu(0)

as desired.
A third alternative proof can be based on the general calculation (3.10).

This says the inclination is a decreasing function of a for radii of semi-circular
arcs a > r. Therefore, since r < a1 and r < a0 = 1/(κu(0)) with the
inclination σ′

1(r) = u′(r) > σ′
0(r), or equivalently ψ1(r) = π/2 − γ > ψ0(r)

or, yet again equivalently,

sinψ1(r) = cos γ > sinψ0(r),

it must be the case that a1 < a0 = 1/(κu(0)).

Theorem 27 If σ1 = σ1(x) is given by (3.12) then

σ1(x) > u(x) for 0 < x ≤ r, (3.14)

and
σ′
1(x) > u′(x) for 0 < x < r (3.15)

where u ∈ C2(−r, r) ∩ C1[−r, r] is a solution of the 2-D capillary problem
(3.1). Note that equality holds in (3.15) for x = r.

Will Nute’s Proof: Due to the strict curvature inequality

σ′′
1 (0) =

σ′′
1 (0)

(1 + σ′
1(0)

2)3/2
=

cos γ

r
> κu(0) =

u′′(0)

(1 + u′(0)2)3/2
= u′′(0)



124 CHAPTER 3. 2-D CAPILLARY SURFACES

and the continuity of u′′, there is some ǫ > 0 for which

σ′′
1(x) > u′′(x) for 0 ≤ x < ǫ.

We have then, by integration,

σ′
1(x) = σ′

1(0) +

∫ x

0

σ′′
1(t) dt > u′(0) +

∫ x

0

u′′(t) dt = u′(x)

and consequently

σ1(x) = σ1(0) +

∫ x

0

σ′
1(t) dt > u(0) +

∫ x

0

u′(t) dt = u(x)

for 0 < x ≤ ǫ.
Let us assume

A = {x ∈ (0, r] : σ1(x) ≤ u(x)}
is a non-empty set. The set A is then clearly bounded below by ǫ and has a
positive infimum x1 = inf A. By the definition of the infimum we know

1. σ1(x) > u(x) for 0 < x < x1 with

2. σ1(0) = u(0) and σ1(x1) = u(x1).

It follows from the extreme value theorem that σ1−u has a positive maximum
value on [0, ǫ] at some x0 ∈ (0, ǫ). Furthermore, we know

σ′
1(x0) = u′(x0) and σ′′

1 (x0) ≤ u′′(x0).

This implies the curvature inequality

1

a1
=

σ′′
1(x0)

(1 + σ′
1(x0)

2)3/2
≤ u′′(x0)

(1 + u′(x0)2)3/2
= κu(x0).

On the other hand, we know the curvature of the semi-circular arc remains
constant on the interval [x0, r] while the curvature of the meniscus increases.
That is,

d

dx
(sinψ1(x)) ≡

1

a1
≤ κu(x) =

d

dx
(sinψ(x)) for x0 ≤ x ≤ r
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with strict inequality except possibly at x = x0. Noting also that

sinψ1(x0) =
σ′
1(x0)

√

1 + σ′
1(x0)

2
=

u′(x0)
√

1 + u′(x0)2
= sinψ(x0)

integration gives

sinψ1(x) = sinψ1(x0) +

∫ x

x0

d

dt
(sinψ1(t)) dt

< sinψ(x0) +

∫ x

x0

κu(t) dt

= sinψ(x) for x0 < x ≤ r.

This gives, in particular,

cos γ = sinψ1(r) < sinψ(r) = cos γ

which is a contradiction. This contradiction shows the set A is empty. Con-
sequently, u(x) < σ1(x) for 0 < x ≤ r. �

Exercise 3.9 Will did not prove the inequality between the derivatives, and
it is not entirely clear from Figure 3.1 that this inequality holds. Can you
give a proof/complete the proof of Theorem 27?

The inequality between u and σ1 does imply the inequality for the enclosed
regions/lifted volumes:

2 cos γ

κ
=

∫ r

−r

u(x) dx

<

∫ r

−r

σ1(x) dx

= 2r

[

u(0) +
r

cos γ

]

− r2

cos2 γ

(π

2
− γ
)

− r

√

r2

cos2 γ
− r2

= 2ru(0) +
r2

cos γ

[

2− 1

cos γ

(π

2
− γ
)

− sin γ

]

.

It follows that

cos γ

κr
− r

2 cos γ

[

2− 1

cos γ

(π

2
− γ
)

− sin γ

]

< u(0) <
cos γ

κr
. (3.16)
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We established the last inequality from the simple estimate u(x) ≥ u(0) with
equality only for x = 0 since

2κru(0) < κ

∫ r

−r

u(t) dt =

∫ r

−r

(

u′(t)
√

1 + u′(t)2

)′

dt = 2 cos γ.

Notice that as r ց 0, the estimate (3.16) from below and above on u(0)
implies that u(0) tends to +∞ like cos γ/(κr). More precisely,

cos γ

κr
− u(0) =

∣

∣

∣

cos γ

κr
− u(0)

∣

∣

∣
<

r

cos γ
. (3.17)

There are quite a few more directions to consider with respect to the
comparison of a 2-D capillary meniscus with circular arcs, and I will summa-
rize some of these in the form of exercises below. Before that, however, let’s
consider an alternative proof of Theorem 27.

Finn’s Proof of Theorem 27

Instead of considering the set A in Nute’s proof, Finn considers

C = {c ∈ (0, r] : u(x) < σ1(x) for 0 < x ≤ c}.

He then sets x1 = supC.

Exercise 3.10 Show inf A = supC, so that the value x1 is the same in
Finn’s proof and Nute’s proof.

Finn cannot show C is empty, but he shows x1 = r. Thus, assuming x1 < r,
it is still true that

σ1(x) > u(x) for 0 < x < x1

with equality σ1(x1) = u(x1). He argues then that

ψ1(x1) ≤ ψ(x1). (3.18)

One way to see this is via the difference quotient:

(σ1 − u)′ = lim
hց0

σ1(x1 − h)− u(x1 − h)

−h ≤ 0.
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Thus, σ′
1(x1) ≤ u′(x1) and (3.18) follows from the monotonicity of the func-

tion f = f(p) by

f(p) =
p

√

1 + p2

as noted around (3.3) in the proof of Theorem 25. That is,

sinψ1(x1) ≤ sinψ(x1).

This implies the value of the integral

δ =

∫ x1

0

d

dt
(sinψ(t)− sinψ1(t)) dt

is positive. This implies the integrand must also be somewhere strictly posi-
tive. That is, for some x0 with 0 < x0 < x1

κu(x0) =
d

dx
(sinψ(x))∣

∣

x=x0

>
d

dx
(sinψ1(x))∣

∣

x=x0

=
cos γ

r
.

As in Nute’s proof, the monotonicity of the curvature of the meniscus is now
used: We know that for x > x0

κu(x) =
d

dx
sinψ(x) > κu(x0) >

d

dx
(sinψ1(x)) ≡

cos γ

r
.

Therefore,

0 <

∫ r

x1

d

dt
(sinψ(t)− sinψ1(t)) dt = sinψ(r)− sinψ1(r)− δ = −δ < 0.

Here the contradiction implies x1 = r. �

It should perhaps be said that this proof of Finn’s was adapted from his
proof of a nominally more difficult result (page 20), however, I believe Will
Nute’s approach (which seems to be somewhat more straightforward) will
also work in that more complicated context. This needs to be checked.

Here are a couple exercises indicating further directions in the comparison
of 2-D capillary graphs with circular arcs. Both are, at some level, aimed at
improving the basic estimate (3.16).
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Exercise 3.11 We have shown σ1(x) > u(x) for 0 < x ≤ r. We also know
the curvature of the circular arc determined by σ1 is strictly greater than the
curvature κu(0) of the meniscus interface at its lowest point. This means
that if the radius of a circular arc given by

σ(x) = u(0) + a−
√
a2 − x2

is increased to a value a slightly greater than a1 = r/ cos γ, then by continuity,
it will still be true that σ(x) > u(x) for 0 < x ≤ r. If we let a2 be the
supremum of radii for which this is the case, i.e., for which

σ(x) = u(0) + a−
√
a2 − x2 > u(x) for 0 < x ≤ r,

then show

σ2(x) = u(0) + a2 −
√

a22 − x2

satisfies
σ2(x) > u(x) for 0 < x < r

with σ2(r) = u(r). What does this tell you about the comparison of σ′
2(x)

with u′(x) for 0 < x < r?

Exercise 3.12 Does the circular arc from Exercise 3.11 give any improve-
ment in regard to the estimation of u(0)? Does it tell you something about
u(r)?

Exercise 3.13 We have obtained above the inequality

2 cos γ

κ
> 2r

(

u(0) +
1

κu(0)

)

− r

√

1

κ2u(0)2
− r2 − 1

κ2u(0)2
sin−1 (rκu(0)) .

See (3.11). What does this inequality tell you about u(0)? In particular, does
it give an improvement of the upper bound in (3.16)?
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Asymptotics for u(0)

In regard to Exercise 3.13, we can attempt to follow Finn’s approach to the
3-D axially symmetric central rise height estimate. This would be along the
following lines:

Observe

cos γ

κr
>

u(0) +
1

κu(0)
− 1

2

[√

1

κ2u(0)2
− r2 +

1

rκ2u(0)2
sin−1 (rκu(0))

]

. (3.19)

We can write this as
cos γ

κr
> F

(

u(0),
1

κu(0)

)

where

F (z, a) = z + a− 1

2

[√
a2 − r2 +

a2

r
sin−1

(r

a

)

]

.

We also consider Φ : [u(0), 1/(κr)] → R by

Φ(z) = F

(

z,
1

κz

)

= z +
1

κz
− 1

2

[

√

1

κ2z2
− r2 +

1

rκ2z2
sin−1 (rκz)

]

.

We claim first that

Φ(u(0)) <
cos γ

κr
< Φ

(

1

κr

)

.

The first inequality is just (3.19) which follows from the comparison of en-
closed areas involving σ0 and u. For the inequality on the right, we observe

Φ

(

1

κr

)

=
1

κr
+ r − r

2

[

sin−1 (1)
]

=
1

κr
+ r

[

1− π

4

]

.

Since 1/(κr) > cos γ/(κr) and 1−π/4 > 0, the inequality on the right holds.
Next we claim Φ′(z) > 1 for u(0) ≤ z < 1/(κr) with

lim
zր1/(κr)

Φ′(z) = 1 + κr[sin−1(r)− r].
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To see this, note that

Φ′(z) =
∂F

∂z
− 1

κz2
∂F

∂a
= 1− 1

κz2
∂F

∂a

where
∂F

∂a
=
∂F

∂a

(

z,
1

κz

)

= p

(

1

κz

)

and p : (r, 1/(κu(0))] → R by

p(a) = 1− 1

2

[

a√
a2 − r2

+
2a

r
sin−1

(r

a

)

− a√
a2 − r2

]

= 1− a

r
sin−1

(r

a

)

= 1− sin−1(t)/t. (3.20)

Since

lim
tց0

sin−1(t)

t
= lim

tց0

1√
1− t2

= 1 and sin−1(t) > t for 0 < t < 1,

we see p < 0 and Φ′ > 1. The limiting value follows simply from substitution
since the expression in (3.20) is nonsingular at a = r.

We have shown there exists a unique value z∗ for which

Φ(z∗) = z∗ +
1

κz∗
− 1

2

[√

1

κ2z2∗
− r2 +

1

rκ2z2∗
sin−1 (rκz∗)

]

=
cos γ

κr
. (3.21)

We know also from the monotonicity that

u(0) < z∗.

We claim also that

Φ
(cos γ

κr

)

>
cos γ

κr
. (3.22)

And this means

u(0) < z∗ <
cos γ

κr
.
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To see (3.22) we can compute

Φ
(cos γ

κr

)

=
cos γ

κr
+

r

cos γ
− r

2 cos γ

[

sin γ +
1

cos γ
sin−1 (cos γ)

]

=
cos γ

κr
+

r

2 cos γ

[

2− sin γ − 1

cos γ

(π

2
− γ
)

]

=
cos γ

κr
+

r

4 cos2 γ
[4 cos γ − sin(2γ)− π + 2γ] .

Introducing the function p : [0, π/2] → R by

p(γ) = 4 cos γ + 2γ − sin(2γ)− π,

we see
p(0) = 4− π > 0; p

(π

2

)

= 0,

and
p′(γ) = −4 sin γ + 2− 2 cos(2γ),

so that
p′(0) = 0 and p′

(π

2

)

= 0.

Now if we assume p′(γ) = 0 for any γ ∈ (0, π/2), then we know there are two
values γ1 and γ2 with 0 < γ1 < γ2 < π/2 and p′′(γ1) = 0 = p′′(γ2). But

p′′(γ) = 4(sin(2γ)− cos γ) = −4 cos γ(1− 2 sin γ),

and cos γ 6= 0 for 0 < γ < π/2 and 1 − 2 sin γ = 0 only for γ = π/6, so
there are not two distinct arguments γ where p′′ vanishes, and p′(γ) < 0 for
0 < γ < π/2. This implies p(γ) > 0 for 0 ≤ γ < π/2 and, in particular,

Φ
(cos γ

κr

)

=
cos γ

κr
+

r

4 cos2 γ
p(γ) >

cos γ

κr
.

We have established the following result:

Theorem 28 If κ > 0 and γ ∈ (0, π/2) are given and fixed and u ∈
C2(−r, r) ∩ C1[−r, r] is a solution of (3.1), then

cos γ

κr
− r

2 cos γ

[

2− 1

cos γ

(π

2
− γ
)

− sin γ

]

< u(0) < z∗ <
cos γ

κr

where z∗ is determined uniquely by the equation

z∗ +
1

κz∗
− 1

2

[√

1

κ2z2∗
− r2 +

1

rκ2z2∗
sin−1(rκz∗)

]

=
cos γ

κr
.
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The estimate from below in Theorem 28 tells us that both u(0) and z∗ tend
to infinity as r tends to zero. We have furthermore an estimate on how much
these values can differ from each other and from the growth term

cos γ

κr
.

In particular, we know

0 <
cos γ

κr
− z∗ <

cos γ

κr
− u(0) <

r

2 cos γ

[

2− 1

cos γ

(π

2
− γ
)

− sin γ

]

.

We seek now to improve this estimate.
The following approach is called formal asymptotic expansion. We

assume u(0) and z∗ can be written in the following forms

u(0) =
cos γ

κr
+

∞
∑

j=0

ajr
j and z∗ =

cos γ

κr
+

∞
∑

j=0

bjr
j.

Under this assumption, our estimate above already tells us that we must
have a0 = b0 = 0. Thus, we start with

u(0) =
cos γ

κr
+

∞
∑

j=1

ajr
j and z∗ =

cos γ

κr
+

∞
∑

j=1

bjr
j. (3.23)

Let us consider only z∗. In fact, it is not difficult to implement a numerical
rootfind algorithm to obtain values of z∗ = z∗(r); see Figure 3.2.

Under the formal assumption (3.23), the defining equation for z∗ can be
written as ∞

∑

j=1

bjr
j +

1

κ
T1 −

1

2
T2 −

1

2
T3 = 0

where

T1 = z−1
∗ =

(

cos γ

κr
+

∞
∑

j=1

bjr
j

)−1

,

T2 =

√

1

κ2
T 2
1 − r2,

T3 =
1

rκ2
T 2
1 P,
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Figure 3.2: Asymptotic approximation of u(0). (The computation for this
figure was with κ = 1 and γ = π/4.)

T 2
1 =

(

cos γ

κr
+

∞
∑

j=1

bjr
j

)−2

,

and

P = sin−1

(

cos γ + rκ
∞
∑

j=1

bjr
j

)

.

In analyzing/expanding the terms T1, T2, and T3 a couple preliminary com-
ments may be useful. First, we will use the “big O” notation as follows:

∞
∑

j=1

bjr
j = b1r +O(r2) = b1r + b2r

2 +O(r3) = · · · =
k
∑

j=1

bjr
j +O(rj+1)

where O(rk) may be read as “terms of order k and higher.” Technically,
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O(rk) represents a function of r having the property that

O(rk)

rk
is bounded.

That is, there exists a constant C independent of r for which
∣

∣

∣

∣

O(rk)

rk

∣

∣

∣

∣

≤ C.

Thus,

lim
r→0

O(rk)

rk−1
= 0.

This kind of condition can also be expressed with the “small O” notation, so
that o(rk) represents some function of r for which

lim
r→0

o(rk)

rk
= 0.

We will also use power series expansions and a generalized binomial expansion
in particular. Thus, for a real analytic function of x expanded at x = x0, we
can write

f(x) =
∞
∑

j=0

f (j)(x)

j!
(x− x0)

j

and

(a + b)p = ap +

∞
∑

j=1

p(p− 1)(p− 2) · · · [p− (j − 1)]

j!
ap−jbj .

Taking p = −1 in this last formula, we get

T1 =

(

cos γ

κr
+

∞
∑

j=1

bjr
j

)−1

=
κr

cos γ
− κ2r2

cos2 γ

∞
∑

j=1

bjr
j +

(−1)(−2)

2!

κ3r3

cos3 γ

( ∞
∑

j=1

bjr
j

)2

+O(r7)

=
κr

cos γ
− b1

κ2r3

cos2 γ
− b2

κ2r4

cos2 γ
+

(

b21
κ3

cos3 γ
− b3

κ2

cos2 γ

)

r5

+

(

2b1b2
κ3

cos3 γ
− b4

κ2

cos2 γ

)

r6 +O(r7).
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Similarly, taking the power p = −2 in the generalized binomial expansion,
we get

T 2
1 =

(

cos γ

κr
+

∞
∑

j=1

bjr
j

)−2

=
κ2r2

cos2 γ
− 2

κ3r3

cos3 γ

∞
∑

j=1

bjr
j +

(−2)(−3)

2!

κ4r4

cos4 γ

( ∞
∑

j=1

bjr
j

)2

+O(r8)

=
κ2r2

cos2 γ
− 2b1

κ3r4

cos3 γ
− 2b3

κ3r5

cos3 γ
+

(

3b21
κ4

cos4 γ
− 2b3

κ3

cos3 γ

)

r6 +O(r7).

From this expansion and using the power p = 1/2 we obtain

T2 =

√

1

κ2
T 2
1 − r2

=
1

κ

(

κ2 tan2 γ r2 − 2b1
κ3r4

cos3 γ
− 2b3

κ3r5

cos3 γ
+O(r6)

)1/2

=
1

κ

(

κ tan γ r − cot γ

κr

(

b1
κ3r4

cos3 γ
+ b3

κ3r5

cos3 γ

)

+

(

(1/2)(−1/2)

2

cot3 γ

κ3r3
O(r8)

)

+O(r5)

= tan γ r − cot γ

κ2r

(

b1
κr4

cos3 γ
+ b3

κ3r5

cos3 γ

)

+O(r5)

= tan γ r − b1
κ2r3

cos2 γ sin γ
− b3

κr4

cos2 γ sin γ
+O(r5).

Next, we use the Taylor expansion for sin−1(x) with center at x = cos γ to
obtain the expansion for P . Recall that sin−1(cos γ) = π/2−γ and note that

(sin−1)′(x) =
1√

1− x2
, (sin−1)′′(x) =

x

(1− x2)3/2
,

(sin−1)′′′(x) =
2x2 + 1

(1− x2)5/2
, and (sin−1)′′′′(x) =

3x(2x2 + 3)

(1− x2)7/2
,
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so that

(sin−1)′(cos γ) = csc γ,

(sin−1)′′(cos γ) = cot γ csc2 γ,

(sin−1)′′′(cos γ) = (2 cos2 γ + 1) csc5 γ = (3 cot2 γ + 1) csc3 γ, and

(sin−1)′′′′(cos γ) = 3 cos γ(5 cos2 γ + 3 sin2 γ) csc7 γ = 3 cot γ(5 cot2 γ + 3) csc4 γ,

and

sin−1(x) =
π

2
− γ + csc γ(x− cos γ) +

cos γ csc2 γ

2
(x− cos γ)2

+
1

3!
(sin−1)′′′(cos γ)(x− cos γ)3 +

1

4!
(sin−1)′′′′(cos γ)(x− cos γ)4

+O(x− cos γ)5.

This gives

P = sin−1(κrz∗)

= sin−1

(

cos γ + rκ

∞
∑

j=1

bjr
j

)

=
π

2
− γ + cos γ rκ

∞
∑

j=1

bjr
j +

cos γ csc2 γ

2

(

rκ

∞
∑

j=1

bjr
j

)2

+
1

3!
(sin−1)′′′(cos γ)

(

rκ
∞
∑

j=1

bjr
j

)3

+
1

4!
(sin−1)′′′′(cos γ)

(

rκ
∞
∑

j=1

bjr
j

)4

+O(r4)

=
π

2
− γ + κ cos γ b1r

2 + κ cos γ b2r
3

+

(

κ cos γ b3 + κ2
cos γ csc2 γ

2
b1

)

r4 +O(r4)

=
π

2
− γ + κ cos γ b1r

2 + κ cos γ b2r
3 +O(r4).
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Thus,

T3 =
1

rκ2
T 2
1 P

=
1

rκ2

(π

2
− γ + κ cos γ b1r

2 + κ cos γ b2r
3 +O(r4)

)

(

κ2r2

cos2 γ
− 2b1

κ3r4

cos3 γ
− 2b3

κ3r5

cos3 γ
+

(

3b21
κ4

cos4 γ
− 2b3

κ3

cos3 γ

)

r6 +O(r7)

)

=
(π

2
− γ + κ cos γ b1r

2 + κ cos γ b2r
3 +O(r4)

)

(

r

cos2 γ
− 2b1

κr3

cos3 γ
− 2b3

κr4

cos3 γ
+

(

3b21
κ2

cos4 γ
− 2b3

κ

cos3 γ

)

r5 +O(r6)

)

=
1

cos2 γ

(π

2
− γ
)

r + b1

(

κ

cos γ
− 2

κ

cos3 γ

(π

2
− γ
)

)

r3

+

(

b2
κ

cos γ
− 2b3

κ

cos3 γ

(π

2
− γ
)

)

r4 +O(r5).

Returning to the defining equation
∞
∑

j=1

bjr
j +

1

κ
T1 −

1

2
T2 −

1

2
T3 = 0

we have
(

b1 +
1

cos γ
− tan γ

2
− 1

2 cos2 γ

(π

2
− γ
)

)

r + b2r
2

+

(

b3 + b1
κ

cos2 γ
+ b1

κ2

2 cos2 γ sin γ
− b1

κ

2 cos γ

(

1− 2

cos2 γ

(π

2
− γ)

)

))

r3

+O(r4) = 0.

Equating coefficients, we find

b1 =
1

2 cos γ

(

sin γ +
1

cos γ

(π

2
− γ
)

− 2

)

,

b2 = 0, and

b3 =
κ

2 cos2 γ

(

cos γ − 2

cos γ

(π

2
− γ
)

− κ

sin γ
− 2

)

b1

=
κ

4 cos3 γ

(

2 +
2

cos γ

(π

2
− γ
)

+
κ

sin γ
− cos γ

)(

2− 1

cos γ

(π

2
− γ
)

− sin γ

)

> 0.
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It will be noted, first of all, that the formal coefficient b1 matches the coeffi-
cient of r appearing in the lower bound for u(0) in Theorem 28. In particular,
we have confirmed that the formal expansion for u(0) should also have this
coefficient for the first order term. The same comment applies to the (zero)
coefficent of r2. In particular, substituting the formal expansion for z∗ into
the estimate of Theorem 28 we obtain the formal improvement

L1(r) < u(0) < L1(r) +O(r3)

where

L1(r) =
cos γ

κr
− r

2 cos γ

[

2− 1

cos γ

(π

2
− γ
)

− sin γ

]

.

We have not shown, in fact, either that the expansion of z∗ is valid (even to
first order) nor that this estimate holds. I believe it is a correct estimate,
however, and can be shown. This belief is based on the assumption that there
is a valid and complete asymptotic expansion1 and that if there is a valid
asymptotic expansion, it must agree with the formal asymptotic expansion
obtained above.

Exercise 3.14 Show carefully with estimates that we do have a valid zero
order asymptotic expansion so that

0 <
cos γ

κr
− u(0) = O(r)

and
0 <

cos γ

κr
− z∗ = O(r).

In particular, u(0) ∼ cos γ/(κr)+ a0 and b∗ ∼ cos γ/(κr)+ b0 with a0 = b0 =
0.

3.15 Parametric Solutions

An important fact from the theory of elementary ODEs is that any (regular)
ODE is equivalent to a first order system of ODEs. There are various ways

1This is almost certainly true as it is true for the 3-D axially symmetric capillary
problem. The full asymptotic expansion in the 3-D axially symmetric case was obtained
by Erich Miersemann. He also obtained his result for every value of

√

x2 + y2, depend-

ing on
√

x2 + y2. This expansion is not in Finn’s book. It is/should be in the papers
of Miersemann, though I have not read them in detail. I also have lecture notes from
Miersemann.
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one can write down a system equivalent to the 2-D capillary interface equation
(

u′√
1 + u′2

)′
= κu.

One way was discussed in Exercise 1.13(b) where the first equation is u′ = v,
and the second equation is

v′ = κu(1 + v2)3/2.

We consider next two crucial observations:

1. If one writes the 2-D capillary interface equation as a system of equa-
tions in a way that allows parametric curves for solutions (instead of
just graphs), then one finds there are such solutions. These solutions
contain the graphs we have considered above, and they offer a perspec-
tive on those graphs which can be extremely useful in various ways.

2. The condition on a curve that its signed curvature is a linear function
of height makes perfectly good sense for parametric curves.

Just to be clear, when we talk about a parametric curve we mean a
curve which may not project simply as a graph. We have considered semi-
circular graphs given as

σ(x) = z0 + a−
√
a2 − x2

above. But as curves of constant curvature, it is much more natural to
consider circles as parametric curves with a parameterization along the
lines of

α(θ) = a(cos θ, sin θ). (3.24)

Any parameterization α : (a, b) → R2 of a planar curve is said to be nonsin-
gular if the “velocity” vector α′ does not vanish. And any such curve may
be reparameterized by arclength. If a nonsingular curve α has parameter
t ∈ (a, b), then the arclength can be written as

s =

∫ t

t0

|α′(τ)| dτ. (3.25)

Interpreting this integral in terms of speed (with time parameter t) and a
Riemann sum, it is a manifestation of the familiar formula

(rate) × (time) = (distance)
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where s is the “distance” (traveled by a point moving along the curve). The
identity (3.25) moreover may be interpreted in two important ways. First,
we can think of (3.25) as defining s as a function of the parameter t. From
this point of view, the fundamental theorem of calculus tells us

ds

dt
= |α′(t)| > 0.

Having made this observation, we see s = s(t) is an invertible function.
(Any real valued function which has a positive derivative on an interval is
increasing and has an increasing inverse.) Let us denote the co-domain of
s = s(t) by (−ℓ,m) where one or both of ℓ and m may be +∞. Then we
have an inverse function t : (−ℓ,m) → (a, b) giving the time required to
travel along the curve a “distance” s ∈ (−ℓ,m) (where distance, of course,
can be positive or negative to indicate direction starting from t0). This is
the second way to interpret (3.25): We can think of

s =

∫ t

t0

|α′(τ)| dτ

as defining t = t(s). Then using the fundamental theorem of calculus and
the chain rule, we find

1 = |α′(t)| dt
ds
,

so
dt

ds
=

1

α′(t)
. (3.26)

It is from this second interpretation that we can obtain a parameterization
by arclength of a nonsingular curve. This works as follows: We define a
new parameterization γ : (−ℓ,m) → R2 given by

γ(s) = α(t(s)).

Now by the chain rule and (3.26) we find

γ̇(s) =
α′

|α′| (3.27)

which is a unit vector corresponding to the fact that α is a unit speed pa-
rameterization (as expected).
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There are couple technicalities to note here. Technically, we should use
different symbols to denote “s the arclength function” and “s the arclength
parameter,” but we’re using the same symbol for both of them (and hoping
context will tell us what we mean, or at least that there is not too much
confusion as a result. In particular, it should be noted that when we write

ds

dt
= |α′|

we have α′ = α′(t), so the independent parameter t is appearing on the right.
When we write

dt

ds
=

1

|α′|
then α′ = α′(t) = α′(t(s)), and we are looking at a fundamentally implicit
formula. In particular, it may not always be possible to write down an explicit
formula expressing the function t = t(s) appearing in the limit of integration
in (3.25).

Exercise 3.16 Reparameterize the circle defined in (3.24) in terms of ar-
clength.

The use of a “dot” to denote derivatives with respect to arclength, as opposed
to a “prime” for derivatives with respect to some other parameter, as in (3.27)
is intended to help mitigate the confusion between these parameters.

Applying this discussion to a 2-D capillary graph given by u = u(x), let
us attempt to write such a graph as a parameterized curve γ(s) = (x(s), z(s))
in terms of an arclength parameter. In fact, the parameterization α(x) =
(x, u(x)) is nonsingular since α′ = (1, u′) does not vanish. In view of the
relation

z(s) = u(x(s))

we have ż = u′(x(s)) ẋ, so γ̇ = ẋ(1, u′(x)), and we obtain the relation

ẋ =
1

√

1 + u′(x)2

as long as ẋ > 0. This means

γ̇ = (ẋ, ż) =

(

1
√

1 + u′(x)2
,

u′(x)
√

1 + u′(x)2

)

.
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It will be observed that everything we have obtained so far applies to any
graph. At this point, we may introduce the inclination angle ψ as a third
dependent variable and eliminate u using the 2-D capillary equation to obtain







ẋ = cosψ
ż = sinψ

ψ̇ = κz.
(3.28)

The last equation involves a function ψ = ψ(s) having the same name as the
non-parametric inclination ψ = ψ(x) considered above, but considered as a
function of the arclength parameter. To obtain the third equation completing
this parametric system, it may be useful to temporarily use different symbols
for these two functions. Let us denote the new inclination angle (as a function
of arclength appearing in (3.28) by Ψ = Ψ(s). Then we have the relation
Ψ(s) = ψ(x(s)). Thus,

Ψ̇ = ψ′(x(s)) ẋ = ψ′(x(s)) cosψ(x(s)) = ψ′(x(s)) cosΨ(s).

In order to determine the value of ψ′(x(s)), we can simply recall that

d

dx
(sinψ(x)) = κu(x)

and observe

d

dx
(sinψ(x)) = cosψ(x)

d

dx
ψ(x) = cosψ(x)ψ′(x).

In particular,

cosψ(x(s))ψ′(x(s)) = cosΨ(s)ψ′(x(s)) = κu(x(s)) = κz(s).

Having made this calculation and obtained (3.28), it turns out this system
essentially supersedes the non-parametric version of the capillary equation,
so it is convenient to adopt the symbol ψ for the parametric inclination
ψ = ψ(s) and sometimes (if not henceforth) use a different symbol for the
non-parametric inclination angle if a distinction needs to be made.

Since we’re on this topic of symbols, it may be pointed out that we are
intending to use the symbol x for the horizontal component x = x(s) along a
2-D capillary interface/interfacial curve. We will continue, for the most part,
to use the same symbol for the independent horizontal variable x, again,



3.18. SOLVING THE ODE 143

hoping the context will make clear the role played by this particular abused
symbol.

The 2-D capillary graphs considered above (in the 2-D capillary tube
problem) are distinguished among the solutions of (3.28) by the appended
initial values







ẋ = cosψ, x(0) = 0
ż = sinψ, z(0) = z0
ψ̇ = κz, ψ(0) = 0.

(3.29)

It may be observed that beginning with the arclength s = 0 at the central
meniscus point (0, u(0)) = (0, z0) is natural but also somewhat arbitrary.

Exercise 3.17 Write down the initial value problem for (3.28) with s = 0
corresponding to the left point (−r, u(−r)) or the right point (r, u(r)).

It should be immediately remarked that we have not discussed existence
and uniqueness for the 2-D capillary boundary value problem. We have
mostly assumed the existence of solutions and attempted to obtain conse-
quences of that existence. We do have (at least) local existence and unique-
ness for the system (3.28) and for the system (3.29) in particular. If local
solutions of (3.29) around s = 0 extend to global solutions giving graphs that
solve (3.1) remains to be seen.

3.18 Solving the ODE

The following is generally not the most useful direction for solving the 2-
D capillary equation, but it is suggestive that an explicit solution of some
form should be available. Also, this approach may have some interesting
consequences/uses, and I have not seen it elsewhere, and I think it provides
a kind of nice introduction. If we start with

u′′

(1 + u′2)3/2
= κu

we can multiply both sides by u′ and write

u′

(1 + u′2)3/2
u′′ = κuu′ =

κ

2
(u2)′.
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Integrating, say from x = 0 where u = u(0) and u′(0) = 0, we get

∫ u′

0

t

(1 + t2)3/2
dt =

κ

2
[u2 − u(0)2]

or using the change of variables v = 1 + t2,

∫ 1+u′2

1

v−3/2 dv = −2

[

1√
1 + u′2

− 1

]

= κ[u2 − u(0)2].

From this we obtain

1√
1 + u′2

= 1− κ

2
[u2 − u(0)2] = p(u)

where p(u) = −κu2/2 + 1 + κu(0)2/2 is an even quadratic polynomial in u.
Rearranging this equation we find

p
√

1− p2
u′ = ±1

or
∫ u

u(0)

p(t)
√

1− p(t)2
dt = ±x.

Thus, we see u = u(x) is given implicitly in terms of the function

g(u) =

∫ u

u(0)

p(t)
√

q(t)
dt

where q is the even quartic polynomial q(t) = 1 − p(t)2. Functions having
the form of g are called elliptic integrals. Here is some background:

Elliptic Integrals

You may remember from calculus that there are certain integrals expressible
in terms of “elementary functions.” Elaborating on this observation a little,
every polynomial p = p(x) has an antiderivative

P (x) =

∫ x

a

p(t) dt
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which is also a polynomial. In particular, of we let P = R[x] denote the ring
of polynomials with real coefficients, then P is a vector space over R, and
differentiation

d

dx
: P → P

is a linear function with null space the collection C of polynomials of order
zero (the constants). We can consider the quotient space P/C and differen-
tiation induces a vector space isomorphism

d

dx
: P/C → P

with inverse given essentially by antidifferentiation (indefinite integration).
The relation between differentiation and integration as operations on sets of
functions is not quite so tidy if we move beyond the class of polynomials.
In particular, we know that integration of the rational function f(x) = 1/x
involves something essentially new:

∫ x

1

1

t
dt = ln x. (3.30)

With the addition of this new antiderivative, we can integrate many, but not
all, rational functions

f(x) =
p(x)

q(x)

where p, q ∈ P. In particular, we can integrate any rational function with
denominator q = q(x) which factors as a product of affine polynomials:

q(x) = an(x− x1)(x− x2) · · · (x− xn).

In fact, if we allow complex roots, then the fundamental theorem of algebra
tells us every such polynomial factors this way. But that is moving on to C[x]
the ring of polynomials with complex coefficients. In that ring, in fact, all
rational functions can be integrated using ln : L → C, but this logarithm is a
somewhat different animal from the one defined in (3.30). In particular, the
domain L of the complex logarithm is a Riemann surface, and understanding
this, in itself, requires the use of a new real (and transcendental) function.

Returning to P = R[x], the trouble is irreducible quadratic factors:

1

x2 − 1
=

1

2

[

1

x− 1
− 1

x+ 1

]

=
d

dx

(

1

2
ln(x− 1)

)

− d

dx

(

1

2
ln(x+ 1)

)

(3.31)
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at least as long as x > 1, but
∫ x

0

1

t2 + 1
dt = tan−1(x),

and this is something new.

Exercise 3.19 What is the antiderivative of 1/(x2 − 1) if |x| < 1. What
about when x < −1? How would the plot of

(

d

dx

)−1(
1

x2 − 1

)

look in R/C where R is the ring of rational functions f(x) = p(x)/q(x) with
p, q ∈ P and C is still the subspace of constant valued functions? Notice
these rational functions have singularities; that is to be expected.

In some ways the irreducible quadratic case is the nicer of the two. There is
no singularity in the arctangent function.

Figure 3.3: The graphs of tan−1(x) and its derivative.

With these two new functions, we can make two new vector spaces:

Vln =

{

k
∑

j=1

aj ln |f(x)| : f ∈ R, a1, a2, . . . , ak ∈ R

}

and

Varctan =

{

k
∑

j=1

aj tan
−1 f(x) : f ∈ R, a1, a2, . . . , ak ∈ R

}

.
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In each case, we are taking all finite linear combinations in the ring of func-
tions with isolated singularities containing the rational functions R. Note
that Vln and Varctan are not rings themselves because they are not closed
under multiplication, but they are subspaces in the function ring and they
intersect with each other and with R in the subring C. Finally, taking the
subspace of all finite linear combinations of functions fromR, Vln, and Varctan,
we get a subspace

T = {
k
∑

j=1

ajfj(x) : f1, f2, . . . , fk ∈ R ∪ Vln ∪ Varctan, a1, a2, . . . , ak ∈ R},

and
d

dt
: T /C → R

is a vector space isomorphism with inverse given by antidifferentiation. In
short, you can integrate all rational functions in terms of rational functions
and the compositions of the logarithm and arctangent with rational functions.

At some point one realizes this approach can be extended even further.
For example,

∫ x

0

1√
1 + t2

dt = ln
(

x+
√
x2 + 1

)

,

and in fact (though it’s not so obvious) a rather nice “closed system of inte-
gration” is obtained by considering

d

dt
: T root/C → Rroot

where
Rroot = {f(x,

√

q(x)) : f ∈ R2, q ∈ P, deg(q) ≤ 2},

R2 =

{

P (x, y)

Q(x, y)
: P,Q ∈ P2 = R[x, y]

}

,

and

T root = {
k
∑

j=1

ajfj(x) : f1, f2, . . . , fk ∈ Rroot∪Vroot
ln ∪Vroot

arctan, a1, a2, . . . , ak ∈ R}.

In words, R2 is the ring of rational functions in two variables, Rroot is ob-
tained by substituting the square root of a quadratic (or lower degree) poly-
nomial in for the second variable, and T root is the span of rational functions
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in x and
√

q(x) along with the composition spaces

Vroot
ln =

{

k
∑

j=1

aj ln |f(x)| : f ∈ Rroot, a1, a2, . . . , ak ∈ R

}

and

Vroot
arctan =

{

k
∑

j=1

aj tan
−1 f(x) : f ∈ Rroot, a1, a2, . . . , ak ∈ R

}

.

The integration required at this point is covered in a standard elementary
calculus course. In practice, there may be some functions in Rroot which
calculus students will have trouble integrating, but in principle, all tech-
niques required to find an antiderivative of such a function in T root are in
the elementary texts. The structure described above is somewhat obscured
in elementary calculus courses due to the natural introduction of other tran-
scendental functions for convenience. For example, it is very natural to define

sin−1 x =

∫ x

0

1√
1− t2

dt

with derivative included in our class Vroot. It may also be noted that this
construction takes us out of the ring of functions with isolated singularities
as

f(x) =
1√
x− a

has natural domain x > a. But aside from being careful about taking square
roots of negative numbers, antiderivatives can be found using the three kinds
of functions: rational functions of x and

√

q(x) where deg q(x) ≤ 2 and
compositions of the logarithm and arctangent on these functions.

What is usually not considered in elementary calculus is the possibility of
generally allowing the square root of a polynomial with degree greater than
two. It seems to be Legendre who first realized that if we invite the indefinite
integrals

∫ t

f(t,
√

q(t)) dt

with f ∈ R2 = R[x, y] and q ∈ P with deg q(x) ≤ 4 to the party, then we
can again achieve a closed system of integration with the introduction of a
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relatively small collection of additional “standard” indefinite integrals. By
way of review: We start with rational functions R2 in two variables as a base,
then we consider functions of the form

f(x,
√

q(x)) (3.32)

with f ∈ R2 and q = q(x) a quartic (or lower degree) polynomial. In order to
find an antiderivative for such a function we will need the rational functionsR
in one variable and, more generally, functions with the form of the integrand
(3.32), that is, functions in

Rroot = {f(x,
√

q(x)) : f ∈ R2, q ∈ P, deg(q) ≤ 4}.

We will also need the standard indefinite integrals

ln x =

∫ x

1

1

t
dt and tan−1(x) =

∫ x

0

1

t2 + 1
dt

and compositions of these with functions inRroot, our new class of integrands.
Finally, we need the following: For 0 < m < 1,

F (x
∣

∣m) =

∫ x

0

1
√

(1− t2)(1−mt2)
dt.

This is the elliptic integral of the first kind. You can think of it as a
generalization of the arcsin which is precisely what you get when m = 0.
The quarter period F (1

∣

∣m) of the inverse sn = sn(t
∣

∣m) is different from π/2
when m 6= 0.

Exercise 3.20 Show π/2 < F (1
∣

∣m) < ∞ for 0 < m < 1. Show the inverse
of F extends to a well-defined smooth (real analytic) function sn : R →
[−1, 1]. Hint: When the inverse is considered, the parameter m is fixed, but
indeed sn = sn(y

∣

∣m). Once you have obtained an extension sn ∈ C1(R), it
may be helpful to note that there exists a function cn : [0, F (1

∣

∣m)] → [−1, 1]
defined by

cny =
√

1− sn2y.

Furthermore, cn = cn(y
∣

∣m) has an extension cn ∈ C1(R) such that the pair
of functions (sn, cn) satisfies the IVP

{

sn′ = cn
√
1−m sn2, sn(0) = 0

cn′ = −sn
√
1−m sn2, cn(0) = 1.
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Incidentally, the function dn : R → [
√
1−m, 1] defined by

dny =
√

1−m sn2y

also satisfies dn ∈ C1(R) and the IVP above can be extended to include this
third elliptic function.

Also for 0 < m < 1,

E(x
∣

∣m) =

∫ x

0

√
1−mt2√
1− t2

dt.

This is the elliptic integral of the second kind. The notation is a lit-
tle weird with the “

∣

∣ ” separating the arguments instead of a comma or
semicolon, but it is standard. The elliptic integral of the second kind has
properties somewhat similar to the elliptic integral of the first kind but, as
you can see from the formula, it is a different function, and you need both
kinds of get a closed system of integration.

Exercise 3.21 Show 0 < E(1
∣

∣m) < π/2 for 0 < m < 1.

We also need one more function (or one more kind of function). These are,
you might guess, the elliptic integrals of the third kind. For 0 < n, k < 1,

Π(n; x
∣

∣m) =

∫ x

0

1

1− nt2
1

√

(1−mt2)(1− t2)
dt.

These three kinds of functions are “standard” in the sense that their values
are tabulated and available in standard mathematical software; many of thier
properties are known like the properties of arcsin and arccosine are known.

At this point, however, let us return to our “implicit” solution of the
capillary equation

∫ u

u(0)

p(t)
√

1− p(t)2
dt = ±x.

Restricting to x > 0, we can consider the function g : [z0,
√

z20 + 4/κ] → R
by

g(z) =

∫ z

z0

p(t)
√

1− p(t)2
dt =

∫ z

z0

1 + κz20/2− κt2/2
√

1− (1 + κz20/2− κt2/2)2
dt
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directly as we would one of the standard elliptic integrals or one of the inverse
trigonometric functions sin−1 or tan−1. In this case, we see the integrand is
singular, but integrable, at both endpoints.

Note that 1− p2 = (1− p)(1 + p) with 1− p(t) = κ(t− z0)(t+ z0)/2 and

1 + p(t) = −κ(t− c)(t+ c)/2 with c =

√

z20 +
4

κ
> z0 > 0.

In particular, 1− p(t)2 = −κ2(t− z0)(t− c)(t + z0)(t+ c)/4 has four simple
roots −c < −z0 < z0 < c; see Figure 3.4. Basic estimates for the integral

∫ z

z0

p(t)
√

1− p(t)2
dt =

2

κ

∫ z

z0

p(t)
√

−(t− z0)(t− c)(t+ z0)(t+ c)
dt

are the following:

− 1

b
√
b− z0

∫ c

b

1√
c− t

dt <

∫ c−ǫ

z0+ǫ

p(t)
√

1− p(t)2
dt <

1

z0
√
c− b

∫ b

z0

1√
t− z0

where

b =

√

z20 +
2

κ
with z0 < b < c.

Since
∫ c

b

1√
c− t

dt = 2
√
c− b and

∫ b

z0

1√
t− z0

= 2
√

b− z0

are both well-defined real numbers, we see the function g : [z0, c] → [0, gmax]
where

gmax = g(b) =

∫ b

z0

p(t)
√

1− p(t)2
dt

is well-defined with g(z0) = 0, g′(z) > 0 for z0 < z < b and g′(z) < 0 for
b < z < c as indicated in Figure 3.5. In particular, the function g restricted
to z0 ≤ z ≤ b has a well-defined increasing inverse g−1 : [0, gmax] → [z0, b]
with g′(0) = 0 and

lim
xրgmax

dg−1

dx
(x) = +∞.

Notice we can write u(x) = g−1(x) and u gives the unique maximal capillary
(semi) graph (x ≥ 0) with u(0) = x0 and u′(0) = 0. The maximal extent of
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Figure 3.4: The integrand of an elliptic integral: The quadratic polynomial
p = p(t) and the quartic polynomial p2 (top); The integrand p/

√
q where

q = q(t) is the quartic polynomial q = 1− p2 (bottom).

this graph is R = gmax, and there is a unique tube radius r with 0 < r < R
for which

u′(r) = tan γ =
dg−1

dx
(r). (3.33)

Now, of course, we’ve been thinking of the tube radius r as prescribed and
looking for the solution of (3.1). From this point of view, it is natural to take
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Figure 3.5: Values of an elliptic integral.

a modified version of (3.33)

u′(ρ) = tan γ =
dg−1

dx
(ρ). (3.34)

as the definition of a certain positive radius ρ = ρ(γ) = ρ(γ; z0), and attempt
to solve the equation ρ(γ) = r for any positive r > 0. For this one needs a
monotonicity result:

Lemma 29 The function ρ = ρ(γ; z0) defined by (3.34) satisfies ρ ∈ C1((0, π/2)×
(0,∞)) with

∂ρ

∂γ
< 0 and

∂ρ

∂z0
> 0.

In addition,

lim
z0ց0

ρ(γ; z0) = +∞ and lim
z0ր0

ρ(γ; z0) = 0.

Exercise 3.22 Use the lemma above to prove the existence and uniqueness
of solutions for (3.1).

Exercise 3.23 Prove the lemma.

The Extension of g

Looking at the graph of the elliptic integral g, there are a couple obvious
questions/observations which are worth mentioning. First of all, notice that
in Figure 3.5 u(c) > 0. This condition is equivalent to the inequality

∫ b

z0

p(t)
√

1− p(t)2
dt > −

∫ c

b

p(t)
√

1− p(t)2
dt. (3.35)



154 CHAPTER 3. 2-D CAPILLARY SURFACES

Figure 3.6: The inverse u = g−1 of g is a 2-D capillary graph.

Exercise 3.24 Prove (3.35) holds in general. (This exercise is perhaps not
so easy.)

We know also, the parametric profile curves s 7→ (x(s), z(s)) associated with
the parametric initial value problem (3.29) have the following properties:

1. There is a unique first positive arclength s = s1 for which ψ(s) = π/2
corresponding to a vertical point on the profile curve. We know, in fact,
the parametric profile is identical to the graph of u = g−1 determined
by the elliptic integral g.

2. There is a unique first positive arclength s = s̄ for which ψ(s) = π.
This corresponds to the maximum value of z given, according to the
conserved quantity, by

κ

2
z20 + 1 =

κ

2
z(s̄)2 − 1 or z(s̄) =

√

z20 +
4

κ
.
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Notice this value coincides with the root c of the quartic polynomial
q(t) = 1− p(t)2.

Exercise 3.25 Show the “reflection” of the parametric profile given by the
image of α(s) = (z(s), x(s)) for 0 ≤ s ≤ s̄ coincides precisely with the graph
of the elliptic integral g : [z0, c] → [0, gmax].

Note finally, that in view of Exercise 3.25, the inequality (3.35) of Exer-
cise 3.24 is precisely the inequality required to verify that parametric solu-
tions of the 2-D capillary equation (starting with initial conditions x(0) = 0,
z(0) = z0 > 0, and ψ(0) = 0) “loop to the right.”



156 CHAPTER 3. 2-D CAPILLARY SURFACES



Chapter 4

Floating Objects (2-D)
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Chapter 5

3-D Capillairy Surfaces

5.1 The Axially Symmetric Tube

Perhaps a reasonable way to start the discussion of capillary surfaces in
three-dimensional space, where we really encounter models of the bounded
surfaces we observe—rather than idealized infinitely long surfaces considered
in cross-section in the 2-D case—is with a discussion of the axially symmetric
tube considered in the introductory chapter. We will again proceed for some
time without an existence or uniqueness theorem, though these are available
in some generality as may be discussed later. Thus, we assume the existence
of and consider a function u ∈ C2(Br(0)) ∩ C1(Br(0)) satisfying



























div

(

Du
√

1 + |Du|2

)

= κu on Br(0),

Du
√

1 + |Du|2
· n = cos γ on ∂Br(0).

In this boundary value problem r > 0 and

Br(0) = {x ∈ R2 : |x| < r}

as usual; n = x/r is the outward unit normal to ∂Br(0). Let us also assume,
for the moment, 0 < γ < π/2.

It can be shown, in fact, that this problem always has a unique solution,
the solution is positive, and the solution is axially symmetric in the sense

159
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that
u(x, y) = φ

(

√

x2 + y2
)

for some function φ ∈ C∞[0, r] which extends to a positive even function
φ ∈ C∞[−r, r]. The graph of u may be considered as the surface of rotation
generated by the graph of φ = φ(x) which is called the meridian of the
axially symmetric capillary graph. Letting Πm denote the x, z-plane, we
can compute the mean curvature of the graph of u along the meridian Πm ∩
graph(u) to obtain an ODE for φ. The plane Πm contains the upward normal
to the graph of u, and one normal curvature with respect to this normal can
be taken as the curvature of the meridian:

km =
φ′′

(1 + φ′2)3/2
=

(

φ′
√

1 + φ′2

)′

= (sinψ)′

where ψ is the inclination of φ and the derivatives are with respect to x at
the point (x, 0, φ(x)) ∈ graph(u).

The plane Πℓ containing the upward unit normal N to graph(u) which is
orthogonal to Πm intersects graph(u) locally near (x, 0, φ(x)) in a curve which
is somewhat difficult to treat directly. There is a simple curve, however, pass-
ing through (x, 0, φ(x)) tangent to graph(u) ∩ Πℓ, namely the (longitudinal)
circle graph(u)∩{(x, y, φ(x)) : (x, y) ∈ R2}. Assuming x > 0, this horizontal
circle has curvature vector

1

x
(−1, 0, 0).

The theorem of Meusnier asserts that the curvature of graph(u) ∩ Πℓ with
respect to N is the projection of the curvature vector of any curve lying on
the surface and tangent to graph(u) ∩ Πℓ onto N . An equivalent statement
is that the projections onto the normal of the curvature vectors of all curves
on a surface which are tangent to one another at a point on the surface are
the same. In any case, the normal N is given by

N =
(−φ′, 0, 1)
√

1 + φ′2

and consequentely the orthogonal normal curvature of Πℓ ∩ graph(u) is

kℓ =
1

x
(−1, 0, 0) ·N =

1

x

φ′
√

1 + φ′2
.
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Thus, the (doubled) mean curvature of graph(u), and the ODE for φ is

kℓ + km =
1

x

φ′
√

1 + φ′2
+

(

φ′
√

1 + φ′2

)′

= κφ.

This ODE can also be written as
(

xφ′
√

1 + φ′2

)′

= κxφ

or

(sinψ)′ = κφ− 1

x
sinψ.

Note that the last form prescribes the curvature of the meridian

dψ

ds
=

d

dx
(sinψ).

The parametric version (for s 7→ (x(x), z(s)) in terms of arclength and incli-
nation angle) is







ẋ = cosψ
ż = sinψ

ψ̇ = κz − 1
x
sinψ

with associated initial value problem







ẋ = cosψ, x(0) = 0
ż = sinψ, z(0) = z0 = u(0)

ψ̇ = κz − 1
x
snψ, ψ(0) = 0.

In all forms, however, the ODEs we have written are singular at x = 0.
The graph of u, however, and the solution functions u = u(x, y), φ = φ(x),
x = x(s), z = z(s), and ψ = ψ(s) have no singularity. In particular, the limit

lim
s→0

sinψ

x

may be calculated using L’Hopital’s rule as follows: First note that

lim
s→0

sinψ

x
= lim

s→0

cosψ ψ̇

ẋ
= κu(0)− lim

s→0

sinψ

x
.
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Therefore,

lim
s→0

sinψ

x
=
κu(0)

2
.

Consequently, the curvature of the meridian curve at the minimum point
(0, φ(0)) corresponding to (0, 0, u(0)) is also κu(0)/2, and the sphere tangent
to the interface and having the same mean curvature as graph(u) has radius

a0 =
2

κu(0)
.

Finn gives an argument to show the lower hemisphere determined by

σ0(x) = u(0) + a0 −
√

a20 − |x|2

satisfies σ0(x) < u(0) for 0 < |x| ≤ r, or equivalently, σ0(x) < φ(x) for
0 < x ≤ r where σ0 denotes also the real valued function giving the lower
semi-circular graph with lowest point at u(0) and radius a0. This result is
similar to (though a bit harder than) Theorem 25.

Let us assume this result for the moment and consider the resulting vol-
ume comparison. First of all, the raised volume can be computed using the
divergence theorem as follows:

κ

∫

Br(0)

u =

∫

Br(0)

div

(

Du
√

1 + |Du|2

)

=

∫

∂Br(0)

Du
√

1 + |Du|1
· n = 2πr cos γ.

Thus, the raised volume is

∫

Br(0)

u =
2πr cos γ

κ
.

This means, in particular, that

2πr cos γ

κ
>

∫

Br(0)

σ0.

As before, let us compute the volume enclosed below a general lower hemi-
spherical cap of radius a ≥ r within a cylinder of radius r determined by

σ(x) = z0 + a−
√

a2 − |x|2.
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This volume is

2π

∫ r

0

σ0(x) x dx = π

{

(z0 + a)r2 +

∫ a2−r2

a2

√
v dv

}

= π

{

(z0 + a)r2 − 2

3

[

a3 − (a2 − r2)3/2
]

}

.

Finn concludes
2πr cos γ

κ
> πF

(

u(0),
2

κu(0)

)

where

F (z, a) = (z + a)r2 − 2

3

[

a3 − (a2 − r2)3/2
]

.

At this point Finn introduces his displayed equation (2.21) on page 21 with
a technically correct but, as far as I can tell,1 more or less irrelevant, and
at least inadequate, observation.2 I think what he really wants to say is
something like the following: If we set

Φ(z) = F

(

z,
2

κz

)

,

then the existence of a solution u ∈ C1(Br(x)) implies

a0 =
2

κu(0)
> r or u(0) <

2

κr
.

Thus, we are interested in in the continuous function Φ = Φ(z) for u(0) ≤
z ≤ 2/(κr). Note that

Φ(u(0)) <
2r cos γ

κ
and Φ

(

2

κr

)

=
2r

κ
+
r3

3
>

2r cos γ

κ
.

1Of course, maybe I’m missing something here.
2For direct comparison it should be pointed out, furthermore, that Finn is essentially

treating the special case r = 1 with κ = B. On the other hand, there is certainly no loss
of generality in his argument which is based on a homogeneous scaling of R3 by a factor
1/r. The resulting capillary constant B in this case is called the Bond number after
Wilfrid Noel Bond. I’ve left this scaling out based on the observation that the argument,
once you’ve got it figured out, is not that much more difficult with the inclusion of the
general radius r.
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Thus, the equation

Φ(z) = F

(

z,
2

κz

)

=
2r cos γ

κ
(5.1)

has at least one solution z∗. We wish to show there is exactly one solution.

Lemma 30 Φ′(z) > 0 for u(0) ≤ z ≤ 2/(κr).

Proof: First of all

Φ′(z) =
∂F

∂z

(

z,
2

κz

)

− 2

κz2
∂F

∂a

(

z,
2

κz

)

= r2 − 2

κz2
∂F

∂a

(

z,
2

κz

)

.

We claim in fact

∂F

∂a

(

z,
2

κz

)

< 0 for u(0) ≤ z ≤ 2

κr
, (5.2)

and therefore Φ′(z) ≥ r2 > 0. Notice that

g(a) =
∂F

∂a
= r2 − 2a2 + 2a

√
a2 − r2.

Thus, it is enough3 to show

g(a) = r2 − 2a2 + 2a
√
a2 − r2 < 0 for r ≤ a =

2

κz
≤ 2

κu(0)
. (5.3)

Observe that g(r) = −r2 < 0. Furthermore, if for some a we have g(a) = 0,
then √

a2 − r2 = a− r2

2a
and a2 − r2 = a2 − r2 +

r4

4a2
,

so that
r4

4a2
= 0.

But we know r4/(4a2) > 0, so we can (attempt to) reverse the algebra for
the inequality. Specifically, we know

a2 − r2 < a2 − r2 +
r4

4a2
=

(

a− r2

2a

)2

. (5.4)

3At this point a much more streamlined proof of the desired fact, g(a) < 0, can be
given, but I have included a number of, arguably unnecessary, details which I hope provide
motivation.
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Since h(a) = a− r2/(2a) satisfies

h(r) =
r

2
> 0 and h′(a) = 1 +

r2

2a2
> 0,

we obtain from (5.4)

√
a2 − r2 <

∣

∣

∣

∣

a− r2

2a

∣

∣

∣

∣

= a− r2

2a
.

Hence, r2 − 2a2 + 2a
√
a2 − r2 < 0. That is, (5.3) is established, and this

implies (5.2). �

Letting z∗ be the unique solution of the equation (5.1), that is, the unique
value z∗ with

u(0) < z∗ <
2

κr

for which

Φ(z∗) =

(

z∗ +
2

κz∗

)

r2 − 2

3

[

8

κ3z3∗
−
(

4

κ2z2∗
− r2

)3/2
]

=
2r cos γ

κ
,

we obtain

u(0) < z∗. (5.5)

This, it is claimed, is an improvement over the estimate obtained directly
from the volume comparison

πr2u(0) <

∫

Br(0)

u =
2πr cos γ

κ
.
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To see this is the case, we compute

Φ

(

2 cos γ

κr

)

= F

(

2 cos γ

κr
,

r

cos γ

)

=
2r cos γ

κ
+

r3

cos γ
− 2

3

[

r3

cos3 γ
−
(

r2

cos2 γ
− r2

)3/2
]

=
2r cos γ

κ
+

r3

cos γ
− 2r3

3

[

1

cos3 γ
−
(

1

cos2 γ
− 1

)3/2
]

=
2r cos γ

κ
+

r3

cos γ
− 2r3

3 cos3 γ

[

1− sin3 γ
]

=
2r cos γ

κ
+

r3

3 cos3 γ

[

3 cos2 γ − 2 + 2 sin3 γ
]

=
2r cos γ

κ
+

r3

3 cos3 γ

[

1− 3 sin2 γ + 2 sin3 γ
]

.

The cubic polynomial p(t) = 2t3 − 3t2 + 1 satisfies

p(0) = 1 > 0 = p(1) and p′(t) = 6t(t− 1) < 0 for 0 < t < 1.

Therefore, the quantity 1− 3 sin2 γ + 2 sin3 γ > 0 and

Φ

(

2 cos γ

κr

)

>
2r cos γ

κ
.

This means that, indeed, takinig account of the monotonicity of Φ we have

z∗ <
2 cos γ

κr
.

On the next page (page 22) I think Finn must mean expansion in (2.21)
which defines z∗ rather than expansion in (2.20). For us, that would be
expansion in

(

z∗ +
2

κz∗

)

r2 − 2

3

[

8

κ3z3∗
−
(

4

κ2z2∗
− r2

)3/2
]

=
2r cos γ

κ
.

Of course, Finn can expand in the Bond number B = κr2, and this will
require a bit of extra manipulation in our case.
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In retrospect, though the argument above is correct I think, it may be
more natural to divide both sides of the original estimate by πr2 to obtain

2 cos γ

κr
> u(0) +

2

κu(0)
− 2

3r2

[

8

κ3u(0)3
−
(

4

κ2u(0)2
− r2

)3/2
]

.

Then we can call the right side of this inequality

F

(

u(0),
2

κu(0)

)

,

and the terms after u(0) may be naturally considered a correction.
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Chapter 6

Existence and Uniqueness

In this section I give a global existence and uniqueness theorem based on
an in-class presentation by Nathan Soedjak. He pieced together a proof of
the following theorem for autonomous equations, by his own account, from
Wikipedia.1

Theorem 31 If f ∈ C1(Rn → Rn) ∩ Lip(Rn → Rn), then the initial value
problem

{

y′ = f(y) for t ∈ R
y(t0) = y0

has a unique solution y ∈ C1(R → Rn) for any initial t0 ∈ R and any initial
value y0 ∈ Rn.

Note: I do not see in the proof where the differentiability assumption on f
is used. I think it is enough to assume f ∈ Lip(Rn → Rn). See also the
generalization for nonautonomous systems below.

Soedjak left as exercises certain aspects of the proof and also the general-
ization to the nonautonomous case. I will attempt to fill in these details/do
this exercise and obtain the above result as a special case of the nonau-
tonomous version in particular.

Two of our main applications are to the 2-D parametric system






ẋ = cosψ,
ż = sinψ,

ψ̇ = κz,

1Soedjak referenced the articles on The Picard-Lindelöf Theorem, Picard Itera-

tion, and The Banach Fixed Point Theorem in particular.
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and to the 3-D axially symmetric capillary equation which, in parametric
form, is







ẋ = cosψ,
ż = sinψ,

ψ̇ = κz − sinψ/x

These are both autonomous systems with respect to arclength along the
parameterized interface, though it will be observed that the 3-D system has
a nominal (and obvious) singularity at x = 0 in the third equation. This
will require separate consideration. The result above applies to the 2-D
system giving the existence of solutions for all arclengths s ∈ R. In this case,
f(x, z, ψ) = (cosψ, sinψ, κz) with

Df =





0 0 − sinψ
0 0 cosψ
0 κ 0



 .

Since it is clear that all components in Df are continuous, we have2 f ∈
C1(R3 → R3). The Lipschitz requirement is that there is a constant λ ≥ 0
for which

‖f(x2, z2, ψ2)− f(x1, z1, ψ2)‖ ≤ λ‖(x2, z2, ψ2)− (x1, z1, ψ2)‖. (6.1)

In the notes above, I have normally denoted the Euclidian distance

‖(x2, z2, ψ2)− (x1, z1, ψ2)‖ =
√

(x2 − x1)2 + (z2 − z1)2 + (ψ2 − ψ1)2 (6.2)

by |(x2, z2, ψ2)− (x1, z1, ψ2)|. I am going to incorporate the change of nota-
tion suggested in (6.2) and (6.1) to draw attention to the presence of vector
valued functions in a context which has not been used much above and in
contrast to the usual absolute value on R. More precisely, we will be in-
tegrating vector valued functions below. Briefly, a vector valued function
g = (g1, g2, . . . , gn) of one variable defined and continuous on an interval
[a, b] has integral (defined by)

∫ b

a

g(x) dx =

(∫ b

a

g1(x) dx,

∫ b

a

g2(x) dx, . . . ,

∫ b

a

g3(x) dx

)

.

2Again, I don’t think we need this, but it is true for the 2-D capillary system, so I went
ahead and recorded the verification.
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This is also a convenient place to point out that we will be using, in particular,
the inequality

∥

∥

∥

∥

∫ b

a

g(x) dx

∥

∥

∥

∥

≤
∫ b

a

‖g(x)‖ dx.

Returning to (6.1),

√

(cosψ2 − cosψ1)2 + (sinψ2 − sinψ1)2 + κ(z2 − z1)2

≤
√

(ψ2 − ψ1)2 + (ψ2 − ψ1)2 + κ(z2 − z1)2

≤ max{2, κ}‖(x2, z2, ψ2)− (x1, z1, ψ1)‖.

Thus, the existence theorem above applies to the 2-D capillary problem.
My generalization to non-autonomous systems is the following:

Theorem 32 If f ∈ C0(R× Rn → Rn) and there is a constant Λ ≥ 0 such
that for each fixed t ∈ R the function g : Rn → Rn by

g(y) = f(t,y)

satisfies3

‖g(y2)− g(y1)‖ ≤ Λ‖y2 − y1‖,
then the initial value problem

{

y′ = f(t,y) for t ∈ R
y(t0) = y0

(6.3)

has a unique solution y ∈ C1(R → Rn) for any initial t0 ∈ R and any initial
value y0 ∈ Rn.

The proof will be based on a corollary of the Banach fixed point theorem
which I will state here and discuss later. The statement of the Banach fixed
point theorem (also called4 the contraction mapping theorem) we will use is
as follows:

3In particular g ∈ Lip(Rn → Rn), but we are also requiring the Lipschitz constant to
be uniform with respect to the choice of t ∈ R in the first argument of f . There may be
weaker hypotheses, but this one gives the result with only minor modifications of Soedjak’s
proof.

4This result, incidentally, is included in Rudin’s Principles of Mathematical Analysis

(i.e., baby Rudin). Rudin uses it to prove the inverse function theorem.
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Theorem 33 If X is a complete metric space and Γ : X → X is a con-
traction, that is, there is some c with 0 ≤ c < 1 such that

d(Γ(x2),Γ(x1)) ≤ c d(x2, x1) for all x1, x2 ∈ X,

then there exists a unique fixed point x∗ ∈ X, that is a point with Γ(x∗) =
Γ(x∗). In fact,

x∗ = lim
n→∞

Γn(x)

where x is any point in X and Γn is the composition of Γ with itself n times.

The corollary is the following:

Corollary 34 If X is a complete metric space and Γ : X → X has the
property that for some k ∈ N, the function Γk : X → X is a contraction,
then there exists a unique fixed point x∗ ∈ X, that is a point with Γ(x∗) =
Γ(x∗). In fact,

x∗ = lim
n→∞

Γn(x)

where x is any point in X and Γn is the composition of Γ with itself n times.

I will prove both of these results below as well as give a brief discussion of
what it means to be a complete metric space and some related topics.

Owing to the fact that C0(R → Rn) is not a complete metric space, we
will prove a restricted version of the global existence and uniqueness theorem,
Theorem 32, which may be viewed as a technical lemma:

Lemma 35 Let R > 0 and t0 ∈ R. If f ∈ C0([t0 − 3R, t0 + 3R]×Rn → Rn)
and there is a constant Λ ≥ 0 such that for each fixed t ∈ [t0 − 3R, t0 + 3R]
the function g : Rn → Rn by

g(y) = f(t,y)

satisfies
‖g(y2)− g(y1)‖ ≤ Λ‖y2 − y1‖,

then the initial value problem
{

y′ = f(t,y) for t ∈ [t0 − R, t0 +R]
y(t0) = y0

(6.4)

has a unique solution y ∈ C1([t0 − R, t0 + R] → Rn) for any initial value
y0 ∈ Rn.
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Proof: We begin by noting X = C0([t0 − 2R, t0 + 2R] → Rn) is a Banach
space (i.e., a normed vector space which is a complete metric space with
respect to the metric induced by the norm) under the uniform norm5

‖y2‖∞ = max
|t−t0|≤2R

‖y(t)‖.

Note the use of two different norms. The space X = C0([t0 − 2R, t0+2R] →
Rn) is complete owing to the following two facts from analysis:

1. A Cauchy sequence of functions y1,y2,y3, . . . in C
0([t0−2R, t0+2R] →

Rn) with respect to the uniform norm converges pointwise to some
function

y(t) = lim
j→∞

yj(t).

This is just the Cauchy completeness theorem for Rn since for fixed t
the sequence {yj(t)}∞j=1 is a Cauchy sequence in Rn.

2. The uniform limit of a sequence of continuous functions on a closed
interval is continuous. (One also needs to show the pointwise limit y
is also a uniform limit.)

It is to a mapping on the space X = C0([t0 − 2R, t0 + 2R] → Rn) to which
we will apply the Banach fixed point theorem.

Consider Γ : C0([t0 − 2R, t0 + 2R] → Rn) → C0([t0 − 2R, t0 + 2R] → Rn)
by

Γ[y](t) = y0 +

∫ t

t0

f(τ,y(τ)) dτ. (6.5)

We need to verify this mapping satisfies the requirements of the corollary of
the Banach fixed point theorem. That the mapping is well-defined is clear.
In fact, by the fundamental theorem of calculus

d

dt
Γ[y](t) = f(t,y(t)). (6.6)

Thus, Γ maps into the even smaller subspace C1([t0 − 2R, t0 + 2R] → Rn).
Note the definition of Γ[y] given in (6.5) applies for |t − t0| ≤ 3R, so the

5This norm is also called the supremum norm or the infinity norm especially in
the context of the space L∞[t0 − 2R, t0 + 2R] of essentially bounded functions. This is
where we get the notation.
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derivative given in (6.6) is also well-defined and continuous up to the end-
points in [t0 − 2R, t0 +2R]. We need to show some iteration of compositions
Γk is a contraction. We obtain first, by induction, a pointwise estimate6

‖Γk[y2](t)− Γk[y1](t)‖ ≤ Λk

k!
‖y2 − y1‖∞|t− t0|k (6.7)

holding for all k ∈ N, y2,y1 ∈ X and t with |t− t0| < 2R. The base case for
k = 1 is as follows:

‖Γ[y2](t)− Γ[y1](t)‖ =

∣

∣

∣

∣

∫ t

t0

[f(τ,y2(τ))− f(τ,y1(τ))] dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

t0

‖f(τ,y2(τ))− f(τ,y1(τ))‖ dτ
∣

∣

∣

∣

≤ Λ

∣

∣

∣

∣

∫ t

t0

‖y2(τ)− y1(τ)‖ dτ
∣

∣

∣

∣

≤ Λ‖y2 − y1‖∞
∣

∣

∣

∣

∫ t

t0

1 dτ

∣

∣

∣

∣

≤ Λ‖y2 − y1‖∞|t− t0|.

Now we take (6.7) as inductive hypothesis. Then we have

‖Γk+1[y2](t)− Γk+1[y1](t)‖ =

∣

∣

∣

∣

∫ t

t0

[f(τ,Γky2(τ))− f(τ,Γky1(τ))] dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

t0

‖f(τ,Γky2(τ))− f(τ,Γky1(τ))‖ dτ
∣

∣

∣

∣

≤ Λ

∣

∣

∣

∣

∫ t

t0

‖Γky2(τ)− Γky1(τ)‖ dτ
∣

∣

∣

∣

≤ Λk+1

k!
‖y2 − y1‖∞

∣

∣

∣

∣

∫ t

t0

|τ − t0|k dτ
∣

∣

∣

∣

=
Λk+1

k!
‖y2 − y1‖∞

∣

∣

∣

∣

∫ t

t0

(τ − t0)
k dτ

∣

∣

∣

∣

=
Λk+1

(k + 1)!
‖y2 − y1‖∞|t− t0|k+1.

6Again, note carefully the distinction between norms. I am not using, and cannot
express the content of this estimate using, an infinity norm on the left.
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Having established what may be called the pointwise polynomial es-
tamate (6.7) for all k = 1, , 2, 3, . . ., we proceed to an estimate in the Banach
space X = C0([t0 − 2R, t0 + 2R] → Rn):

‖Γk[y2]− Γk[y1]‖∞ ≤ (2RΛ)k

k!
‖y2 − y1‖∞. (6.8)

This estimate follows immediately from the pointwise polynomial estimate
by taking the maximum value7 of both sides for |t− t0| ≤ 2R.

Finally, then, Γk : X → X is seen to be a contraction when

(2RΛ)k

k!
< 1.

The fact that for any fixed positive number M we have

lim
kր∞

Mk

k!
= 0

is standard from elementary calculus, but in the spirit of review (and just
for fun) here is a direct proof based on the simpler facts

lim
kր∞

M

k
= 0 and lim

kր∞

M

2k
= 0.

Let n ∈ N be fixed so that
M

n
<

1

2
.

Then
Mn+1

(n+ 1)!
=

M

n+ 1

Mn

n!
<

1

2

Mn

n!

and we see by an easy induction that

Mn+k

(n + k)!
<

1

2k
Mn

n!
.

SinceMn/n! is fixed, we see that given any ǫ > 0 we can make k large enough
so that

Mn+k

(n + k)!
< ǫ.

7Note, however, that this estimate on the infinity norm is not equivalent to (6.7); you
cannot get back the pointwise estimate.
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In any case, the corollary of the Banach fixed point theorem applies,
and we conclude there is a unique y∗ ∈ C0([t0 − 2R, t0 + 2R] → Rn) with
Γ[y∗] = y∗. That is,

y∗ = y0 +

∫ t

t0

f(τ,y∗(τ)) dτ.

We see from the fundamental theorem of calculus and simple evaluation that
y∗ is a solution of the IVP

{

y′(t) = f(t,y(t)) for |t− t0| ≤ R
y(t0) = y0.

It also follows from the fundamental theorem of calculus that

y∗ ∈ C1([t0 − r, t0 + r] → Rn) for each r with 0 < r < 2R.

In particular, y∗ ∈ C1([t0 − R, t0 + R] → Rn). Thus, we have existence of
the desired solution of Lemma 35.

If y ∈ C1([t0 − R, t0 + R] → Rn) were another such solution, then we
obtain v = y − y∗ satisfies the particular initial value problem

{

v′(t) = 0 for |t− t0| ≤ R
v(t0) = 0.

(6.9)

This particular IVP is susceptible to direct integration:

v(t) = 0+

∫ t

t0

0 dτ ≡ 0

so that uniqueness follows. Note: It may be possible to conclude the unique-
ness of the general (Lipschitz) IVP by using the uniqueness of the Ba-
nach fixed point theorem (or its corrollary), but our set-up for the proof of
Lemma 35 does not make this so convenient. The reason is that it is not im-
mediately obvious, given an alternative solution y ∈ C1([t0−R, t0+R] → Rn)
how to extend it to a solution in X = C1([t0 − 2R, t0 + 2R] → Rn). At some
level this brings up the question: Is the consideration of the three distinct
intervals [t0 −R, t0 +R], [t0 − 2R, t0 +2R], and [t0 − 3R, t0 +3R] necessary?
Of course, one could get away with [t0−R, t0+R], [t0− (R+ ǫ), t0+(R+ ǫ)],
and [t0−(R+2ǫ), t0+(R+2ǫ)] for any ǫ > 0, but can one get away with only
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two such intervals, or is it overkill to consider any extended interval at all?
The answer, in turn, seems to lie in consideration of the following question:
If I have y ∈ C0([t0 − R, t0 +R] → Rn), then can I conclude Γ[y] given by

Γ[y](t) = y0 +

∫ t

t0

f(τ,y(τ)) dτ (6.10)

satisfies Γ[y] ∈ C1([t0 − R, t0 + R] → Rn)? This assertion requires differen-
tiability at the endpoints t = t0 ± R which, at least in higher dimensions,
is usually defined to mean there is an extension of y to a larger open set
like (t0 − (R+ ǫ), t0 + (R+ ǫ)) to a continuously differentiable function. The
construction I’ve given gives this. On the other hand, differentiability at the
boundary of a closed interval in R1 is somewhat simpler, and one can con-
sider one-sided derivatives. This consideration may make the use of nested
intervals unnecessary in this case, but still, it may mean you need to consider
one-sided derivatives at the endpoints of functions given by expressions like
(6.10).

In any case, I think we’ve finished the proof of Lemma 35. �

Proof of Theorem 32: Given t1 ∈ R, the lemma gives us, for example,
solutions yR ∈ C1([t0−R, t0+R] → Rn) of (6.4) for each R > |t1− t0|. Since
yR ∈ C1([t0 − r, t0+ r] → Rn) for every r with |t1− t0| < r < R and we have
uniqueness of yr as a solution, we must have yR(t1) taking a common value
for all R > |t1 − t0|. Thus, a function y∗ : R → Rn given by this common
value

y∗(t) = yR(t) for any R > |t− t0| (6.11)

is well-defined.
In addition, since continuous differentiability and satisfying the ODE are

local properties, the relation (6.11) gives us that y∗ ∈ C1(R → Rn) is a
solution of the global initial value problem (6.3). Uniqueness follows as in
the proof of Lemma 35 from the uniqueness of the solution of (6.9). �

The Banach Fixed Point Theorem

We now turn to proofs of Theorem 33 and Corollary 34 as well as a brief
discussion of complete metric spaces and metric spaces given by norms.
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A metric space is a set X with a (distance) function d : X×X → [0,∞)
satisfying

(i) d(x, y) = d(y, x) for all x, y ∈ X . (symmetric)

(ii) d(x, y) = 0 if and only if x = y. (positive definite)

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X . (triangle inequality)

This definition does not require any additional structure on the set X . In
particular any subset A ⊂ X of a metric space X is also a metric space
obtained by simply restricting the distance function to the cross-product of
A with itself.

In contrast, a normed space must be, apriori, a vector space which
is a relatively complicated algebraic structure requiring, in particular, an
operation of addition of vectors, a scalar field in the background, and an
operation of scaling of vectors by elements of the scalar field. I will assume
this structure is more or less familiar and/or can be looked up. Nevertheless,
it should be noted that to really understand and appreciate the structure
of vector spaces one already needs to understand and appreciate, at least to
some extent, the general algebraic structures of groups, rings, and fields from
abstract/modern algebra.

For our purposes, it is perhaps enough to note that the presence of a norm
requires addition v+w and scaling αv. More precisely, V is a normed space
if V is a vector space over a field F with a function ‖ · ‖ : V → [0,∞) (called
a norm) having the following properties:

(i) ‖αv‖ = |α|‖v‖ for all α ∈ F and v ∈ V . (nonnegative homogeneous)

(ii) ‖v‖ = 0 if and only if v = 0. (positive definite)

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V . (triangle inequality)

Every normed space is a metric space with distance given by

d(v, w) = ‖v − w‖.

This is called the norm induced distance or norm induced metric.

Exercise 6.1 Prove it.
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Completeness is a property of some metric spaces. Either a metric
space is complete or it is not.

Definition 17 A metric space X is complete if every Cauchy sequence
converges to an element of X.

To elaborate on this definition:

1. Convergence of sequences makes sense in any metric space: A se-
quence {xj}∞j=1 ⊂ X converges to a limit x ∈ X if for any ǫ > 0,
there is some N ∈ N such that

d(xj , x) < ǫ whenever j > N.

2. The Cauchy property for sequences makes sense in any metric
space: A sequence {xj}∞j=1 ⊂ X is Cauchy if for any ǫ > 0, there is
some N ∈ N such that

d(xj, xk) < ǫ whenever j, k > N.

Notice that no limiting point appears in the definition of the Cauchy
property.

3. Every sequence in a metric space which converges is Cauchy.

Exercise 6.2 Prove it.

Exercise 6.3 Let X = [−1, 1) be the metric subspace of R with the
usual distance d(x, y) = |x − y| given by the absolute value (norm) on
R1.

(a) Show xj = −1+1/j defines a sequence in X convergent to −1 ∈ X.

(b) Show xj = (−1)j/j defines a sequence in X convergent to 0 ∈ X.

(c) Show xj = 1 − 1/j defines a sequence in X which is Cauchy but
does not converge to any element x ∈ X.

From what we have said above, it should be clear that it makes sense
to ask when a normed space is complete. By this we mean the following:
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Take the normed space V and consider it as a metric space under the norm
induced distance. A normed space which is complete (as a metric space) has
a special name; it is called a Banach space.

Our theorem, the Banach fixed point theorem, is not properly about
Banach spaces. It is about complete metric spaces, but of course it applies
to Banach spaces, and our application of it was to a Banach space X =
C0(I → Rn) where I is a closed interval and the norm is the infinity norm.

Proof of the Banach fixed point theorem: Take any point x ∈ X .
Let us first prove the sequence {Γj(x)}∞j=1 is a bounded sequence in X .
Remember that in the statement of Theorem 33 we are givne a contraction
Γ : X → X which is a function for which there is a constant c with 0 < c < 1
such that

d(Γ(x2),Γ(x1)) ≤ c d(x2, x1) for all x1, x2 ∈ X .

By the triangle inequality

d(Γ2(x), x) ≤ d(Γ2(x),Γ(x)) + d(Γ(x), x) ≤ (c+ 1) d(Γ(x), x).

It follows by an easy induction that

d(Γk(x), x) ≤
(

k−1
∑

j=0

cj

)

d(Γ(x), x) ≤ 1

1− c
d(Γ(x), x).

Another thing that makes sense in any metric space is the notion of an open
ball and, hence, the notion of an open set. In this case, we have shown

Γk(x) ∈ Br(x) = {ξ ∈ X : d(ξ, x) < r} for all k ∈ N

where, for example, r = 1 + d(Γ(x), x)/(1− c) > 0. This is essentially what
it means to be bounded in a metric space.

We proceed to show our sequence of iterates is Cauchy:

d(Γj(x)− Γk(x)) ≤ cmin{j,k} d(Γmax{j,k}−min{j,k}, x) < cmin{j,k} r.

Since c < 1 and r > 0, given any ǫ > 0, there is some N ∈ N so that cN < ǫ/r
and then

d(Γj(x)− Γk(x)) < ǫ for j, k > N .
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Thus, {Γj(x)}∞j=1 is a Cauchy sequence in a complete metric space. By the
definition of completeness there is some x∗ ∈ X for which

lim
jր∞

Γj(x) = x∗.

Now, we want to show x∗ is a fixed point of Γ. One way to do this is to
know the distance function is continuous:

d(Γ(x∗), x∗) = d

(

lim
jր∞

Γj+1(x), lim
jր∞

Γj(x)

)

= d(x∗, x∗) = 0.

Thus, Γ(x∗) = x∗ because the metric is positive definite. Alternatively, we
can use the contraction property and the triangle inequality for a more direct
proof:

d(Γ(x∗), x∗) ≤ d(Γ(x∗),Γ
k(x)) + d(Γk(x), x∗) ≤ (c+ 1) d(Γk(x), x∗).

The fact that
lim
kր∞

d(Γk(x), x∗) = 0

is just the definition of convergence. Either way, we have established that x∗
is a fixed point of Γ.

If x∗∗ is another fixed point, then

d(x∗∗, x∗) = d(Γ(x∗∗),Γ(x∗)) ≤ c d(x∗∗, x∗).

Thus, 0 ≤ (1 − c) d(x∗∗, x∗) ≤ 0 from which it follows d(x∗∗, x∗) = 0 and
x∗ = x∗∗ is unique. �

Proof of Corollary 34: Here we have a fixed point of the contraction
Γk : X → X . That is, there is a unique x∗ ∈ X for which Γk(x∗) = x∗. We
first claim that x∗ is a fixed point for Γ : X → X . In fact,

d(Γ(x∗), x∗) = d(Γk+1(x∗),Γ
k(x∗)) ≤ c d(Γ(x∗), x∗), (6.12)

so we obtain as in the argument above

0 ≤ (1− c)d(Γ(x∗), x∗) ≤ 0.
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Of course, a fixed point of Γ is a fixed point of Γk. Since we know the fixed
point of Γk is unique, clearly the fixed point x∗ is unique as a fixed point of
Γ as well. It remains to show

lim
jր∞

Γ(x) = x∗ for any x ∈ X. (6.13)

This proposition seems a little delicate. However, it is not difficult to establish
by induction that

d(Γℓk+m(x), x∗) ≤ cℓM for ℓ,m ∈ N, (6.14)

where M = max{d(Γj(x), x∗) : 0 ≤ j < k} is fixed and finite and c with
0 < c < 1 is the contraction constant for Γk. This condition may be written
equivalently as

d(Γj(x), x∗) ≤ cℓM for j ∈ N with j > ℓk.

It follows that given any ǫ > 0 there is some L ∈ N for which cL < ǫ/M .
Thus, taking N = Lk ∈ N we have for j > N = Lk that

d(Γj(x), x∗) ≤ cLM < ǫ.

This establishes (6.13) and completes the proof. �

I was pretty happy with (6.12) and the proof that x∗ is the unique fixed
point for Γ. The argument giving the limit (6.13) using (6.14) seems a bit
clumsy, and maybe you can give a better one. On the other hand, maybe
an “eventual contraction” Γ : X → X can do something like expand for the
interations Γj with 0 < j < k, and maybe this makes something like (6.14)
more or less necessary.



Chapter 7

Comparison Principles

Consider Figure 7.1, Figure 7.2, and Figure 7.3. The comparison principle
captures (especially in higher dimensions) certain aspects of what is illus-
trated in these figures. One concept to keep in mind is that if one function
“dominates” another, i.e., f ≤ g, then certain conditions hold at any points
of equality (touching). This happens, in particular, at a local maximum
when one function is dominated (locally) by a constant function. Closely
related to the necessary conditions at a touching point is the fact that two
functions satisfying some inequality between the second derivatives, f ′′ > g′′,
and having also an inequality over a boundary, f(a) ≤ g(a) and f(b) ≤ g(b)
must satisfy a global pointwise inequality f(x) < g(x) for a < x < b. Several
figures illustrating this implication using quadratic functions (with constant
second derivative) are shown in Figure 7.2.

Finally, these considerations carry over to certain other “second order
inequalities.” Notice that an inequality on curvatures,

f ′′

(1 + f ′2)3/2
>

g′′

(1 + g′2)3/2
, (7.1)

is not equivalent to the inequality f ′′ > g′′.

Exercise 7.1 Give examples of functions f, g ∈ C2[a, b] for which (7.1) holds
on (a, b) but f ′′(x0) < g′′(x0) at some point x0 ∈ (a, b).

Exercise 7.2 Give examples of functions f, g ∈ C2[a, b] for which f ′′(x0) >
g′′(x0) holds on (a, b) but

f ′′(x0)

(1 + f ′(x0)2)3/2
≤ g′′(x0)

(1 + g′(x0)2)3/2
at some point x0 ∈ (a, b).

183
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Nevertheless, the same global pointwise inequality f(x) < g(x) for a < x < b
if f, g ∈ C2[a, b] are functions for which (7.1) holds with f(a) ≤ g(a) and
f(b) ≤ g(b).

Consider “pushing up” on the graph of f , as indicated by the arrow in
Figure 7.3, so that a single interior touching point between the graphs occurs
but in such a way that the inequality

f ′′

(1 + f ′2)3/2
≥ g′′

(1 + g′2)3/2

is maintained. If you “feel” that the only way to accomplish this task is by
making f identically equal to g, then you are starting to see what Finn
called the magic of the comparison principle. These are very simple ideas,
but they are still rather magical. Being able to justify them rigorously is also
not so difficult, and we will try to discuss what is involved with that now.

As a preliminary consideration, let us consider a real valued function of
one variable with a (local) maximum at a point x0 ∈ R. In this situation we
have

f ′(x0) = 0 and f ′′(x0) ≤ 0.

These necessary conditions are, in a certain sense, precursors to the maximum
principle.

Figure 7.1: Touching Points

Exercise 7.3 If f : (a, b) → R and g : (a, b) → R with f, g ∈ C2(a, b) and
f ≤ g, and f(x0) = g(x0) for some x0 ∈ (a, b), then what can you say about
the relations between

(a) f ′(x0) and g
′(x0), and

(b) f ′′(x0) and g
′′(x0)?
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Next, let us consider two functions f, g ∈ C2[a, b] with f(a) = g(a) and
f(b) = g(b). If we know

f ′′(x) ≥ g′′(x) for x ∈ (a, b), (7.2)

then what can be said about the relation between f and g?

Exercise 7.4 Given f ∈ C2[a, b] with f(a) = f(b) = 0 and f ′′(x) ≥ 0 for
x ∈ (a, b), show

(a) f(x) ≤ for x ∈ (a, b), and

(b) If f(x0) = 0 for any one point x0 ∈ (a, b), then f ≡ 0.

Figure 7.2: Functions with the same boundary values and satisfying a second
order inequality

As a generalization of the previous exercise we may assume there is a
point x for which f(x) > g(x). This means we can apply the extreme value
theorem to obtain a point x0 for which

f(x0)− g(x0) = max(f − g) > 0.

According to the necessary condition we find

f ′(x0) = g′(x0) and f ′′(x0) ≤ g′′(x0).

Notice this is not enough to get a contradiction, but it is in the “right di-
rection.” That is to say, if we had f ′′(x0) < g′′(x0), then we would have
a contradiction of (7.2). To obtain such a point, we can argue as follows:
Consider a quadratic function h0 having the form h0(x) = M − ǫ(x − x0)

2

whereM = max(f−g) > 0 and ǫ is a small number to be chosen. Remember
(f − g)(a) = (f − g)(b) = 0. We could introduce appropriate inequalities at
the boundary instead of these equalities. At any rate, for ǫ > 0 small enough
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we will have h0(a) =M−ǫ(a−x0)2 and h0(b) =M−ǫ(b−x0)2 both positive.
Thus, the maximum value

c = max{f(x)− g(x)− h0(x) : x ∈ [a, b]} ≥ 0

is achieved at some point x1 ∈ (a, b). Thus, we may set h = h0 + c, and we
have a function h satisfying

(i) h ≥ f − g on [a, b],

(ii) h(x1) = (f − g)(x1), and

(iii) h′′ ≡ −2ǫ < 0.

The necessary condition then implies f ′′(x1) − g′′(x1) ≤ h′′(x1) = −2ǫ < 0.
That is, f ′′(x1) < g′′(x1) and we do get a contradiction. This argument shows
the following:

Theorem 36 If f, g ∈ C2[a, b] with f ′′ ≥ g′′, f(a) ≤ g(a) and f(b) ≤ g(b),
then f ≤ g on [a, b].

Exercise 7.5 Under the hypotheses of Theorem 36 show that if equality
f(x0) = g(x0) holds at one point x0 ∈ (a, b), then f ≡ g or equivalently,
f(x) < g(x) for x ∈ (a, b) unless f ≡ g.

7.6 The Maximum Principle

Let us first consider the maximum principle which applies to solutions or
subsolutions of certain second order linear partial differential equations. The
second order linear partial differential operator L : C2(U) → C0(U) given by

Lu =

n
∑

i,j=1

aijDiju+

n
∑

j=1

bjDju+ cu (7.3)

is said to be elliptic if the coefficient matrix A = (aij) is symmetric and
positive definite. In defining the form of this operator the coefficients aij , bj
and c may be assumed to be continuous functions of a variable x defined on
an open subset U of Rn. We have denoted partial derivatives as follows:

Dju =
∂u

∂xj
; Diju =

∂2u

∂xi∂xj
.
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Figure 7.3: Circles with different curvatures and functions determined by
them having the same boundary values at a = −1 and b = 1

Note that in principle one may allow the leading order coefficient matrix
A = (aij) to be non-symmetric. In this case, the same operator may be
expressed in terms of a symmetric leading order coefficient matrix Ã = (ãij)
with

ãij =
aij + aji

2
.

Exercise 7.7 What condition on a non-symmetric matrix A = (aij) implies
the symmetrized matrix Ã = (ãij) with

ãij =
aij + aji

2
.

is positive definite? Remember that an n×n real matrixM is positive definite
if

Mv · v ≥ 0 with equality only if v = 0 ∈ Rn.

The simplest example of a second order linear elliptic operator is the Laplace
operator given by

∆u =
n
∑

j=1

∂2u

∂x2j
.

In this case, the coefficient matrix is the n × n identity matrix and the
coefficients of the lower order terms bj and c are all zero.
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A function u ∈ C2(U) is said to be a (classical) subsolution if Lu ≥ 0 on
U . Similarly, u is a supersolution if Lu ≤ 0 on U and a classical solution if
Lu = 0. The weak maximum principle asserts, under various conditions,
that the value of a subsolution u ∈ C2(U)∩C0(U) cannot exceed the value of
u on the boundary of a bounded domain U . There are many generalizations
and variants, some of which we will consider below. Let us first consider
cases where some or all of the lower order terms are not present to illustrate
some fundamental mechanisms driving weak maximum principles.

Theorem 37 If U is a open subset of Rn and L is an operator of the form
(7.3) with leading coefficient matrix A = (aij) non-negative semi-definite and
satisfying c = 0 on U , then a strict subsolution u ∈ C2(U) satisfying

Lu > 0 on U

cannot have an interior local maximum.

Proof: The key here is that

Lu =
n
∑

i,j=1

aijDiju+
∑

j

bjDju = tr(AD2u) +
∑

j

bjDju

where D2u = (Diju) is the Hessian matrix of u. Thus, at an interior local
maximum p, one has Du(p) = 0 and D2u(p) ≤ 0 by which we mean D2u(p)
is non-positive semi-definite, or

D2u(p)v · v ≥ 0 for all v ∈ Rn.

Exercise 7.8 Review the proof of the necessary conditions Du(p) = 0 and
D2u(p) ≤ 0 at a local maximum p ∈ U of a function u ∈ C2(U).

Any n×n real symmetric matrix, for exampleD2u(p) has real eigenvalues cor-
responding to a basis for Rn consisting of orthonormal vectors u1,u2, . . . ,un.
Taking these vectors as the columns of a matrix Q−1, we obtain a change of
basis matrix Q satisfying Q−1 = QT and havingM = QD2u(p)Q−1 diagonal.
The diagonal entries µjj of M are non-positive since

µjj = QD2u(p)Q−1ej · ej = D2u(p)Q−1ej ·Q−1ej.
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On the other hand, the trace is invariant under conjugation,1 so we can write

Lu(p) = tr(A(p)D2u(p)) = tr(A(p)Q−1MQ) = tr(QA(p)Q−1M) = tr(ÃM)

where Ã = QA(p)Q−1. The conjugation Ã of A is also symmetric since
(QAQ−1)T = (QAQT )T = (QT )TATQT and non-negative semi-definite since

QAQ−1v · v = AQ−1v ·Q−1v.

Furthermore, the product ÃM = (ãij)M is easily seen to be the matrix
obtained by multiplying each column of Ã by the corresponding eigenvalue
of M :

ÃM = (µjjaij).

This means

tr(ÃM) =
n
∑

j=1

ãjjµjj.

Finally, since each diagonal entry in Ã satisfies

ãjj = Ãej · ej ≥ 0,

and each diagonal element/eigenvalue of M satisfies

µjj = D2u(p)uj · uj ≤ 0,

we know
Lu(p) = tr(ÃM) ≤ 0.

This contradicts our assumption Lu(p) > 0. �

Note that one cannot just assume the product A(p)D2u(p) is non-positive
semi-definite. This will be the case if the product happens to be a symmetric
matrix, but not all products of real symmetric matrices are symmetric. The
real symmetric matrices do not form a ring.

If the above result is applied to a bounded domain U ⊂ Rn, we obtain
what is called a strong maximum principle. Note that when U is bounded,

1The fact that trace is invariant under conjugation is a consequence of the fact that for
real square matrices A and B one has tr(AB) = tr(BA) which can be seen immediately
from the formula tr(AB) =

∑n

i,j=1
aijbji.
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then the closure U and the boundary ∂U are both compact sets, and if
u ∈ C0(U), then

M = max{u(x) : x ∈ U} and m = max{u(x) : x ∈ ∂U}

are both well-defined finite numbers attained at points p ∈ U and q ∈ ∂U
with

u(p) =M and u(q) = m.

The strong maximum principle asserts p ∈ ∂U\U :

Theorem 38 (preliminary strong maximum principle) If U is an open and
bounded subset of Rn and L is an operator of the form (7.3) with leading
coefficient matrix A = (aij) non-negative semi-definite and satisfying c = 0
on U , then a strict subsolution u ∈ C2(U) ∩ C0(U) satisfying

Lu > 0 on U

satisfies
u(x) < m = max

∂U
u for x ∈ U . (7.4)

We next generalize the necessary condition for a local maximum in a
superficially trival way:

Corollary 39 If u, v ∈ C2(U) and v − u has an interior local minimum at
a point p ∈ U , then

Du(p) = Dv(p) and D2u(p) ≤ D2v(p)

by which we mean D2u(p)−D2v(p) is non-positive semi-definite.

This allows us to illustrate the next fundamental mechanism which may be
viewed as driving maximum principles.

Theorem 40 (preliminary weak maximum principle) If Lu ≥ 0 on a bounded
domain U ⊂ Rn with u ∈ C2(U)∩C0(U) and L has the form (7.3) with leading
coefficient matrix A = (aij) positive definite, i.e., L is elliptic, and satisfying
bj = c = 0 on U for j = 1, 2, . . . , n, then

u(x) ≤ m = max
∂U

u for all x ∈ U . (7.5)
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Proof: Assume, by way of contradiction, there is some p ∈ U with

u(p) > m = max
∂U

u.

Then
δ = max

x∈∂U
|x− p| <∞

and
v0(x) = u(p)− ǫ|x− p|2

satisfies

v0(x)− u(x) = u(p)− u(x)− ǫ|x−p|2 ≥ u(p)−m− ǫδ2 > 0 for x ∈ ∂U

if ǫ < (u(p)−m)/δ2. Thus,

max
∂U

(v0 − u) ≥ u(p)−m− ǫδ2 > 0.

Also,
c = max

U
(u− v0) = u(q)− v(q) ≥ 0 for some q ∈ U

and Lv0 = −2ǫ tr(A) < 0. Therefore, v(x) = v0(x) + c satisfies







v ≥ u on U ,
v(q) = u(q)
Lv = Lv0 = −2ǫ tr(A) < 0.

Using the corollary

Lu(q) =
n
∑

i,j=1

aij(q)Diju(q)

= tr(A(q)D2u(q))

= tr(A(q)D2v(q)) + tr(A(q)(D2u(q)−D2v(q)))

≤ Lv(q)

< 0.

This contradicts the hypothesis Lu ≥ 0 on U . �

Theorem 40 is a weak maximum principle by virtue of the weak inequality
in (7.5) in contrast to the strong inequality of (7.4) in Theorem 38. We
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next generalize the weak maximum principle to allow for first order terms in
the operator, but a new idea/observation is needed: Consider the function
g(x) = ǫeγx1 for which

Lg = ǫ(γ2a11 + γb1 + c)eγx1 .

Notice that for an elliptic operator we know a11 > 0. Therefore, as long as
the lower order coordinate functions b1 and c are bounded and a11 is bounded
away from zero, it is possible to ensure Lg > 0 for every ǫ > 0 by taking
γ > 0 large enough.

Theorem 41 (classical weak maximum principle) If Lu ≥ 0 on a bounded
domain U ⊂ Rn with u ∈ C2(U) ∩ C0(U) and L has the form (7.3) with
leading coefficient matrix A = (aij) positive definite (i.e., L is elliptic) and
satisfying the following:

(i) There is some λ > 0 such that

a11 = a11(x) ≥ λ > 0 for all x ∈ U ,

(ii) There is some Mb > 0 such that

|bj | = |bj(x)| ≤Mb <∞ for all x ∈ U and j = 1, 2, . . . , n, and

(iii) c = c(x) ≡ 0 on U ,
then

u(x) ≤ m = max
∂U

u for all x ∈ U . (7.6)

Proof: For any ǫ > 0, if we take γ > Mb/λ, then

L(u+ g) = Lu+ ǫ(γ2a11 + γb1)e
γx1 > 0

where g = ǫeγx1 as above.
Applying the preliminary strong maximum principle, Theorem 38, we

conclude
u(x) + ǫeγx1 < max

∂U
u for every x ∈ U .

Letting ǫ tend to zero wtih γ fixed gives

u(x) ≤ max
∂U

u for every x ∈ U

as desired. �
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Exercise 7.9 Show the hypotheses (i) and (ii) of the classical maximum
principle can be replaced with the condition that there is some constant Λb > 0
for which

|bj(x)|
a11(x)

≤ Λb <∞ for every x ∈ U .

Exercise 7.10 (uniqueness of solutions of the Dirichlet problem) Show that
if L is elliptic in a bounded domain U with c ≤ 0 on U and

(i) u, v ∈ C2(U) ∩ C0(U) satisfying

(ii) Lu = Lv on U , and

(iii) u = v on ∂U ,

then u ≡ v on U .

Exercise 7.11 (comparison principle) Show that if L is elliptic in a bounded
domain U with c ≤ 0 on U and

(i) u, v ∈ C2(U) ∩ C0(U) satisfying

(ii) Lu ≥ Lv on U , and

(iii) u ≤ v on ∂U ,

then u ≤ v on U .

7.12 E. Hopf Strong Maximum Principle

The next result strengthens the preliminary strong maximum principle, The-
orem 38, above:

Theorem 42 (E. Hopf strong maximum principle) If L is uniformly el-
liptic on U , i.e., there is some constant λ > 0 for which

Av · v =
n
∑

i,j=1

ai,jvivj ≥ λ|v|2 for all x ∈ U and all v ∈ Rn,

and c = 0 on U , then any subsolution u ∈ C2(U) satisfies the following:
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If there is some p ∈ U such that

u(p) ≥ u(x) for all x ∈ U ,
then u ≡ u(p) is constant on the connected component of U con-
taining p.

While there is a new condition on connectedness, Hopf’s result only re-
quires u to be a subsolution, rather than a strict subsolution as in Theo-
rem 38, and there is no requirement that the domain U be bounded. Some-
thing fundamentally different is required to get a result of this generality.

Theorem 43 (E. Hopf boundary point lemma) If L is uniformly elliptic in
U with c ≡ 0 and u ∈ C2(U)∩C1(U) is a subsolution, Lu ≥ 0, with maximum
at a point p ∈ ∂U for which there is a point q ∈ U with

Br(q) ⊂ U
where r = |p− q|, then either

Dnu(p) > 0

where n = (p− q)/|q− p| is the outward normal to ∂U at p or u ≡ u(p) is
constant on the connected component of U containing q.

Proof: Let us begin with an additional assumption:

u(x) < u(p) for x ∈ ∂Br/2(q). (7.7)

This is the only special case of the boundary point lemma required to prove
the E. Hopf2 strong maximum priniple. In fact, our strategy will be to prove
this special case, then prove the strong maximum principle, and then go back
and prove the boundary point lemma as stated using the strong maximum
principle to justify the additional assumption of the special case.

Now consider v : Br(q)\Br/2(q) → R by

v(x) = ǫ
(

e−γ|x−q|2 − e−γr2
)

where ǫ and γ are positive constants to be chosen below. Notice that we have

2There are (at least) two famous mathematicians with the last name Hopf: Heinz Hopf
and Ebehard Hopf. Heinz Hopf proved that an immersed topological sphere of constant
mean curvature must be a round sphere (1955). H. Hopf is also credited with a construction
called the Hopf fibration. To distinguish the Hopf who proved the boundary point lemma
and the strong maximum principle, I like to always use the appropriate initial.
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(a) v ∈ C2
(

Br(q)\Br/2(q)
)

,

(b) v(x) ≡ 0 for x ∈ ∂Br(q),

(c) v(x) > 0 for x ∈ ∂Br/2(q), and

(d)

Lv = 2γǫ

[

n
∑

i,j=1

aij [δij + 2γ(xi − qi)(xj − qj)] +

n
∑

j=1

bj(xj − qj)

]

e−γ|x−q|2

where

δij =

{

0, i 6= j
1, i = j

denotes the Kronecker delta.

Assuming the coefficients are bounded with

|aij(x)| ≤Ma and |bj(x)| ≤Mb for |x− q| ≤ r and i, j = 1, 2, . . . , n,

we may estimate the operator value Lv on Br(q)\Br/2(q) using the uniform
ellipticity as follows

Lv = 2γǫ

[

2γ
n
∑

i,j=1

aij(xi − qi)(xj − qj) +
n
∑

j=1

ajj +
n
∑

j=1

bj(xj − qj)

]

e−γ|x−q|2

≥ 2γǫ
[

2γλ|x− q|2 − nMa − nMb|x− q|
]

e−γ|x−q|2

≥ 2γǫ
[

γλr2/2− nMa − nMbr/2
]

e−γ|x−q|2

= γǫ
[

γλr2 − n(2Ma + rMb)
]

e−γ|x−q|2

> 0

if we take

γ >
n(2Ma + rMb)

λr2
. (7.8)

In particular, this will imply

L(u− u(p) + v) = Lu+ Lv > 0 on Br(q)\Br/2(q).
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Having fixed γ > 0 satisfying (7.8) and recalling our assumption (7.7) ac-
cording to which u(p)− u(x) > 0 for |x− q| = r/2, we may choose ǫ > 0 so
that

v(x) < u(p)− u(x) for |x− q| = r/2.

Therefore, w(x) = u(x)− u(p) + v(x) satisfies

(a) w ∈ C2(Br(q)\Br/2(q)) ∩ C1
(

Br(q)\Br/2(q)
)

, and

(b) w(x) ≤ 0 = w(p) for x ∈ ∂(Br(q)\Br/2(q)).

By the preliminary strong maximum principle, Theorem 38, we have

w(x) < w(p) for all x ∈ Br(q)\Br/2(q).

That is,
u(x) < u(p)− v(x) for all x ∈ Br(q)\Br/2(q).

This means

Dnu(p) = lim
hր0

u(p+ hn)− u(p)

h

≥ lim
hր0

u(p)− v(p+ hn)− u(p)

h

= − lim
hր0

v(p+ hn)− v(p)

h

= −Dnv(p)

= −Dv(p) · n

= 2ǫγe−γr2(p− q) · p− q

r

= 2ǫγre−γr2

> 0.

This completes the proof of the E. Hopf boundary point lemma under the
additional assumption3 (7.7). �

Proof of the E. Hopf Strong Maximum Principle: Say you have a
connected component U1 of U with a point q1 ∈ U1 satisfying

u(q1) =M1 = max
U1

u

3which, incidentally, is the way E. Hopf actually stated it.
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but there are also points x ∈ U1 with u(x) < u(q1). (This is what it would
mean for u to be non-constant on U1.). At this point the strong maximum
principle follows almost immediately from the special case of the boundary
point lemma if we can just find a point

q ∈ U1 = {x ∈ U1 : u(x) < M1} 6= φ

that is closer to a point

p ∈ A = {x ∈ U1 : u(x) =M1} 6= φ

than it is to ∂U1 and such that all points in the boundary of the ball Br(q)
with r = |p− q| are in U1 except, of course, p ∈ ∂Br(q).

First of all, because an interior local maximum is achieved at p, we know
Du(p) = 0 is the zero (gradient) vector. On the other hand, the special case
of the boundary point lemma gives

Dnu(p) = Du(p) · n > 0

where n = (p− q)/r. So this is a contradiction and the proof is complete.

In order to find the points p and q we need to know what it means for a
set to be connected. (The connected component U1 of U is a connected
set in particular.) This is the main thing. There are a few more steps, but
they are not difficult. A set U1, say, is connected if you cannot write U1 as a
union of nonempty, disjoint, open sets. This means that when you write
U1 as a union of any two sets, then one of the three conditions (nonempty,
disjoint, and open) must fail. In this case, consider the sets U1 and A defined
above. We have that U1 and A are both nonempty. They are also obviously
disjoint from one another. This means that for U1 to be connected, one of
the sets U1 or A must not be open. That fact that u is a continuous function
implies U1 is open. In order to review the definition of what it means to be
open, let’s review the justification of this fact in terms of epsilons and deltas.4

4One definition of what it means for a function to be continuous is that inverse images
of open sets are open. Since U1 = u−1(−∞,M), the fact that U1 is open is immediate
according to this definition. In terms of epsilons and deltas, however, the definition of
continuity is a bit different, and we need to remember what it means also for a set to be
open, namely that for each point x in the set U1, there should be an open ball Br(x) with
r > 0 such that Br(x) ⊂ U1. This is the point of view we will take here.
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If q ∈ U1, then u(q) < M1, and there is some δ > 0 such that Bδ(q) ⊂ U1

and
|u(x)− u(q)| < ǫ =M1 − u(q) for x ∈ Bδ(q).

This implies u(x)−u(q) ≤ |u(x)−u(q)| < M1−u(q) which means u(x) < M1

and x ∈ U1. Thus, Bδ(x) ⊂ U1 and U1 is open.

Figure 7.4: Interior points q and p with u(p) < u(q) = M1 for which the
E. Hopf boundary point lemma (special case) applies on Br(p) with r = ǫ/2.

Finally, then, we know from the definition of connectedness that the set
A must not be open. This means there is at least one point q1 ∈ A for which
every ball Bδ(q1) contains points x ∈ U1\A = U1. In particular, if we take
Bδ(q1) ⊂ U1, then there is a point p1 ∈ Bδ/2(q1) ∩ U1 ⊂ U1. This point p1

is closer to q1 than it is to ∂U1. In particular, we can take the point q ∈ A
closest to p1. We know such a point exists because A is a closed set. We also
know

|q− p1| ≤ dist(A,p1) = min{|x− p1| : x ∈ A} = |q1 − p1| = ǫ > 0.

There may be other points in A∩∂Bǫ(p1), but we do know Bǫ(p1) ⊂ U1∩U1.
In particular, setting r = ǫ/2 and taking p = (q + p1)/2, we obtain the
required conditions on points q ∈ A ∩ U1 and p ∈ U1:

(i) u(q) =M1 and
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(ii) u(x) < M1 for x ∈ Br(p)\{q}.
Construction of the points p and q with the various open balls mentioned
above is illustrated in Figure 7.4.

This completes the proof of the E. Hopf strong maximum principle. �

Proof of the E. Hopf boundary point lemma: Under the general hy-
potheses of the boundary point lemma (Theorem 43) we may apply the strong
maximum principle to conclude u(x) < M = u(p) for x ∈ Br(q) unless u
is constant on Br(q). In the former case the ball Br/2((q + p)/2) satisfies
the hypotheses of the special case of the boundary point lemma with the
additional assumption u(x) < M on ∂Br/2((q + p)/2)\{q}. This allows us
to conclude Dnu(p) = Du(p) · n > 0. �

Exercise 7.13 Formulate versions of the strong maximum principle and the
Hopf boundary point lemma for ordinary differential operators applied to
functions on an interval. Prove the latter and use it to prove the former.
This should give you a (different?) solution for Exercise 7.5.

7.14 The Comparison Principle for Quasilin-

ear PDE

The results above apply to subsolutions of second order linear elliptic op-
erators. The mean curvature operator, of course, is not linear. But it is
quasilinear having the form

Mu =

n
∑

i,j=1

aijDiDju+

n
∑

j=1

bjDju+ cu

where the coefficients aij , bj and c are functions of x ∈ U , u ∈ R, and
Du ∈ Rn. That is, aij = aij(x, u,Du), bj = bj(x, u,Du), and c = c(x, u,Du)
for i, j = 1, . . . , n.

Exercise 7.15 Identify the coefficients in the mean curvature operator M
and show that M is uniformly elliptic on any domain U with u ∈ C1(U) in
the sense that there is a constant λ > 0 for which

n
∑

i,j=1

aij(x, u(x), Du(x))pipj ≥ λ|p|2 for every p ∈ Rn.
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The mean curvature operator also has divergence form, meaning it can be
expressed as

Mu =
n
∑

j=1

Dj [Aj(x, u,Du)] + +
n
∑

j=1

bjDju+ cu (7.9)

where A = (A1, A2, . . . , An) is a vector valued function.

Exercise 7.16 Assume the vector valued function A in the divergence form
operator is differentiable and expand the second order terms in terms of
derivatives of (the component functions of) A. Under what conditions on
A is the divergence form operator M uniformly elliptic?

Theorem 44 (comparison principle) If M : C2(U) → C0(U) is a uniformly
elliptic divergence form operator with the form (7.9) with A ∈ C1(U × R ×
Rn → Rn), and u, v ∈ C2(U) satisfy

Mu ≥Mv on U and u∣
∣

∂U

≤ v∣
∣

∂U

,

Then u ≤ v on U . Furthermore, if U is connected, then either u < v on U
or u ≡ v on U .

There is also a version of the boundary point lemma:

Theorem 45 (boundary comparison principle) Given the hypotheses of The-
orem 44 if U satisfies an interior sphere condition at p ∈ ∂U , that is, there
is some ball Br(q) ⊂ U with p ∈ ∂Br(q), then

Dnu(p) = Du(p) · n > Dv(p) · n = Dnv(p)

where n = (p− q)/r.

7.17 The Concus-Finn Comparison Principle

If u and v satisfy the hypotheses of Theorem 44 and the operator is the
capillary operator

Mu = div

(

Du
√

1 + |Du|2

)

− κu

then even more is true.


