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Preface

Capillarity phenomena are all about us; anyone who has seen a drop of
dew on a plant leaf or the spray from a waterfall has observed them.
Apart from their frequently remarked poetic qualities, phenomena of this
sort are so familiar as to escape special notice. In this sense the rise of
liquid in a narrow tube is a more dramatic event that demands and at
first defied explanation; recorded observations of this and similar occur-
rences can be traced back to times of antiquity, and for lack of expla-
nation came to be described by words deriving from the Latin word
“capillus”, meaning hair.

It was not until the eighteenth century that an awareness developed
that these and many other phenomena are all manifestations of some-
thing that happens whenever two different materials are situated adjacent
to each other and do not mix. If one (at least) of the materials is a fluid,
which forms with another fluid (or gas) a free surface interface, then the
interface will be referred to as a capillary surface.

Attempts to explain observed phenomena go back at least to Leo-
nardo da Vinci. A consistent theory capable of scientific prediction first
appears however in the writings of Young and of Laplace in the early nine-
teenth century. The theory was later put onto a more solid foundation
by Gauss, and it became the object of extensive study by some of the
most imposing scientific figures of that century (although it must be re-
marked that very little more of major new interest was accomplished).
The problem fell out of fashion during the first half of the present cen-
tury; however, the impetus on the one hand of new mathematical de-
velopments on minimal surfaces, and on the other hand of the practical
demands of space age technology and of medicine, have now led to
renewed activity on several fronts.

Among mathematical developments, the BV theory, founded on the
ideas of Caccioppoli and of de Giorgi and developed by Miranda, Gia-
quinta, Anzellotti, Massari, Tamanini, and others, led to the first general
existence theorem for capillary surfaces (Emmer [46]). Independently the
ideas of geometric measure theory were introduced and developed by
Federer, Fleming, Almgren, Allard, and others, and were used effectively
by Taylor [177] to prove boundary regularity.

From an engineering point of view, specific problems have been attack-
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ed energetically using traditional methods, chiefly that of matching ex-
pansions (due originally, incidentally, to Laplace), and also numerically
with computers. In general, good results were obtained; however, in
some particular situations the procedures led unexpectedly to incoherent
answers.

It is this circumstance that attracted my own interest. A direct study of
the underlying equations showed that a discontinuous dependence on
data occurs, which is governed by the particular nonlinearity in the equa-
tions. Unconventional but simple procedures led to a precise characteri-
zation of the criterion for singular behavior, to general bounds on so-
lutions, and to asymptotically exact information in some cases.

It turned out that various other problems also lent themselves to anal-
ogous (phenomenological) approaches. By now a number of studies have
appeared by various authors, using varying methods and occasionally
with striking conclusions. A common and unifying thread is appearing,
which may not be evident on reading the individual papers. I hope the
detailed results presented in the following chapters will be of interest in
themselves, and that their juxtaposition under a single cover will help to
bring the thread into visibility.

The exposition is not intended to be encyclopedic, and the omission
of a particular result in no sense implies that I regard it less highly than
material I have included. I have tried to illustrate by example the varying
kinds of situations that may be encountered, and in each case the choice
of example has been determined largely by the simple criterion of fami-
liarity. Thus, the work of Vogel [182, 183, 184] on liquid bridges, and of
Turkington [180] on exterior problems and extension to a class of non-
linear operators, each of which I hold in high regard, is omitted by cir-
cumstance and not by design.

A glance through the Contents should indicate the specific nature of
the material that has been covered. Much of it refers to particular config-
urations that may be taken as cases of special interest in the context of
the general existence (and nonexistence) results of Chapters 6 and 7. Also
for these general results the exposition is not complete, my intention be-
ing to emphasize the underlying ideas and the unifying thread. Attention
is directed throughout to the unexpected, in the sense of behavior that
differs qualitatively from what would be predicted by usual perturbation
or linearizing procedures.

In the interest of conceptual and notational simplicity all material in
the text is presented for the (physical) case of two-dimensional surfaces in
3-space. Many — but not all — of the results extend without essential
change to surfaces of codimension one in n-space.

The purview of this book is limited to equilibrium configurations.
It is not limited to energy minimizing configurations. The equations are
not cognizant of global energy relations, and can lead to interesting
solutions that are not observed physically as a global entity. Some of
these are studied in Chapter 4.
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Time dependent situations present a different world that will require a
different book, presumably by a different author. We mention however
recent work by Bemelmans [97], Pukhnachev and Solonnikov [151], and
Dussan V and Chow [44].

I am indebted to many colleagues and students for comments and dis-
cussions that have done much to clarify my understanding and to shape
my point of view. The book has also profited immeasurably from my
long collaboration with Paul Concus. As to the specific material in the
text, J.B. Keller has made helpful comments with regard to Chapter 1.
Chapters 6 and 7 have benefited greatly from observations by L.F. Tam.
I wish especially to thank Enrico Giusti, who generously shared with me
his deep insight during the course of many conversations over many
years. Giusti also read Chapters 6 and 7 in detail, and his comments led
to a number of improvements in the formulations and proofs of the
results.

Much of the writing was done while I was visiting at Universitdt Bonn
under the auspices of Sonderforschungsbereich 72. I owe a special debt of
gratitude to Stefan Hildebrandt for his warm hospitality and for the
stimulating conditions for scientific work in the Institute he directs.

The new research presented here was supported in part by the Na-
tional Science Foundation and by the National Aeronautics and Space
Administration.

The larger portion of the typing was done by Charlotte Crabtree, who
also prepared most of the figures. I want to thank her not only for her
elegant work, but also for her patience with me in the course of many
rewritings and changes. 1 also wish to thank Anke Vogt for her excellent
typing of the remainder of the material.

This book has gained in accuracy and readability from the scrupulous
attention its production editor gave to layout and detail. My thanks are
due also to the compositor for precise and careful work.

Finally I want to express my appreciation to Springer-Verlag for its
patience and understanding while awaiting a long overdue manuscript,
and for its generous attention to details of production.

Palo Alto, California ROBERT FINN
November, 1985
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(X. Part of a Letter from Mr. Brook Taylor,
EF.®.S. to Dr. Hans Sloane R. S. Secr. Con-
cerning the Afcent of Water between two Glafs
Planes.

. HE following Experiment feeming to be of ule,

in difcovering the Proportions of the Attrattions
of Fluids, T fhall not forbear giving an Account of its
tho’ I have not here Couvenicncies to make it in fo
fuccefsful a manner, as I could wifh.

I faften'd two picces of Glafs together, as flat as I
could get ; fo that they were inclined in an Angle of
about 2 Degrees and a half. Then I fet them in Water,
with the contiguous Edges perpendicular. The upper
part of the Water, by rifing between them, made this
H]p?rbola 5 [See Fig. 5.] which is asI copied it from the
Glals,

I have examined it as well as I can, and it feems to
approach very near to the common Hyperbola. But my
Apparatus was not nice enough to difcover this exactly.

The Perpendicular Affymptote was exaltly determined
by the Edge of the Glafs; but the Horizontal one I could
not {fo well difcover, I am,

dir,
Bifrons uear Can-
terbury, Junc Your moft bumble Servany,
35 1712

BROOK TAYLOR.

X. An Account of an Experiment touching the Af-
cent of Water between two Glafs Planes, in an
Hjyperbolick Figure. By Mr. Francis Hauksbee,
F. R.S.

Took two Glafs Planes, each fomewhat more than
20 Inches long, of the truclt Surfaces I could pro-
cure. Thefe being held clofe together at one of their
Ends, the other Ends were opened exaltly to an Angle
of 20 Minutes. In this Form they were edgeways put



into a Trough of ting'd Water, which immediately
arofe between them in the Figure of the annext Scheme, s. Fig, 7.
At another time the Planes were opened to an Angle of
40 Minutes 5 then the Water appear’d between them,
as in the Scheme with that Title. By thefe Schemes Se¢Fig. 6.
the Proportions of the Power of Attration are in (ome
meafure evident to the Eye; for there may be feen at
the feveral Diftances, how many Lines (which are 12ths
of Inches) the Water is elevated, and the prodigious
Increafe of them near the touching Ends. I hope the
Tables are pretty accurate 5 for after many tryals, I find
the Suceefles to be much the fame, according to the dit-
fereot Angles. This Experiment was firt made by Mr.
Breok Taylor, as appears by his Letter to Dr. Hans
Sloane, R. S. Secr. but he confefles his Apparar#s not
nice enough to dilcover exaltly the Figure which the

Water made between the Planes:



Chapter 1

Introduction

1.1. Mean Curvature

In a celebrated Essay presented to the Royal Society of London in 1805,
Thomas Young [189] introduced the notion of mean curvature of a
surface; in the following year, 1806, Pierre Simon Laplace reintroduced
the notion and derived for it a formal analytical expression. The original
reasoning of Laplace is reproduced in the first of two supplements to the
tenth book of his Tiaité de mécanique céleste [114]. The following ver-
sion of his derivation is in a more modern notation and has been put
into an invariant setting; the underlying ideas are however still those of
Young and of Laplace.

Denoting the surface by &: x(«, f), we consider the curve 4 of in-
tersection of % with a plane IT containing a normal vector N through a
point p of % (see Fig.1.1), and we assume ¥ parametrized by its arc
length s in some orientation. The curvature of %, considered as positive
when the curve is bending in the direction of N, is

dx dN
== 1.1
k ds ds (L)

Figure 1.1. Normal section to % at p.
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Writing
de 4B (1.2)

s ds
e=—x,-N,, 2f=—(x, Ny+x;-N), g=-x;-N; (13)

we obtain

k=ed?+2fdf+gf> (1.4)
Setting
E=|x,|? F=x,-Xg, G=Ix,0% (1.5)
we have also
dx|? . .
d—’s‘ —1=Ed®+2Fdf+G > (1.6)

In what follows we denote with the subscripts 1 and 2 quantities that

correspond to any two mutually orthogonal directions at a point on %.
We then find

ky +k2=€(o€f+d§)+2j'(d1/3'1+052ﬂ'2)+g(,3%+/)i§) (1.7)
1=Ed}+2Fd;f;+Gp;, j=1,2 (1.8)
0=Eod, o, +F(d;f,+0,5,)+Gp, - (1.9)

Let us write
2H=k, +k,. (1.10)

Introducing the imaginary unit i=]/j and setting p=d, +id,, g=f,
+if,, we may write (1.7) in the form

2H=epp+f(pg+pq)+gqq. (1.11)

The remaining expressions (1.8) and (1.9) yield

2=Epp+F(pqg+pq)+Gqq (1.12)
0=Ep*+2Fpq+Gq>. (1.13)

By expressing the product and sum of the roots of (1.13) in terms of the
coefficients and inserting the resulting expressions into (1.11) and (1.12),
we are led to the formula

_Eg-2Ff+Ge

2H= , 1.14
EG—F? (1.14)

a result that clearly does not depend on the particular choice of (orthog-
onal) directions on %. Thus the relation (1.10) has an invariant geometri-
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cal meaning; we define H to be the mean curvature of & at the point of
evaluation.

1.2. Laplace’s Equation

These fundamental observations of Laplace did not arise in connection
with any abstract study of the geometry of surfaces. His motivation lay
instead in his attempt to clarify conceptually and to characterize quanti-
tatively the rise of liquid in a capillary tube (see Fig. 1.2). Laplace showed
by an ingenious potentialtheoretic reasoning that the mean curvature H
of the free surface is proportional to the pressure change across the
surface; thus, by the laws of hydrostatics, there must hold H=3«ku,
where u is the height of the surface above the level corresponding to
atmospheric pressure and x is a physical constant, and (1.14) then yields
a differential equation for the unknown surface . A simplified —
although not entirely convincing — version of Laplace’s reasoning has
become the standard presentation for engineering textbooks.

Since a conceptually preferable way to derive that relation was later
given by Gauss, we do not repeat Laplace’s reasoning here. For the
moment, we assume the result and write the equation that results when
the surface can be described as a graph z=u(x, y). We have then

E=(1+u?),  F=uu, G=(1+u) (1.15)

em—txx g My g My (1.16)

. f . 8 ,
V14 |Dul? VY 1+|Dul? V1+|Dul?
with [Dul*=u}+u?, and we find from (1.14)

2H=au, +2bu +cu,, (1.17)

=Ly
-

iy
S

Figure 1.2. Capillary tube (symbols refer to symmetric homogeneous case).
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with
L+u; o Ul o 1+u? (1.18)
T e (R 1Y A (R I
We are thus led to the equation
au, +2bu, +cu, =xu (1.19)

for the height u of the surface. We note that

1

_p2— _
ac—b —(1+|Du|2)2>0
for any function u(x, y) and thus the equation, although nonlinear, is of
elliptic type for any solution. It is not uniformly elliptic; this circum-
stance has important consequences for the behavior of the solutions.

The equation that usually bears Laplace’s name is obtained from (1.19)
by setting k=0 and linearizing about the identically zero solution. La-
place recognized that for the present problem the linearized equation is
not adequate to describe the physical surfaces.

1.3. Angle of Contact

In the same Essay of 1805, Thomas Young gave a reasoning to support
the view that in an equilibrium configuration in the absence of frictional
resistance to motion along .the boundary walls, the fluid meets the
bounding walls in a constant angle y, depending only on the materials
and in no way on the shape of the boundary or of the surface.

Like the reasoning of Laplace for the above relation H=%xu, a ver-
sion of the Young argument has become standard in engineering litera-
ture; it is however also unconvincing.

1.4. The Method of Gauss; Characterization of the Energies

It turns out that both these questions can be dealt with at once by a
method proposed by Gauss [73] in 1830. Gauss based his reasoning on
the principle of virtual work, according to which the energy of a
mechanical system in equilibrium is unvaried under arbitrary virtual
displacements consistent with the constraints. For a general (three-phase)
system consisting of fluid and gas (or two fluids) and rigid bounding
walls (see Fig.1.3) the energy in question is conveniently divided into
four terms:
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Figure 1.3. Three-phase system: fluids .o, 4; solid £*.

i) Free Surface Energy. If the configuration is to be in equilibrium, the
elements of a fluid in the free surface separating two media must be more
attracted to that fluid than to the outer medium (fluid or gas, see
Fig. 1.4); otherwise the two media would mix and the surface would
disappear. Thus there is a differential attraction and resultant lowering of
the fluid density within the surface. The energy associated with this
removal of fluid from the surface must be proportional to the surface
area; we write

Ey=0. (1.20)
The constant ¢ has the dimensions force per unit length and is known as
the surface tension.

ii) Wetting Energy. This is the adhesion energy between fluid and the
(rigid) bounding walls; it is analogous to surface energy, except that fluid
particles near the rigid surface can experience the larger attraction in
either direction (since the walls are rigid, the surface cannot disappear

Figure 1.4. Differential attractions on free surface.
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when the net attraction is toward the wall). We write
&= —a(B* S*+ p*T*)

where #* is the area wetted by the fluid and .#* is the area in contact
with the outer medium. When making the variation, only those values of
f*, f* in an immediate neighborhood of the contact line need be taken
into account. Neglecting terms that are unvaried and noting that any
variation of ¥* is the negative of that of &*, we may extend f* in an
arbitrary (continuous) way into &%, and write

Ey=—0pIL* (1.21)

with = f* — f*. Here .#* can be chosen to be any portion of the wetted
surface that includes a neighborhood of the contact line. The sign on the
right of (1.21) is chosen so that >0 corresponds to a “wetting” con-
figuration, as indicated in Fig. 1.2. We shall show that the condition |p|
<1 is necessary for stability of the configuration. We refer to f as the

relative adhesion coefficient between the fluid and the bounding walls on
I*.

iii) Gravitational Energy. We assume more generally a potential en-
ergy Y per unit mass, depending on position within the media. The
resultant energy is

5,:5 Ypdx (1.22)

where p is local density. The integral is formally to be taken over all of
the space that is occupied by the media; however, as above, we may
choose for p the difference between local fluid density and any con-
tinuous extension of the density of the outer medium. The domain of
integration can be restricted to any region in which the variation has its
support, the density exterior to the fluid being taken to be zero.

iv) Volume Constraints. For many problems (e.g., that of Fig. 6.1)
the constancy of volume of fluid is a constraint that must be respected
when choosing displacements. A natural way to do so is to introduce the
volume ¥~ multiplied by a Lagrange parameter 4 as a new energy term,
and then to allow arbitrary displacements consistent with the constraint
imposed by the rigid boundary. We write

E,=ciV (1.23)

where the multiplier 1 is to be determined.
For the total energy we thus have

1
é"=a{y—ﬂ9*+a§)”pdx+/l“f}. (1.24)
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1.5. Variational Considerations

In order to apply the principle of virtual work, we introduce a virtual
displacement in the form of a variation

el=e(EN+3T)+0(e?) (1.25)

over .%. Here N is the unit normal on %, directed out of the fluid; T is a
unit tangent, defined in a closed strip 2; of width 6 adjoining the contact
line X of & with &*, such that on X, T is orthogonal to X and directed
out of &. Tae functions ¢ and # are arbitrary, subject to the conditions

Epr<i
suppnc X, (1.26a, b, c)
EN+nT tangent to * on X.

The condition (1.26c¢) has as consequence

Ecosy—nsiny=0 (1.27)

on X, where y is the angle between .% and %* on X, measured within the
fluid (see Fig. 1.5, which indicates the configuration in a plane normal to
2).

In terms of local coordinates «, 3, the surface % can be represented by
a function x(e, ). For purposes of making the variation, we denote the
unvaried surface by %, and we introduce the varied surface

F(e): x(o, B)+e[EN+nT]+0(e?), (1.28)

the last term being chosen so that when x(«, f) lies on X, the varied
surface lies on &*; thus the surfaces & and .%* continue to contact (on

¢N

EN+9T

Figure 1.5. Variational constraint on contact manifold.
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a varied ) throughout the variation, as £é—0. In view of (1.26¢) the
estimate O(¢?) is uniform among admissible &, 5, for all sufficiently small
e>0.

The area & is given by

V:j]/EG—FZdocdﬁ. (1.29)

Here
E=|x,+¢el |*=E,+2¢ex,-{,+0(e?)
F=(x,+60) (xp+el)=Fo+e(x,- {,4%,-L)+0(D)  (130)
G=Ixp+e(°=Go+2¢ex,- {;+0(e?).

We thus have, up to terms of order &2,

1
EG—F*=W, {l—l—s[EOxﬂ-Cﬂ—Fo(xa-CB+xﬂ'Ca)+Goxa- ¢ ———Wz},
0

o (131)
with W,=1/E,G,— FZ, and hence

. 0¥
iy

zdadf. (1.32)

=Sonﬁ-CI,—FO(xa-C/}-I-xB-Ca)+G0xa~C
=0 WO

Recalling the definition (1.3) of e,f, g and the relation (1.14), we may
write

P = —25 EHAY
&

+j Eyxg- D)= Fo[x,- D)y +x5-(nT) 1+ Gox,-(n7T), dudp

WO
where H is the mean curvature of &, corresponding to the chosen direc-

tion for N. An integration by parts, using (1.26b), converts the integral
over X; to the form

1
@nT~—n%a—%nwﬁ4—aa+mmma
z Wo

Gox,— F,x —Fyx,+E X
_ T. 0 *a 0 ﬂ)_l_( 0 *a 0 ﬁ)}dad ,
»‘25” {( WO a W() B ﬂ

which we may write in intrinsic notation (cf. [14], pp. 168-174) in the
form

0x
(§ ;1T~~~ds——§ nT-Axd<. (1.33)
z on zs
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Here ¢/0n is the outer normal derivative on %, at X, and thus ¢x/dn=T.
For the invariant Laplacian 4x we have further (cf. [116], p. 131)

Ax=2HN; (1.34)

hence the second term in (1.33) vanishes. Since |T|=1, we conclude

S = —2j chdy+§ nds. (1.35)

F

Since ¢EN+#T is orthogonal to 2 and in the tangent plane to &*, we
find immediately

5/*:* (EN+4T)- vds (1.36)

where v is the unit exterior normal to X in the tangent plane of &*.
Since N -v=siny, T-v=cosy (see Fig. 1.5) we have

9*=§ (&siny+ncosy)ds. (1.37)
z
We consider next the term A%~ of (1.25). Under the variation (1.28) we

find
“I/(s)—”ffo=es EdL +0(E?)+ Y5 (1.38)

FNZs
where 7 is the change in volume due to the displacement ¢((N+#T) of

Zs. Since £2+n?<1, ¥; is contained in the tubular volume generated by
balls of radius ¢ centered on X; thus

¥;< Ce(e+0)Z, (1.39)

for some constant C, as ¢—0.
An analogous discussion yields

j Ypdx—!n )"pdx=a§ EYpdS +0()+ W (1.40)
¥ (&) Yo 35

with
Ws<CMe(e+0)2 (1.41)
where M is a bound for |Yp| in the above-indicated tubular domain.

Here p is to be taken as the local difference of densities between the two
adjacent media.
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Collecting the above evaluations, we may write from (1.25)

1.
—@@+2§ éde——§ na’s+ﬁ<§> (Esiny+ncosy)ds
7 7 * : (1.42)

<CoX+CMo2.

1
——j grpdg)—/tj cdy
g F X5 FNEs

We now let d—0. A simple way to do so is to multiply any given # by
the factor (1 —min {d/J, 1}), where d is distance from 2; then suppyn re-
mains in X;. All hypotheses remain fulfilled in the limiting procedure,
and the values of y on X are unvaried. Both terms on the right in (1.42)
tend to zero in the limit, and we obtain finally for the limit of the rates
of change of energy corresponding to the given virtual displacements

, . 1
é”‘°=lim<§:§ ¢ (~—2H+4 )’“p+/’u>d¢9)
5-0 & o

(1.43)
+§> [—Bésiny+n(1—fcos )] ds.
z

1.6. The Equation and the Boundary Condition

According to the principle of virtual work, ¢ must vanish for any choice
of &, n, subject to (1.26a) and to (1.27). Thus also £°=0. We first observe
that if —2H+ Yp+44%0 at a point pe.¥, then by choosing n=0 and ¢
to be positive and to have its support in a small enough neighborhood of
p, we arrive at a contradiction. Thus

|
2H=/+-1Yp (1.44)
g

holds on &, and the first integral in (1.43) must vanish, regardless of ¢&.
Thus the second integral must also vanish. The choice ¢=tsiny,
=7 cosy on X satisfies the admissibility conditions if |t| <1, and we find

<§ T(f —cosy)ds=0. (1.45)

A repetition of the above reasoning now yields
cosy=p} (1.46)

on X, thus determining the “contact angle” y in terms of the local
relative adhesion coefficient /3.
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1.7. Divergence Structure

We can get further information by making a different choice of variation.
Consider an open piece & of capillary surface &, sufficiently small that
it can be represented as a graph z=u(x, y) over a domain Q. We consider
only variations that have their support in Q. Restricting attention to
terms in the energy expression (1.24) that will be varied, we may write

1
é"‘za{y Vi+ul+u, dcu+—§Ypdx+/l§ udw}. (1.47)
o G o

We introduce a particular virtual displacement of a candidate u(x, y)
for an equilibrium surface by setting ii(x, y; &) =u(x, y)+&n(x, y), where g
is arbitrary, subject to smoothness conditions and to suppy<Q. The
principle of virtual work now implies

j Vu-Vn

1
*_ﬁda)-i-—j rIYpdw—i—iX ndw=0. (1.48)
Q]/l+uf.—|—uf. o Ja e}

We integrate the first term in (1.48) by parts to obtain

1
S n(—dWTu+~Yw+%>dw=0 (1.49)
0 o

where we have set

1
Tu=—=="Vu. (1.50)
14| Vul?

Since 7 is arbitrary, we obtain

divTu=" v+, (1.51)
o

over Q as the equation for the free surface & in the given coordinates. A
comparison with (1.44) shows immediately that the mean curvature of a
surface can be expressed as a divergence, a fact that can also be verified a
posteriori by direct calculation.

1.8. The Problem as a Geometrical One

We shall see in the following sections that in many cases of general
interest the constant A in (1.44) (or (1.51)) can be determined explicitly in
terms of the prescribed data. In a general case, it must be expected that
its determination leads to technical difficulties or that A will not be
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unique (reflecting a nonuniqueness of the surface &’). However, in every
case in which 4 can be determined, the problem of finding a capillary
surface ¥ is a purely geometric one: to find a surface whose mean
curvature is a prescribed function of position (see (1.44) or (1.51)) and
which meets prescribed (rigid) bounding walls in a prescribed angle y (see
(1.46)).

1.9. The Capillary Tube

We consider the configuration of Fig. 1.2, in which the tube has infinite
height but may have arbitrary section €, and the container is a circular
cylinder of large diameter, so that the fluid surface level at a large
distance from the tube provides a reference level (z=0) for atmospheric
pressure that does not change with perturbations of the fluid surface in
the tube. Thus if the outer surface is unvaried, there will be effectively no
volume constraint and we may take A=0. We limit attention to surfaces
z=u(x, y) that project simply onto Q and take for Y the gravitational
potential Y'=gz. We assume further p=constant (incompressible fluid).
Then (1.51) becomes

divTu=xu (1.52)

(in agreement with (1.19)), with

Pg

K=—.
a

(1.53)

We refer to « as the capillarity constant.

Let 2=0Q, and let v be exterior unit normal on X. Letting y be the
angle between the surface % and the cylinder wall & over X, we
calculate easily v- Tu=cosy, which according to (1.46) is the physical
constant f5. Thus

v-Tu=cosy (1.54)

provides a boundary condition for u over 2. From an analytical point of
view, the problem now becomes: to find a solution of the (nonlinear ellip-
tic) equation (1.52) subject to the (nonlinear) boundary condition (1.54).

Laplace discovered [114] that the volume of fluid lifted over Q above
the reference level z=0 can be determined explicitly in terms of the
boundary data. Specifically:

Theorem 1.1. Let u(x, y) be a solution of (1.52) and (1.54). Then the volume
Y satisfies

1
1/‘=—§> cos yds. (1.55)

K
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Proof. Integration of (1.52) over Q yields

§ divTudcu:K"/f=§> v~TudSE<§) cosyds (1.56)
Q y

z z

by the divergence theorem and (1.54).
If the volume is constrained then (1.52) changes to

divTu=xu+21 (1.57)

where 4 is to be determined by the constraint. The simplest such problem
is that in which the tube and container coincide (Fig. 6.1) and are of
homogeneous material, so that y=const. In that case, an integration of
(1.57) by parts yields

1
h= g (X cosy—r). (1.58)

The transformation u=v—A/k converts (1.57) to (1.52); thus it follows
from the uniqueness of the solutions to (1.52) and (1.54) that the shape of
the surface & is independent of the constraint.

We shall prove the uniqueness of the solutions of the capillarity
problem in Chapter 5. Existence proofs, under varying conditions of
regularity of X, have been given by M.Emmer [46], C. Gerhardt [74, 75,
76], N. Ural'tseva [181], Finn and Gerhardt [68], J. Spruck [171], Simon
and Spruck [167], E.Giusti [84, 85, 86], and — most recently —
G.Lieberman [117, 118]. From the point of view of the material present-
ed here, the proof of Emmer (the first to be given) has a special interest,
as his boundary regularity condition connects closely with some remark-
able properties of solutions in wedge domains, to be developed in Chap-
ter 5. In Chapter 7 we present a general existence proof, based on ideas
of Miranda and of Giusti, and to some extent on ideas of [68], in which an
extended form of the Emmer condition appears. The results of Chapter 7
cover all situations encountered in the text except those of the sessile and
pendent drops, which are discussed separately in Chapters 3 and 4.

For the special case of circular section with constant y, which we
develop in the following chapter, simple proofs appear in Johnson and
Perko [105] and in Finn [57].

Throughout the text, we will assume 0<y<m/2. The case y>mn/2 re-
duces to that one under the transformation u— —u.

1.10. Dimensional Considerations

For many purposes, it is advantageous to write the equation (1.52) in
nondimensional form. Letting a be a representative length, we set U
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=u/a, X=x/a; (1.52) then takes the form
divTU=xra?U=BU (1.59)
and the boundary condition (1.54) becomes
v- TU=cosy. (1.60)

The nondimensional “Bond number” B is a measure of the “size” of the
configuration. A configuration can be “large” if a or g is large, or if ¢ is
small. However, whenever uniqueness holds, any two capillary surfaces
with the same B and y over geometrically similar domains will themselves
be geometrically similar; thus, the nondimensional equation groups the
solution surfaces into equivalence classes of geometrically similar surfaces
that need not be distinguished from each other.

Notes to Chapter 1

1. §1.1. The earliest explicit mention of the sum of principal curvatures
appears to occur in Meusnier [129], who showed that at each point on a
surface of locally minimizing area the sum of the principal curvatures is
zero. Young was apparently the first to consider the sum of the curva-
tures as an independent entity on which to focus attention, and to
connect it with more general geometrical and physical properties of the

surfaces. The name “mean curvature” was coined by Sophie Germain
[78] in 1831.

2. §1.1. In an 1855 reprinting [190] of his essay [189], Young ap-
pended a long and sarcastic attack on Laplace’s contributions, suggesting
that Laplace had stolen from him and ridiculing Laplace’s analytical
methods. In fact, Laplace did use the notion of constancy of contact
angle for homogeneous materials without reference, and without provid-
ing a satisfactory proof. Further, Young was able to derive many of
Laplace’s results by direct and ingenious geometrical reasoning without
recourse to formal equations, which he professed to disdain. Apparently
the only reference to Young in Laplace’s work occurs at the end of the
second “Supplément” (p.498) where he attacks Young mistakenly on a
relatively minor point (see the comment on p.1018 of the Bowditch
translation [114]), and remarks in general on the absence of rigor in
Young’s reasoning. It is certainly true that Young’s reasoning was often
expressed in such vague and cumbersome language as to defy compre-
hension. On this point the interested reader should consult the (perhaps
overly) critical review by Bikerman [13]. For another point of view, see
Pujado, Huh, and Scriven [152]. The case for the analytical method may
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indeed not have been clear at the time, but the judgment of history on
the matter is unmistakable. The present volume owes very much to the
influence of Laplace’s writings.

3. §§1.2,1.3. For historical remarks on the development of conceptions
and of misconceptions on capillarity phenomena, the reader may wish to
consult the articles of Bikerman [10, 11] and the references cited there.
We mention also the fascinating book by Boys [19], the surveys by
Maxwell [128] and by Minkowski [134], and the general treatise now
being prepared by Emmer and Tamanini [48].

4. §1.4. Here and in the remainder of the text we use the symbols
&, 2, Q, ... interchangeably to denote either a set or its measure. When-
ever the intended meaning seems unclear we revert to the customary
notation |¥|, |Z], ... for the measures.

5. §1.4. Our introduction of the quantities ¢ and f and our justifi-
cation of their properties are intended to be heuristic rather than scien-
tifically precise. There is a considerable literature devoted to establishing
the existence of the energies &, &y and to proving, on the basis of
hypotheses about intermolecular forces, that ¢ and f are constant for
homogeneous materials and independent of the shape of the surfaces,
volume of the fluid, and thickness of the bounding walls. For a historical
overview, cf. Clairaut [27], Segner [160], Monge [141], Young [189],
Laplace [114], Gauss [73], Poisson [149], Neumann [143], Poincaré
[148], Minkowski [134], Bakker [6], and further references cited in those
works. In that theory, it seems to be essential to assume the existence of
attractive (or repulsive) forces that are very large at molecular distances
and negligible at larger distances; nevertheless, in the original versions of
the theory the media are assumed to be continuously distributed in
space, cf. the comments on pp. 18-21 of [158]. Studies based on the mo-
lecular constitution of the materials were initiated by Gibbs [82] (see
also Boltzmann [15]). Modern work in this direction, using statistical
mechanical models, can be found in Davis [39], Davis and Scriven [40],
Rowlinson and Widom [158] and the references cited there. See also the
commemorative volume edited by Goodrich and Rusanov [94].

6. §1.4. We have assumed, with Laplace and Gauss, that the free
surface is ideally thin. That is clearly not the case physically, and many
authors (see, e.g., Poisson [149], Neumann [143], Maxwell [128], Ray-
leigh [155], Bakker [6]) have attempted to characterize the density
distribution in the free surface and to estimate the surface thickness.
From the macroscopic point of view adopted in the present work, the
distinctions in the results do not seem of great significance. Rayleigh
[156] showed by experiment that for a clean water-air interface the
surface can be considered to be of negligible thickness.
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7. §1.5. In the literature it is common to restrict attention to variations
normal to &. The surface must then be assumed to extend slightly across
S*, so that contact with the walls can be maintained during the varia-
tion. Thus, parts of % (and of the fluid bounded by ) may have to be
discarded or new parts introduced, in order to maintain a geometrical
contact. Such a procedure seems at variance with the physical principle
of virtual work, which refers to a given mechanical system consisting of
the same particles throughout the (virtual) displacement. A further diffi-
culty appears in that a normal variation is singular at the boundary if &
is tangent to ¥*.

8. §1.5. The use of the relation (1.34) is conceptually appealing but not
essential for our procedure. It is reasonable to assume that the deriva-
tives in question are bounded; if that is the case, then the corresponding
integral will vanish in the limit as 6—0.

9. §1.6. The correctness of the result (1.44) of Young and of Laplace
as a description of physical reality was universally accepted from the
outset; to our knowledge it has never been subjected to direct experimen-
tal test. The formula (1.46) for the contact angle was however already
viewed by Laplace and by his contemporaries with some reservation, and
remains still the subject of continuing controversy. For a further dis-
cussion see Chapter 8.

10. §1.9. Miranda [139, Theorem 2.2] has shown that any surface of
minimizing energy over Q must project simply onto Q; thus it is appro-
priate at this point to limit attention to surfaces z(x, y).



Chapter 2

The Symmetric Capillary Tube

2.1. Historical and General

The circular capillary tube in a gravity field (cf. Fig.1.2) has served
historically as one of the focal points of interest. Not a single explicit
solution is known. There is an extensive literature that dates at least to
the studies of Leonardo da Vinci in 1490, however the first explicit
formula permitting quantitative prediction seems to be that of Laplace
[114] in 1805. The achievements of Laplace provided a standard that
remained unsurpassed for over 150 years. Only recently was it shown
that methods already known to Laplace could be developed to obtain
significantly more precise information. We describe some of those de-
velopments in this chapter. These new results have served in turn as the
underlying basis for recent studies on sessile drops, that are described in
Chapter 3.

We have already mentioned in §1.9 that the existence of symmetric
solutions with prescribed constant y has been proved; the uniqueness
theorem (Chapter 5) then shows that the symmetric solutions are the only
ones. In terms of radial distance r from the axis of symmetry, the
(nondimensional) equation (1.59) takes the form

(r 1/%uf)r:Bru (2.1)

with B=#xa?; the constant a is most conveniently chosen as the radius of
the tube; then r=1 at the boundary.

The relation (2.1) admits an important geometrical interpretation: we
may write it in the form

(rsiny),=Bru (2.2)

where  is the angle of inclination of the solution curve u(r), with respect
to the r-axis.
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2.2. The Narrow Tube; Center Height

For the case of small B, Laplace succeeded in integrating (2.1) approxi-
mately; he obtained in particular the celebrated approximation for the
height u, on the axis of symmetry

_2cosy 1 21-sin®y

o~ 2 (B;7) (2.3)

B cosy 3 cos®y

We point out that Laplace discovered this relation, he did not prove it,
nor did he give any indication how small B must be to obtain a
prescribed accuracy. Since (2.3) remains even now the basis for much of
the engineering work with capillary tubes, it is remarkable that these
basic questions were not addressed until 1980, when Siegel [163] gave
the first proof that (2.3) is asymptotically correct. Specifically, Siegel
proved

lug—Z(B;7)I<C(y)B (2.4)

as B—0.

We present here another proof of Siegel’s result, that yields improved
estimates in various ways (Finn [58, 59]). The underlying idea derives
from Laplace’s formula (1.55) for the volume of fluid lifted in the tube; in
the symmetric nondimensional case considered, (1.55) becomes

2n
Yt = Y. 2.5
5 008 (2.5)

We consider a solution of (2.1) with initial value u(0)=u,>0. Using the
interpretation (2.2) and integrating to a general value r <1, we obtain

r sinW:BS;pu(p)dp. (2.6)

From (2.6) we conclude siny >0, that is, u'(p)>0. There follow im-
mediately the inequalities

u, siny
B2<
2

<BY, (2.7a,b)
¥ 2

We now write (2.2) in the form

k,—l—kmzsmw
-

+(siny),=Bu (2.8)

which splits the (doubled) mean curvature into a sum of latitudinal and
meridional sectional curvatures k; and k,; k, is exactly the planar
curvature of the vertical section u(r).
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From (2.7b) and (2.8) we obtain
(siny),>3Bu>%3Bu,>0 (2.9)

on the curve u(r), that is, k,, >0 throughout the traverse; thus u,, >0.
We write, from (2.2),

1 1
d k,,=(siny),,=Bu,——(siny),+— siny
dr r ’

1 i 1
=Bu,—— (Bu—sm l//> +—siny
r r?

r

B ) (2.10)
=Bu,—— (u—ZSml//)
r Br
B r
>Bu,—§(u—uo)=— fpu,,dp>0
r Foy
by (2.7a). We have also, by (2.7b),
ﬂ—k ___d_ siny_ (siny), _sina,b
dr ' dr r r?
(2.11)

We have proved:

Theorem 2.1. For any solution of (2.1) in 0<r<1 with u(0)>0, both
sectional curvatures k; and k,, are increasing functions of r.

Letting r—0, we have u—u,, hence, by (2.7a), k,(0)=k,(0)=Bu,/2.
Consider a lower circular arc Z: u)(r), centered on the u-axis, with
u(0)=u, and of radius 2/Bu,. Since k,, is increasing and X" has
constant curvature, we conclude

i (1) (. _d_ . 1) (44 .
e ’(;)<dr u(r); uVF<u(r) (2.12)

in 0<r<1 (see Fig. 2.1).
Now let X®: u®(r) be a lower circular arc, centered on the u-axis,
with u®(0)=u,, and such that

i (2) —i
SouP() = u() (2.13)
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A >(2)

Z(l)

Figure 2.1. Comparison spheres.

so that X® meets the bounding walls in the same angle as does the
solution surface. By (2.12)

d d
=@ (1)> a1 2.14
() > u(1) (214)

from which follows the inequality kX >k for the two (constant) curva-
tures. Thus, since the curvatures k') and k,, are equal at r=0, there is an
interval 0 <r<¢ in which u®(r)>u(r). We choose J to be the least upper
bound of such values.

We assert that then 6=1. For if not we would have u'®(§)=u(d) and
hence Y'?(8) <y (9) so that

sa (siny —sin @), dr=sin (5) —sin VEIE)
0
=g(9)=0

(2.15)

and hence there would be a value 7, 0 <7<, such that

k, ()= (sin), > (sin y'?), =k'?. (2.16)
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But k,, is increasing; thus,

0< Sl (k,,—k®)dr=siny(1)—sin Y@ (1) —g(0) (2.17)
b

contradicting (2.14).
Collecting the above results, we find:

The circular arcs X, 2 lie respectively below and above the solution
curve, and hence the associated rotation surfaces lift respectively smaller
and larger volumes of fluid.

These volumes can be determined explicitly in terms of u, and the
respective radii. Comparison of ¥"® with the actual volume lifted, as
given by (2.5), yields

2 2
5 0087 <tg+ Ry =3 [R3—(RE 1)1 =F(u; Ry). (2.18)

where
1 1

is the radius of X‘®. Insertion of this value into (2.18) yields the in-
equality (cf. (2.3)) ug>Z(B;y).
The same procedure applied to XV yields

2

2
- v>F(ug; Ry), =
B Cosy (g3 Ry) 1 Bu,

(2.20)

One verifies easily that 0 F/0u,>0, all u,>0. Since (2.20) is satisfied by
the u, of the solution surface, we certainly have u,<ug, which is the
unique solution of the relation

2 2
EcosyzF (uo;}—g—u—;). (2.21)

However, (2.20) is not satisfied when the value (2/B)cosy is substituted
for u,, and thus ug <(2/B) cosy. We have proved:

Theorem 2.2. For any choice of B, y, there holds

2
ZL(B;y)<ug<ug <§ cosy. (2.22a,b)

This result establishes the asymptotic correctness of the Laplace formula
to O(1), uniformly in y, as B—0. More precisely, one obtains by formal
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expansion in (2.20)
B cosy

ngZSZ)(B;}')+€m(1+25in7’)+0(32) (2.23)

uniformly in y. We observe further from (2.22):

Corollary 2.2. The Laplace expression (2.3) provides in every case a strict
lower bound for the center height u,.

2.3. The Narrow Tube; Outer Height

Let us shift the circular arc X® vertically downward until it meets the
solution curve (tangentially) at (1, u,). We then have, at the point (1, u,)
of contact,

k,=siny, =k®. (2.24)
We have also, from (2.8),
k,+k,,=Bu, (2.25)
so that
k,=Bu,—siny,. (2.26)

By (2.7b), Bu, >2siny, and thus
k,,>siny, =k® (2.27)

at the contact point. Thus, the (displaced) arc X® lies locally below the
solution curve.

If the two curves were to contact again in the interval (0, 1) there
would be a point r,e(0, 1) such that u® <u in (r,, 1) and such that u'®(r )
=u(r,). There would follow ®(r)) <y/(r,), and hence

1 1 d
kK —k drzs — (sin¥'® —sin ) dr
L( wir=| L iny W) di -

=siny (r,)—siny?(r)>0.
Hence there would be a point # in the interval, such that k'*(f)>k,, (7).

But k, is increasing, thus k®>k, throughout (0,7) and hence also
throughout (0, ».)<= (0, 7). Thus

0< j (K —k, ) dr=sin y®(r,)—sin (r) <0 (2.29)
0
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by (2.28). This contradiction shows that in its new position, Z® lies
below the solution curve and hence lifts a smaller volume of fluid. The
formal expression of that inequality now yields

. 2 siny 2 1—sin’y
ul<</’(B;}')E—EC0~V_COSV+§ cos3y (2.30)

This relation can be viewed as a counterpart, for the boundary height u,,
of the inequality (2.22a) for u,.

To obtain a lower bound for u,, we return to the relation (2.8)

k,+k,=Bu

m

from which

k,,(1)=Bu,—cosy. (2.31)

Since k,, is increasing, it follows that a lower circular arc of radius

1
=, 2.32
P1 Bu,—cosvy (232)

tangent to the solution curve at (1, u,), lies strictly above that curve. We
continue the arc till it becomes horizontal, then extend it to the axis as a

Figure 2.2. Upper comparison surface.
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straight segment (Fig. 2.2). The volume inequality now yields

2
g cos7<u;—=(1—p,)*py(1—siny)

~(=p)et

2 —7—siny cos ,) (2.33)

3 1—siny
— P

(2+siny)=Glu,: py).

The right side of (2.33) is increasing in u,, in any interval in which
u;>(2/B)cosy. This latter inequality holds for the actual u, (see (2.7))
and (2.33) fails at (2/B)cosy. Thus u; >uj;, which is the unique solution
in the interval u, >(2/B) cos y of the relation

2
EcosyzG(ul;pl) (2.34)

with p, determined by (2.32).
Collecting the above results, we have

Theorem 2.3. For any choice of B, v, there holds

2
Ecosy<u1‘ <u,<Z(B;7y). (2.35a,b)

2.4. The Narrow Tube; Estimates Throughout
the Trajectory

The following observations are due to Siegel [164]. In deriving them, we
anticipate the estimate (2.65a) on meniscus height to be given later. Since
the arc X lies above or below the solution, according to whether it
contacts at =0 or r=1, we have

1 1 5
u, + ——1- s——r
cos®y cos?y

1
cosy | cos?y

(2.36a, b)

2

<u(ry<ug,+ —re.

In (2.36a) we write

1 —sin
Uy =g+ (uy —g) > L (B; 7) + !

-f()B (2.37)
cosy
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by (2.22a) and (2.65a). Here

: 1—siny /1 1—sin3y 1 siny
=t ;=5 0. (238)
cos“y \3 cos’y  2cosy
Similarly, in (2.36b) we may write
1—siny
o=t~ —ttg) < F (B: 9) ————L+{(s) B (2:39)
r

by (2.35b) ard (2.65a). There follows immediately

Theorem 2.4. If we set

cosy 2 1—sin’y 1 ,
=S (B;y;r)=2 - — —r 2.40
S (=S (B;y;r) B 73 cos* 7 I/ cosZy r (2.40)

then there holds for any B, y, re[0, 1]

S —f()B<u(r)<L(r)+f(y)B. (2.41)

Theorem 2.4 provides an easily applicable bound on both sides, with
explicit error estimates. However, some accuracy has been lost (e.g., the
term f(y)B is needed only on one side at r=0, 1). The accuracy can be
improved somewhat by using (2.70a) to estimate u, —u,, with u, esti-
mated from (2.21); however, the calculations then become rather cumber-
some.

2.5. Height Estimates for Tubes of General Size

The estimates we have considered till now, although valid for any B, do
not provide useful information when B is large. It is however possible to
give explicit bounds for solutions of (2.1), that are useful for every B, and
which in some cases are at once exact asymptotically, both as B—0 and
as B—oo.

Since, as we have shown, k,,>0 on a solution curve of (2.2) through
u,>0, we may introduce the inclination angle ¥ =tan~'u/'(r) as inde-
pendent variable. From (2.2) we have

S”: V 4 sin), Es—mr—lk+(cos V)W, = Bu 2.42)
and thus
dr _ rcosy du  rsiny

= — = (2.43a,b)
dy Bru-—siny dy Bru—siny
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a system of two (nonlinear) first-order equations for r and u in terms of
the parameter .
From (2.7) we obtain the inequalities

1Bru<Bru—siny <Br(u—3u,) (2.44a,b)

which when inserted into (2.43b) lead to two differential inequalities in
separated form. Simple quadratures then yield [55, 57]

u, [2 uz1? 4 177
—+|=(l—cosy)+— <u<|—=({1—cosy)+u . (2.45a,b)
2 B 4 B 0

We shall prove in Chapter 3 that the solutions of (2.43) can be extend-
ed to the entire interval 0<y <=m. The inequality (2.45b) continues to
hold on that interval; however, (2.45a) does not.

We note that the radial distance r does not appear explicitly in (2.45).
We obtain easily from those relations

2 4
E(l——cos¢)<u2—ué<g(1—cosw); (2.46a, b)

thus, the difference of squares of the maximum and minimum heights in a
circular capillary tube is bounded above and below by positive constants,
independent of the radius of the tube.

Using (2.7b) in (2.43a), we obtain

4r _y coty 247
i 247)
which implies
d d siny
k= 2.48
drkl dr r >0, ( )

a new and simpler proof of a result established previously by formal
calculation.

We now write (2.43b) in the form

(Bu—Sir:"b) du=siny dy

and integrate in two steps, obtaining

SA (Bu_Sinl//) d“S“ (Bu—ig—lk-) du=1—cosy. (2.49)

ug P A
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We estimate the first integrand using (2.7b); in the second we use (2.48).

We obtain
‘/’ {Bl—cosd/)+(/1—51;1;//) (/122 )}1 (2.50)

The right side of (2.50) is minimized by A =2 sin//Br, which according
to (2.7) lies interior to the interval of integration. Inserting that A, we
obtain the result of Siegel [163]:

Theorem 2.5. Throughout the traverse of any solution curve of (2.43), there
holds in the range 0 <y <m/2

1 23)1/2
u('ﬁ)<§l;—rlk+{%(l—cosw) (51;1'1,0) +2} . (2.51)

Using (2.7a) we obtain from (2.51)

Corollary 2.5. On any solution curve of (2.43) there holds in the range

0<y<m/2
u(y)< siny { (I—cos l//)+(m¢’)2}”2. (2.52)

Br Br

We note that (2.52) can be shown to give asymptotically exact infor-
mation, both as B—0 and as B— 0.

Let us now write (2.52) in the form

u(y) <Si;—:// (1+p) (2.53)

- |/ 1+B ('Al;)i, kzcos%. (2.54)

We note that r/k is increasing in . We return to (2.49), this time using
(2.7a) in the first integral. As to the second integral, we observe that
(2.53) implies

with

Bu—sml// <Bu b .
1+p

We are led to the inequality

2
(A_%‘Z> _u£+_g_p (112—-A2)>%(1—cosz//). (2.55)
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The best dividing point is now seen to be A=(uy/2)(1+p); from (2.7a)
and (2.45a) and the defining relation (2.54) for p, we have for that choice

u N2\ u u:z B u?
A=2(1+]|/1+B —)):i e
Ho=4=7 ( Ty (k > TV 2 T2 Trcosy

’.2

(2.56)

2

2
<1~423+ %94-5(1—003 V) <u,

and thus A lies interior to the interval of integration. We thus obtain

[57]:

Theorem 2.6. In the range 0 <y <7/2 there holds

12
u(f)> I/ p_? {%(1 —cos ¢)+B:_1 ug} . (2.57)

This estimate complements (2.51).
We now place (2.53) into (2.43a), obtaining

2 2
imdr>cot1//d¢, (2.58)
;

an inequality that is preserved if k is replaced by any smaller value. We
integrate over the interval (0, r), replacing k by its value at r. Using

.or(y) 2
ulll_{rcl) siny _B_ug (2:59)

which follows from (2.7), we are led [57] to:
Theorem 2.7. In the range 0 <y < /2 there holds

siny B
uo>w(l+p)e1 P, (2.60)

This result provides a new lower bound for u,, that still contains useful
information for all B.

For large B a better estimate can be obtained by observing from (2.53)

that
Bru ]/ V1
Sin¢—1<p—— 1+B (E) <E]/1+Br , (2.61)
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so that (2.43a) yields

.2
]/1+‘B1 d’_>cosxp]_/1+coslp .

; V2siny

(2.62)

an inequality that can be integrated explicitly. We find after some mani-
pulation [57]

Theorem 2.8. In the range 0 <y <7/2 there holds

v 7
d €V1+Br3_1>4]/§€2 (COSEI_II)Sm 2

]/ 2 B :

(2.63)

The relations (2.22a), (2.60), and (2.63) provide estimates from below
for u, with varying ranges of utility. If Yy =n/2 (i.e., y=0) then (2.60) is of
no interest; in this case, below the “crossover point” B=2.889 the best
result is obtained from (2.22a), while for larger B (2.63) is preferable.
However, we note that #(B;y)<0 when B>8, regardless of 7, and that
for any fixed B>0 (2.60) gives a better result than (2.63) when  is close
enough to zero. Thus, each of the three relations will under appropriate
situations become the estimate of choice.

Finally, we introduce (2.57) into (2.43a). After some manipulation, we
obtain [57]

Theorem 2.9. In the range 0 <y <m/2 there holds

] VBr
Sin e
lp >

VBu,  (/Bn'?

for values ]/Er sufficiently large.

(2.64)

The constant A can be estimated explicitly, although the details be-
come cumbersome (see [57]).

2.6. Meniscus Height; Narrow Tubes

We denote the (nondimensional) change of height of the surface, from the
point of symmetry to the contact line with the wall, by g=u, —u, (see
Fig. 1.2). The estimates we have already found for u, and u, yield corre-
sponding estimates for ¢, but the results obtained that way are not very
precise.
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Theorem 2.10. There holds always

1 —siny . 1— in~
() B< q <7 (2.65a,b)
cosy cosy

where

f)=

1—siny (1 1—sin®y 1 siny)i (2.66)

cos’y \3 cos®y  2cosy

Proof. The relation (2.65b) follows immediately from the observation
that the circular arcX®, when in contact with the solution curve at
(1,u,; (see §2.3), lies entirely below the curve. To obtain the other
inequality, we write from (2.45a)

2(1 —si
- (1 —sinvy)

Bu,
and from (2.35b)

<2 [1 B (siny 2 1—sin3y)]
—cosy|1—= —= .
=g CO8Y 2 \cos’y 3 cos*y

The result thus follows from the inequality

(1-x)"'>1+x, x<l1.

2.7. Meniscus Height; General Case

We may obtain universally applicable estimates by exploiting remarkable
monotonicity properties that are implicit in the estimates (2.51) and
(2.57). Noting that y=(n/2) —,, we set

]/ 2B
= 2.67
b1 1+1+Siny ( )

12 . +1 1/2
F(ug; B;7)= &I;L{B(l—mny)+pl4 ué} —u, (2.68)
1
cosy |2 ) cos?y wu2)l?
G(uo;B;v)=——~B—/+{§(1—smy)—7l+7°} —Ug. (2.69)

We then have, by (2.51) and (2.57),

Flug; B; ) <q<Gl(uy; B; p). (2.70a, b)
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Now observe that F, (0; B; y)= —1. Further, at any zero of F,, there
holds

Bu, Py
2 p,—1

cosy>4cosy.

Thus F, <0 throughout the range 0 <u,<4(2 cosy/B) (cf. (2.7a)).
We next calculate

. 2 , cos?y ul
G, =4 [uo—Z]/E(l —sin }‘)—74——29]

for some 2>0, from which we conclude G, (o0; B;7)<0. At any zero of
G, , there holds

up°®
4cos’y 8

2 — g (1—siny)=®(B; y).

But from (2.22a) we find

2
ug>

4cos?y 4 2 1—sin’y
B? E(I" )

3 cos?y
4cos*y 4 1+42siny

p— — 1_.
BT B 3(tsimy 0oV

4cos’y 4 ,
>——BZ———E (1 —siny)>d(B; 7).

Thus, G, <0 whenever u,> % (B; y). We have proved [58, 59]:

Theorem 2.11. The inequality (2.70a) continues to hold if u, is replaced by
any upper bound not exceeding 4(2 cosy/B); the inequality (2.70b) con-
tinues to hold if u, is replaced by any lower bound not less than ¥ (B; 7).

The relations (2.70), in conjunction with the appropriate bounds for u,,
give in all cases results preferable to those obtainable by other methods
we have indicated. The improvement over the results given by (2.65) is
not very significant if B<1, and (2.65) is certainly easier to apply. Also,
since u, vanishes exponentially for large B (see (2.64)), the u, terms in
(2.70) can be neglected when B>1. It is in the intermediate range
0.1<B<10 that (2.70) finds its greatest interest. That is especially the
case since the known (formal) asymptotic expansions do not apply well
in that range.
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2.8. Comparisons with Earlier Theories

There is a modest literature on procedures for estimating the surface
parameters in symmetric capillary tubes. All previous methods are based
on formal asymptotic expansions for small or large B; the error bounds
appearing in [57] are apparently the first in the literature. In Figs. 2.3-

Figure 2.3. Center height. (a) y=0. (b) y==n/3. a: Laplace, Concus (inner); e:
Poisson (inner); x : Rayleigh (inner); o: Concus (outer); o: Rayleigh (outer); +:
Computer (Concus).
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2.5 are shown as solid lines the calculated upper and lower bounds for
ug,u;, and g as functions of B, for several 7, using the estimates of the
preceding sections. The results are given nondimensionally in the range
B=0.001 to B=100. They are compared (where the earlier results apply)
with calculations from asymptotic formulas due to Laplace [114], to
Poisson [149], to Rayleigh [157], and to Concus [28] for small B, with
calculations from formulas of Rayleigh [157] and of Concus [28] for

Figure 2.4. Outer height. (a) y=0. (b) y=mn/3. a: Laplace (inner); ®: Poisson
(inner); x : Rayleigh (inner); o: Concus (inner); o: Concus (outer).
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large B, and with the results of computer calculations by Concus for
some particular cases. The scale is logarithmic, so that changes in linear
height indicate relative changes in the values. Figure 2.3 shows Bu,. The
large relative change between upper and lower bounds at large B is
probably not of major importance, as u, is exponentially small in B
when B is large. Nevertheless, the precision of both the Rayleigh and

Figure 2.5. Meniscus height. (a) y=0. (b) y==/3. a: Laplace (inner); @: Poisson.
Concus (inner); x : Rayleigh (inner); o: Concus (outer); + : Computer (Concus).
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Concus “outer” expansions is striking. Particularly notable is the fact
that these expansions (especially that of Rayleigh) continue to give good
information down to values of B small enough that the “inner” expan-
sions start to have meaning. Even so, there is an interval of B in which
none of the formal expansions give results lying within the error bounds.
It should be noted that the Rayleigh expansions were given only for the
case y=0.

Figure 2.4 shows Bu,; we note that Bu, does not tend to zero with
increasing B, but that ]/B u, is asymptotic to the (normalized) rise height
1V 2(1—siny) of a capillary surface at an isolated vertical plate. Finally,
Fig. 2.5 shows the corresponding estimates for g.

One sees from the figures that, in addition to providing strict upper
and lower bounds, the procedures outlined above also yield new informa-
tion in the (intermediate) range B=1 to B=10, where the earlier asymp-
totic expansions do not always apply well.

A computational procedure for calculating meniscus shapes and height
parameters under prescribed conditions was developed by Concus and
Pereyra [37].

Notes to Chapter 2

1. Theorem 2.1. It can be shown that if B>0 (as is here assumed) then
every solution of (2.1) in 0<r<1 can be extended continuously to r=0.
Thus u,=u(0) is defined. Further, there holds always lim,_,u'(r)=0.
Since the negative of any solution is again a solution, we may always
assume u(0)>0. If u(0)=0 then the solution vanishes identically.

2. (2.46a,b). It might appear from the form of the relations that the
estimate depends on the radius a, as a appears in B=xa?. However, the
(nondimensional) height u in the formulas is actual height divided by a,
hence the radius is a common factor and can be cancelled. The estimate
does depend, of course, on «.

It should be remarked that the indicated property is not shared by the
height difference u—u,, nor, in fact, by any power of u other than two.

3. §2.2, 2.5. The estimates given here, although they are asymptotically
exact both for small and large B and provide useful information in all
cases, do not in their present form yield an iterative procedure for
determining a solution with arbitrary accuracy. Brulois [21] has devel-
oped a procedure for determining upper and lower bounds of various
functionals associated with a solution, which are asymptotically exact to
any order in B. Some of the estimates we have given can be obtained
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from the initial steps of his procedure. Brulois also showed the conver-
gence for all r<1 of the formal power expansions used in the local
existence proof (cf. §4.2).

4. §§2.5-2.77. The estimates presented here are explicit and in closed
form. Siegel [163] has given (nonexplicit) asymptotic estimates on order
of magnitude in which the principal terms yield more precise limiting
information.



Chapter 3

The Symmetric Sessile Drop

3.1. The Correspondence Principle

We consider a connected drop of liquid of prescribed volume ¥ resting
on a horizontal plane IT in a vertical gravity field directed toward I1, and
we suppose the plane to be of homogeneous material so that the contact
angle y will be constant, 0<y<n. Wente has proved [186] that under
these conditions any equilibrium surface is generated by an interval of disks
centered on a line segment orthogonal to II, so we may restrict atten-
tion to that case (see Fig.3.1). According to (1.51), at a point on the free
surface ¥ where the fluid is below &, the height u(x, y) of & above IT
will satisfy

divTu=xu+21 (3.1)

for some constant (Lagrange multiplier) 2. (Where the liquid lies above &
the sign of div Tu must be reversed.) Since a representative length is not
yet apparent, we have written (3.1) in dimensional form.

The transformation u= —v—(1/x) A changes (3.1) to

divTo=xv, (3.2)

which is exactly the equation for the free surface in a capillary tube.
Thus, to every solution of (3.1) with center height u,, there corresponds a

~

av4‘ 5

R

Figure 3.1. Sessile drop.
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solution of (3.2) with center height vy = —(u,+(1/k)4). Since, as indicated
in §§4.2 and 4.3, the symmetric solutions of (3.2) are uniquely determined
by the center height, we find that to every symmetric sessile drop there
corresponds a unique capillary surface, and the two surfaces are (locally)
geometrically congruent. Conversely, to every symmetric capillary surface
there corresponds a sessile drop, determined up to an additive constant.
If we identify any two such surfaces when one is a continuation of the
other, we obtain the correspondence principle [57]: there is a 1-1 corre-
spondence between sessile drops and capillary surfaces.

The set of all symmetric capillary surfaces is, however, completely de-
termined as a one-parameter family in terms of the center height u,. We
thus conclude from the correspondence principle that the set of all sym-
metric sessile drops can be described by a one parameter family of curves.
This property will be basic in what follows.

3.2. Continuation Properties

In view of the preceding remarks, we focus attention on a symmetric cap-
illary surface, with center height u,>0. Following (2.43), we write the
equation in terms of the inclination angle ¥, but now in dimensional
form:
dr__reosy du__rsing (3.3a,b)
dy  kru—siny dy  kru—siny
Theorem 3.1. For any initial value u,, the (unique) solution of (3.3) can be
continued as a solution, with monotonely increasing u(y), throughout the
range O0<y <m. The function r(¥) increases to a maximum r(n/2)=R, and
then decreases to a value a=1im,,_, . () >0.

Proof. From the form of the equation in (2.1), we conclude as before

Uy siny u T
K2< - <K§, O<¢32, (3.4a,b)

from which we see that the solution curve becomes vertical (y =n/2) at a
value r=R satisfying R<2/ku,. Although the original equation (2.1) be-
comes singular at r=R, the system (3.3) does not. In fact, we find from
(3.4b)

A=Kru—siny >siny (3.5)

and thus, from (3.3), that both u and r tend to finite positive limits as
Y —m/2. Thus, the solution (r, u) of (3.3) can be continued as a solution of
that system past the value y = /2 corresponding to r=R.

The stated monotonicity properties up to and across Yy =n/2 are evi-
dent from the equation (3.3). On any continuation into an interval in
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Figure 3.2. Continued capillary section.

which 7/2 <y <7, we find again from (3.3a)
(rsiny),=xru, (3.6)

which is identical to the original relation (2.2) that holds on 0 <y <m/2;
see Fig.3.2. Integrating from r to R on the top (+) and on the bottom
(—) and subtracting, we get

R
r(siny ~ —sinlp*):;cs (ut —u)pdp. (3.7)

For r close enough to R, we have ut>u", hence siny~ >siny*, hence
(3.5) continues to hold, hence by (3.3b) u™, u~ are both increasing in ,
hence siny~ >siny*, u™ >u~ as long as continuation is possible.

On the continuation, we cannot have r—0, as (3.7) would yield in that
case 0>0. Thus, there exists a=1lim,_, . 7(})) >0, as was to be proved.

In what follows, we use y to denote the value of y at which the bound-
ing free surface meets I1. Thus, y is the contact angle in the sense orig-
inally introduced. In terms of the original problem, we have proved:

Corollary 3.1. Corresponding to any value of the parameter u,, there is ex-
actly one sessile drop making boundary angle vy, for any yin 0<y <.
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In the following sections, we study the properties of sessile drops by
fixing y and examining the dependence of the volume ¥~ on u,.

3.3. Uniqueness and Existence

Theorem 3.2 ([57]). Let ¥ >0 be arbitrary, and 0 <y<mn. There is exactly
one symmetric simply connected sessile drop with boundary angle y and vol-
ume V.

Lemma 3.2. ¥ is a continuously differentiable function of u.

The lemma does not follow from standard continuous dependence
theorems, as the equation is singular at r=0. However, the proof is not
basically difficult — it can be obtained for example by exploiting mono-
tonicity properties and simple growth estimates for the solutions — and
we do not include details here.

Proof of Theorem 3.2. We first prove existence. Since, by (3.4), R<2/ku,,
we have R—0 as uy—00.

As shown in Chapter 2, a ball of radius R contains the lower part of
the surface; since siny ™ <siny~ the same ball contains also the upper
part, for any y<n. Thus, ¥"<4/3 2R3, which —0 as u,— o0.

Letting u,—0, we find by (2.60) that r(y; u,)— oo for any fixed y<mn/2,
and by (2.45a) that u(y; u,)>7/2/k(1 —cosy). Since the surface is convex,
there follows ¥ —oo. If y>m/2, then ¥ (y;uy)>7"(n/2;u,) so the same
conclusion holds.

Thus, for fixed 7, every value ¥~ between 0 and oo is attained, and
existence follows.

To prove uniqueness, it will suffice to prove

0V (Y5 up)

du,

¥V = <0 (3.8)

for all u,>0 and each fixed  in 0 <y <.
We obtain easily from (3.6) that
2 .
YV =nr <ru--sm 1//) (3.9)
K
and thus
SA 2 . 2 .
YV =n ErA—H‘ u). (3.10)

We note
¥(05ug)=0. (3.11)
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We calculate

v r*sinyg
AL

(24 —siny)F —xri}. (3.12)

We shall show ¥ <0, i >0. We obtain from (3.3)

dr Kr?ii+Fsiny
E: e os Y (3.13)
du krli+rsiny |
S e 3.14
v e ny (3.14)
with
F(0)=0, u(0)=1. (3.15)
For 0 <r <R we have
rsinzﬁzicj pudp (3.16)
0
and writing u=u(p; ug)=u(p(y; uy); u,),
ﬁu] 614] ,+8u] t 1,0—1-61[] 317
— | == — | =ptanyy+— .
Ougly 0dp uop Ougylp pia Oug 1y (317
so that, from (3.16)
—r'A=;<§ (i—ptany)pdp. (3.18)

0

Using (3.15) we see that for each u,>0 there is an initial interval
F:0<y<d<m, in which F<0.
In .# there holds by (3.14)

du kriisiny
—_> 3.19
s (.19)
We have by (3.5)
r2siny 2 (3.20)

<-—*7
42 siny

the right side of (3.20) tending to zero as ¥ —0 by (3.4a). Since initially
>0 we find, for sufficiently small ,

Li>exp{—1cng;1—f%dl//}. (3.21)
0
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We conclude immediately #>0 and also (3.21) continues to hold,
throughout .#. Hence, from (3.12)

%<0 in 7. (3.2;)

Suppose there were a positive value Y <m at which ¥=0. There would
then be a smallest such value, which we again label with V. Since (3.22)
would hold on 0<¢/<t// and since ¥~ (0)=0, we would have ¥ (np <0.
But by (3.21) li(Y)>0, hence by (3.10) ¥ W)=nr? 1i(Y)>0. This contradic-
tion establishes that ¥<0 on O0<y <m. Thus by (3.12), (3.5), and (3.21)
d¥Jdy <0 on 0<y<m, hence ¥ <0 on 0<y<n, for any choice of
uy>0. Uniqueness is thus proved.

3.4. The Envelope

The family of solutions of (3.6) parametrized by u, admits an envelope,
determined by the condition

u'(Ysug) F(Wsug) _
UWsug)  rFYsug)

Figure 3.3. The envelope.
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or, equivalently, in view of (3.3),
F(Y)=1ucosy —rsiny =0.

Since, as shown above, 1i>0, <0 on 0<y <, there can be no en-
velope points on 0<y<m/2. We have F(n/2)>0, F(n)<0, F'(y)=
—usiny —rcosy <0 on 7/2 <y <m. Thus on each integral curve there is
exactly one contact point ¢ with the envelope, and n/2 <y°<n. The en-
velope is illustrated in Fig. 3.3.

3.5. Comparison Theorems

We wish to relate the volume ¥~ of a drop with the radius of the wetted
disk and the boundary angle y. General estimates can be obtained from
the explicit formula (3.9) in conjunction with the bounds developed in
Chapter 2 (see [57]). The following estimates, based on direct geometrical
comparison, are simpler and yield results that are more precise for small
drops. We set r,=r(y;up), u,=u(y; uy), and observe that these quantities
are related to u, and to the maximal radius R through the relations (2.7)
among others.

Theorem 3.3 ([60]). In the range 0 <y <m/2, there holds

V(y)<n ( 'y )3 jy sin®0d0. (3.23a)

siny/ J,
If n/2<y<m, there holds
“//(y)<nR3§ sin30d0. (3.23b)

0

Theorem 3.4 ([60]). In the range 0 <7y <m/2, there holds

2 \3 (7
V(y)>n (__) S sin®0d0. (3.24)
KU,

0

Proof of (3.23a). We introduce a lower circular arc v, centered on the z-
axis, and tangent to the solution curve at (r,, u,). The latitudinal curva-
tures at (r,,u,) of the rotation surfaces defined by u, v then coincide and
are equal to k(y)=sin y/r,. We have however

2H =k, (y)+k/(y)=xu,
and thus
siny siny
()=, — 00 50

v 7

ky(7)
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7
conclude there is an interval #<r<r,, in which u>v. Were the two

curves to intersect in 0 <r<#, we would be led, as in the proof of (2.30),
to a contradiction. Thus u>v in 0<r<r, and it follows that the volume
of the spherical cap exceeds ¥". This statement is expressed by the in-
equality (3.23a).

Proof of (3.23b). We first prove

by (3.4b). Since on the arc v the planar curvature k=const.=k,(y), we

Lemma 3.3. On the curve u(y;u,), k,, increases over the entire traverse
0<y <m; k, increases until the vertical point Yy=m/2, and then decreases
until W =m.

The statement was proved for the range 0 <y <n/2 in Chapter 2. We
have, for all ¥ in (n/2, ),
d = d (Sint,[z)_cosx// sin . _cosy kru—2siny
dy " dy oy 2V r kru—siny
on 1/2<y <z by (3.3a) and (3.5) (see the remarks following (3.7)). Since

du/dy>0 on O0<y <m, there follows dk,/dy>0 on n/2<y <m, which
completes the proof.

<0

r

Corollary. The entire trajectory of the solution curve lies interior to the
closed semicircle determined by the arcv, with a single point of boundary
tangency; see Fig. 3.4.

7

-
-

Figure 3.4. Inclusion property.
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To prove (3.23b), we choose the point of contact to be (R, ug), and de-
note by ¢ the inclination angle of the curve v, which we extend upwards.
By Lemma 3.3, we have sing* >siny* for each r<R, from which fol-
lows v* >u* at each fixed r, and v(7)>u(y). The consequent inequality of
volumes is now expressed by (3.23b).

Proof of (3.24). We now introduce the lower circular arc, parametrized
in terms of its inclination angle ¢,

r=—-—sing
Ku,

2
v=uy+— (1 —cos @), Osq)gg,
Ku, 2
which passes through (0,u,) and has curvature xu,/2=(sing), =
(1/27) (r sin ¢),. Using (3.6) we find

r(sin ¢ —sin ¢)=K§ p(u,—u)ydp>0
0

if u(r)<u,; thus v>u in the subinterval of 0<r<r, in which v is defined
(Fig. 3.5). If we can show v(y)<u,, then the arc v will determine, up to
the inclination angle ¢ =7, a smaller volume than does u, which in turn
would imply the inequalities (3.24).

By (2.45a) we have

2 291/2
u—uo>[—(1—cosy)+f] i
K

2
1 2
2 BT ug xS
(1= v+ -2 -0
[k_( cosy)+4] +2

2
>——(1—cosy)=v—u,
Ku,

by a second use of (2.45a). Thus, the spherical segment up to the height
v(y;u,) yields a smaller volume than does the solution surface, as was to
be shown.

The relation (3.23b) can be strengthened, as more is known about the
curvature at (R, ug) than was used in the derivation. We have, in fact

1 1
k (R)=kKuy——>—
m(R)=Kup R>R
by (3.4b).
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Figure 3.5. Comparison sphere. Figure 3.6. Comparison circles.

Setting
R
Rt=—r— (3.25)
KRug—1

and using Lemma 3.3, we conclude that the (upper) circular arc v* of ra-
dius R*, tangent to the solution curve at (R,ug) as in Fig. 3.6, lies
everywhere above the solution. Further, the inclination angle ¢* of v*
satisfies

siny <singp™*

at each fixed r on a<r<R. An examination of the geometry then leads
immediately to the result:

In the range ©t/2 <\ <m, there holds
. 2n 3 ‘.
oV (“,’)<TR3+TER+ S sin®0d0

/2

+7R*(R—R*)?sin (V—g) (3.23¢)
+nR**(R—R*) (y—f—lsinzy).
272

In the defining relation (3.25) for R*, up can be estimated by (2.57); the
u, that appears in (2.57) must in turn be estimated from below. That can
be accomplished with the aid of (2.22a) or (2.63). The former relation
should be used below the “crossover point” xR?~2,889, the latter re-
lation for larger values of xR, see the remarks following (2.63).
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In connection with the material of the coming sections, (3.23¢) leads to
estimates that are marginally improved over those that follow from
(3.23b).

We now ask the question: suppose a small amount of liquid is removed
symmetrically from a sessile drop. Does the resulting drop lie strictly in-
terior to the original one? We consider here only the case 0<y<m/2. We
parametrize the solutions once more by u,, and consider solutions u
=u(r;uy) and u’=u(r;u,+90), with §>0. Let v°(r;u,)=u’—5; then
v°(0; ug)=u(0; u,) and

(rsiny?), =xru’
(rsiny).=xru.
Thus r
F(siny® —sin )=« X p-W—u)dp,
0

from which we conclude (u°—u) is increasing in r. It follows that if the
curve u’ is moved rigidly downward a distance J, it will lic above the
curve u except at the single point (0;u,) of contact. To show the in-
clusion property corresponding to an angle 7, it thus suffices to show
that for any 6>0 there holds v’ <u at the points where the angle 7 is
achieved. We have, for given 7,

4
0

(U‘S—u)]v=§ (ti—1)du,

with 1©=20/0u, u(y;u,). Since }1(0; uy)=1, there holds

v du
=\ —dy+1;
Jo g
it will thus suffice to show that dii/dy <0 in 0<y <7y, for all u, exceed-
ing the given one. We shall determine sufficient conditions for that in-
equality.

We observe first, by (3.4),

A~gruo as r—0
and thus, by (3.16) and (3.15),
F~——r as r—0.

U,

Writing (3.18) in the form

SW)=rsiny+xr’i=x [r'ru—i—rzti+§r (i—ptany)p dp]

0
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and using u(r)—ug, u(r)—1, p(r)—-0, we find f(¥)~3ixr?>0, and thus
there is an interval .%;: 0 <y <0, in which, by (3.14), dii/dyy <0.

At a first zero, \, of dii/dy, there would hold f(i/)=0, f'(})<0. We
calculate

F cos

1=

(kru—3siny). (3.26)

We showed in §3.3 that ¥<0 on 0<y <z. Hence the inclusion property
will follow on .#, whenever we can show that

gW)=xru—3siny <0 (3.27)
on .7, for the given surface and for all surfaces with smaller volume.

Theorem 3.5 ([57]). Suppose 0<y<m/2, and

4 2+cosy
ud>—(1—cosy) ’

. 3.28
3k 1+4cosy (3:28)

Then every liquid drop with contact angle v, corresponding to an initial val-
ue iiy>1ug, can be translated rigidly so as to lie strictly interior to the drop
corresponding to u,.

Proof. 1t suffices to show that if u, satisfies (3.28), then g(\/; u,)<0 on ,.
From (3.28) and (3.4a) follow

;cr2<4 sin?y _ (14cosy)?

Kup 2+cosy (3.29)
while from the bound (2.30) follows
Kru<?2 sinlﬁ+xi'23(1j_l+cl)/jsw(2+cos v). (3.30)

The result is obtained by placing (3.29) into (3.30).

From a physical point of view, it is desirable to have a criterion in
terms of volume.

Corollary 3.5. Suppose 0<y<m/2, and suppose the volume ¥ of a drop
making contact angle y satisfies

e (3 )3/2 (1+cosy)? 1 S

¥
—< in®0do0. 31
siny (5+4cosy)® sin*y Joo o (3-31)

K 0

Then every drop with smaller volume and making the same contact angle
can be translated rigidly so as to lie strictly interior to the given one.
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Proof. From (3.24), (2.45b), and Theorem 3.5.

We complement the above results by showing that when ¥ /siny is suf-
ficiently large the inclusion property fails. Specifically, we have [57]:

Theorem 3.6. There exists a universal constant V <oo such that, to any
drop for which k3?9 [siny>V, there exists another drop with the same y
and larger ¥", in which the given one cannot be enclosed.

Proof. We consider the drops again in “capillary” representation, param-
etrized by u,. Thus, the height of the drop is q=u,—u,. From (3.23a)
and (3.4a) we have

2siny\® 17 sin*y
( :n’) >ri>— e (332)
u n
0 4 [sin®0d6
0
so that, setting w=x>'%2%"/sin y,
lim)/kr, =0,  lim }/ku,=0 (3.33)

uniformly in y. Hence from (2.52) and (2.57) we find there exists

Vg, =1im Yk q(y; u))=1/2(1 —cosy) (3.34)

w— oo

uniformly in y, 0<y<mn/2. It will thus suffice to show that when
k¥ /siny is sufficiently large, there holds gq(y)>gq,. From (2.57) we

now obtain
F14/2
u},>‘/L ]/- (1—cos 7). (3.35)
p K

We have, with k=cos1y, r=[ﬂ, p=y1+7%,

k

+1 1 1
P s —
p p 1+1

]/p+1 11 1(1 )2
>14- —=
P 21+t 8\l+1t

1 1
>1+ET_1(1 —‘E‘I)—gf‘z

and thus
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2.._
14
1 1 I ; {
1 2 3 4 5 6 Vi
Figure 3.7. Nonmonotonicity of height, y=m/2.
so that

]/p-f—l 1 k 5( k )2
>14- —= . (3.36)
p 2]/;)' 8 \v/xr

Thus we find from (3.34), (3.35), and (3.36)

1 _]/; Ugy
2Wr sing

Vea)>Viq, + (

Finally, from (2.64),

. 5k .
)smy—m sin 7. (3.37)

@<A(]/Er)”ze_‘/ﬂ (3.38)

sin

for a fixed constant 4 and all }/kr sufficiently large. The result now fol-
lows immediately from (3.37) and (3.38).

Figure 3.7 shows the result of computer calculations of three drop sec-
tions, with y=m/2. The calculations were performed by Heidi Bjerstad.

3.6. Geometry of the Sessile Drop; Small Drops

Since the sessile drop is determined uniquely by ¥~ and y, there must be
a relation connecting ¥~, 7y, and a=radius of wetted disk. We consider
first the case of small drops, and we show that, for any fixed y in
0<y<m, the (normalized) free surface tends uniformly as ¥ —0, together
with its sectional curvatures, to a spherical cap. If y=m=, the uniformity
still holds for the surface and its unit normals, but fails for the curvature.
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The case y=r is singular also in other respects. Although they provide
some information, the bounds we have given in preceding sections do not
suffice for our purpose here. If y <z/2, the results we shall obtain are a
special case of preceding results. We therefore consider the case
n/2<y<m, for which, in the “capillary” representation, the drop has the
appearance indicated in Fig. 3.2.

We intend to compare, for fixed r in a<r<R, the meridional curva-
tures k}, k> on the upper and lower parts of the curve. Since estimates
on k, have already been given in Chapter 2, corresponding estimates will
follow for k.

On each vertical section we have

(rsiny),=xru;

hence

r(sim//‘—sinl//”):KSR(u*—u")pdp. (3.39)

From (3.39) we find, as in §3.3, that u™ >u", sinyy~ >siny* in the en-
tire range a <r<R. As was shown in §3.5, the entire configuration lies in-
terior to a ball of radius R, as indicated in Figs. 3.3 and 3.5. Thus,

ut —u- <2]/R2—1‘2, and hence

; - : + 2K (R
0<k,“—-k,+_=_%//——§m—w—<—‘;§ VY R*—p* pdp

r ¥

2K (R2—r?)32 (3.40)
=3
Since k,, + k;= Kk u, we obtain now
2K RZ _ .2)3/2
0<k® —k; <2K1/R2—;~2+—35Lr;—). (3.41)

Set .=r/R, Bg=xR? Given ¢>0, we see from (3.41) that, in the range
a<r<R, there will hold

0<k}—k, <e¢/R (3.42)
whenever
2
)2 2—13@ B (3.43)
€

When these conditions are satisfied, we find

k;(;~)s%+k;(:~)<%+k

(R) (3.44)

m
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by Lemma 3.3. But
1
k,(R)+—==Kug, (3.45)
R
and by (2.30)
<2+ R
—+-KkKR.
Klug R

Thus, writing

1
R=-———->— 346
* 1+e+2kR? (3.46)
we find
1
kb <— (3.47)
R

&

on the portion of a <r <R for which (3.43) holds. It follows that if we can
choose A such that (3.43) and

JR<R—R,(1—siny) (3.48)

can hold simultaneously, the circular arc v,(r) of radius R, that contacts
the solution curve at (R, ug) as shown in Fig. 3.6 will lie under the upper
part u*, at least until the inclination angle ¢, of v,(r) increases to y; fur-
ther, at all such r there holds

sing,<siny*. (3.49)

It follows that the radius a,=r(y) of a wetted disk satisfies

a,<R—R,(1—siny) (3.50a)
and consequently

u,=u(y)>ugr—R, cosy. (3.50b)

Setting 1=1/% By, one sees easily that the requirements are equivalent
to

21/4L <siny—|—s—f—t2

1/5 T l4e+t?

For technical reasons, it is convenient to choose for ¢ the unique value
for which

NURS _siny+e+1?

I/E 14+e+t?

(3.51)
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We note that the choice (3.51) implies

siny+e

e eV2 <24 <(siny+e)e/? (3.52)

and thus the asymptotic relations, as R—0,

e\ 13
e~7/2 (5) R?3 (3.53a)
if y=mn, and
2
~sin2y 3 R? (3.53b)
ifys+m.
We have proved:

Lemma 3.4. If ¢ is chosen to satisfy (3.51), then (3.47) holds when > m/2,
for all r in the interval R —R_ (1 —siny)<r<R. There hold also (3.49) and
(3.50a, b). In particular, if y=m, we find a<R—R,.

Finally we observe, as in the proof of Theorem 3.3, that the entire con-
figuration lies interior to a semicircle of radius R, tangent at (R, ug) to
the solution curve. Since k, increases, and in consideration of the
geometrical meanings of (3.49) and (3.50a, b), we may write:

Lemma 3.5. There hold, in n/2 <y <m, n/2<y<m,

R™'<k} <R ! (3.54a)

—(R-R
f(T2<sin vt <% (3.54b)
Rsiny<a,<R—R,(1—siny) (3.54¢)
g+ R2—(r—R+R)* <u* <up+1}/R*—r2. (3.54d)

We note the left side of (3.54c) provides information only if y<z. That
should not be surprising in view of the following remarks.
At the point of symmetry yy =0, there holds

1 1 «
k,,(0)=k,(0)== KuO>E—g

R
2

by (2.22a). At the vertical point there holds k,=R~!, k,=ruz—R"!
<R~ '+3KkR by (2.30). Since k,, is increasing, we find

1 1 2
—g KR<km——R‘<§ KR
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uniformly in the initial range 0 <y <n/2. Further, Theorems 3.3 and 3.4,
together with (2.30), yield the inequalities

R 39 ,\!3
1+%I€R2<(§~TE£) <R.

Thus, uniformly on 0 <y <7/2 we have

lim Rk, (y)=1.
0

¥R~

It follows that, under the normalization given by the transformation u
=UR+ug, r=pR, the initial arcs converge uniformly as ¥ —0, together
with their unit normals and curvatures, to a unit quarter circle (and the
corresponding free surface to a lower unit hemisphere). Lemma 3.4 shows
that the same uniformity extends on the upper arc at least back to the
value =R —R, in the original coordinates, or — equivalently — to the
value p:ﬁ(%x)mRm, which tends to zero. It follows that given any
angle y<m, the convergence to spherical shape as ¥,—0 is uniform up to
angle y. The uniformity cannot however extend to the angle n. To see that,
we need only note that k,(7)=0 on any solution, hence k, (7)=ru(n),
whereas k, (y) ~3ku(y)~%xu(n) for any y <m.

We return to this point in Theorem 3.10 with the aid of an explicit for-
mula for the volume. At present, we note that Lemma 3.4 enables us to

extend Theorem 3.4 to angles y>n/2:

Theorem 3.7. In the range n/2 <y < the volume ¥ of a drop satisfies

2 2 \3 U
“//>i( ) +nR§’j sin®0d0
3 \kug w2
) 7
+7nR,(R—R,)?*sin (y —§> (3.55)

T 1 .
+n(R—R,)R? (y —5 —5sin 2*,’).

Here ¢ and R, are determined by (3.51) and (3.47); uy can be estimated by
(2.30), (2.51), or (2.52).

Proof. By (3.49) and (3.50) and by the choice of y, ¥~ satisfies

R sin(y—m/2)

“V>“/R+7r§ (R—R,+1/RZ—h?2dh, (3.56)

0
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where 7% is the volume below the point (R, ug). The result thus follows
from Theorem (3.4) and a formal integration in (3.56).

Lemma 3.6. In the “capillary” representation, there holds, in the range
n/2<y <m,

1 { ug}l/z
ug —R,cosy <u(f)<——+<=(1 —cos i) — IR?

kR R2 2
1 2 1 1/2 (3573, b, C)
<ﬁ+{ (1—=cosy)+— R } .

Proof. According to the above construction, we have, for any r in
a<r<R,

u>up+R,sin (405—%>~ (3.58)

By (3.49) we have ¢,>y, hence sin(¢@,—n/2)> —cosy, which establishes
the left side of (3.57). To prove the remaining estimates, we place Lem-
ma 3.3 (applied to k,=r~!siny) and the estimate (2.7b) into (2.43b) to
obtain

1
(Ku—ﬁ) du <siny dy (3.59)
and thus, integrating from n/2 to ¥,

u< ! +l/_2cosw+ ! )2 (3.60
kR K (uR KR/]’ 60)

so that the result follows from (2.51) and (2.7 a).

We note that the estimates on the right of (3.57) are exact asymptoti-
cally both for small and large R. For small R the second of these es-
timates can be improved somewhat by using (2.30) instead of (2.51) as a
bound for ug.

Theorem 3.8. In the range n/2 <7y <m the height q of a drop satisfies

2 [p—1
qﬂﬁl/g‘—ﬁ'&cosv, p=V1+2KkR>. (3.61)
KyVp

Here & and R, are determined as functions of R by (3.51) and (3.47) and R
can be estimated in terms of " by (3.23b).

Proof. According to the above construction we have, for any r in
a<r<R,

4> ug —tig+ R, sin ((ps —g—) . (3.62)
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By (3.49) we have ¢, >, hence sin (¢, —7/2)> —cosy. By (2.57)

p+1(2 p+1 2
Up —Uy> T{;+Tllg —Ug. (3.63)

As in §2.6, the right side of (3.63) is decreasing in u, in the range
0<uy,<2/kR;hence, by (3.4a),

>~l/p+l]/2+p+l 4 2_%1/17—?
“r ™Mo p Kk 4 x?R* kR VYV« lp+1’

which completes the proof.

We remark that a sharper (if less explicit) estimate can be obtained by
using the bound uy<ugd of (2.22b) in place of (2.7), as above. This was
done in the preparation of Fig. 3.8 (see below).

Theorem 3.9. In the range n/2 <y <, kK R? <6, there holds

2 1 2 1 21 R
- LI N1 G A 3.64
q<{x( COS)})H%KZR2 3K+18 } KR+3 (364)

If kR*>6, then

1 2 1
q<ﬁ+VE(1 —COS}’)—K—Z*R—Z. (3.65)

The right side of (3.64) is increasing in R, and thus (3.64) continues to hold
if R is estimated by (3.55). The right side of (3.65) decreases in R when
KR?>(1 —cosy)~ !, and hence R can be estimated by (3.23b) in that range.

Proof. From Lemma 3.6 we have

12 1 w2
u—u0<ﬁ+ ;(1—COS’)))—W+—2— —Ug. (366)

As in §2.6 we find that the right side of (3.66) decreases in u,; thus we
may apply (2.22a) to obtain (3.64) whenever #(B;y) is nonnegative. If
Z(B;y)<0 we set u,=0 in (3.66) to obtain (3.65). Formal differentiation
establishes the stated monotonicity properties.

Figures 3.8 (a) and (b) show upper and lower bounds for g as function
of ¥7, for small drops, for the cases y==n and y=>5n/6. The figures are
plotted in terms of the nondimensional variables Q =¢/R and %=k %2,
where 2 is the radius of the ball of equivalent volume, 4723=37". The
greatly improved accuracy in the second case for small 4 reflects the
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(@)

(b)
Figure 3.8. Drop height, small drops. (a) y==. (b) y=27.

nonuniformity at y==n in convergence of & to zero (see (3.53a,b)). It
should be pointed out that in the expressions

2 p=t I/ Br, cosy (3.61a)
Bp p+1 By
1

2 2 1) 1
Z - S G S 3.65
Q<{BR( cosy)+ gz 3BR+18} B, 3 (3.652)

corresponding to (3.61) and (3.65), the sense of monotonicity in R is the
reverse of what occurs in the original (dimensional) inequalities. Thus,
when expressing the results in terms of 4, (3.23b) (instead of (3.55)) must
be used in (3.65a) and (3.55) (instead of (3.23b)) must be used in (3.61a).

We recall that in the case 0<y=m/2, upper and lower bounds for ¢
were given in Chapter 2.

We now wish to estimate the radius a, of a wetted surface in terms of
volume and contact angle. We present the discussion in terms of the non-
dimensional variables By=«xR?, #=x%?, and B=xa’. The formula (3.9)
for the volume of a drop now takes the form

$%**=B1/xu—2)Bsiny. (3.67)
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We have from Lemma 3.6

2
u>uR——R£cosy>—E—REcos Y (3.68)
K

by (3.4b), and thus

432 2B B]/_COSJ_ .
19 1/B-R ST11B, 21/Bsiny (3.69)

A disagreeable but formal calculation, using that ¢ as defined by (3.51)
satisfies &'(t)>0, shows that the right side of (3.69) decreases in B,. From

Theovem 3.7 we may estimate |/ B, <F(%). We have proved:

Theorem 3.10. The diameter of the wetted disk is bounded above in terms
of the drop volume by the relation

2B BF(%)cosy
F(#) e+1+F*(%)

L 302> —21/Bsiny. (3.70)

Here ¢ is to be determined by (3.51).

We remark that

4 1/3
F ~ 1/2 3.71
@) (cos3y—3 cosy+2> % 3-71)

as #—0; thus, from (3.70)

4sin’y 23
B B B 3.72
<(cos3y—3cosy+2> +o(®) 372)
when y =+ 7. If y=m=, then
B<2%+0(8?), (3.73)

thus indicating a nonuniformity in the rate at which the wetted disk
contracts to zero.

To obtain an estimate in the other direction, we return to (3.67) and
apply Lemma 3.6 to obtain

B
§g3/2<VT[1+V1+23R(1 —cosy)]—21/Bsiny. (3.74)

R

We may use Theorem 3.3 to estimate By in terms of #; setting

[FS1EN

43(~,)=j’ sin®0d0 (3.75)
0

we obtain B <Bg4(y), and hence from (3.74):
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Theorem 3.11. The diameter of the wetted disk is bounded below in terms
of the drop volume by

LB <Bls(7)+1/+*()+28(1—cosy)|—21/B#siny.  (3.76)

From (3.76) we find immediately the asymptotic relations, as Z—0,

B>SIVIZI;7(;’) B +0(B) (3.77)
when y =7, and
B>2%2 +o(#?) (3.78)

when y=7. In conjunction with (3.72) and (3.73) we thus have

Theorem 3.12 ([60]). Asymptotically as 8—0, there holds

a2
sin®y
B~ Z (3.792)
2(y)
if y&m, and
B~3%? (3.79b)
if y=m.

These estimates confirm the nonuniformity in the rate of contraction of
the wetted disk, which was indicated above.

The above results are illustrated graphically in Fig. 3.9. Note the strik-
ing effect of the change in y from = to 27, so that a factor of ten was re-

Figure 3.9. Volume-wetted area relationship; small drops.
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quired to keep the function corresponding to the latter value on scale. In
this respect see also §8.7.

In the special case y =, the relation (3.76) can be simplified (see §8.6).

It is of interest to note that the estimates (3.73), (3.78), and (3.79) refer
to wetted surface radii in the order of R?, even though the curvature es-
timates used in the derivations were justified only for radius values of or-
der larger than R*3. That was possible because the curvature estimates
were used only at a subsidiary point in the derivations, where infor-
mation at smaller values of r was not required.

3.7. Geometry of the Sessile Drop; Larger Drops

Although the above results are correct in all cases, it is preferable to
adopt other methods in the case of large drops. The crucial initial step is
an estimate for the radius a of wetted surface in terms of outer radius R;
that estimate also has an independent interest, although it does not seem
to have been studied previous to the paper of Finn [57] where initial (in-
exact) estimates appear.

Our starting point is the relation
dr  cosy
dy siny
Ku—

r

(3.3a)

in which we seek to estimate the denominator on the right. We observe
first from Lemma (3.6)

+
]/Er Br 2 ]/ER ]/Er
(3.80a)

<Vm{]/l+;, (Kg_%_BL)Jr%;w}
R R
—)/2(1=cos ) P

i 1 : 1 V1 —cos?
l/;u_sm <1/2(1 —cos ) —— Kug cos*

where

J= (3.81)
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Alternatively, one may write

11 1- b
]/Eu— <]/2 1 —cosy) {]/ +—~+M
2 By V2 By

2(1—cosy) P, (3.80b)

Jrr

which is less precise but may be simpler to apply.

Lemma 3.7. On the interval /2 <\ <7 there holds

u()> Sml/’ {—% cos Y + (uR —Sinfp)z}m. (3.82)

Kt

Proof. Use Lemma 3.3 (applied to k;) in (2.43b), and integrate from /2 to
/3

From (3.4b), Lemma 3.3, and Lemma 3.7 we find

2y)1/2
u>"2 {~%cosw+(L:R—i)} | (3.83)

KR

From (3.4b) and (2.45b) we have

2 4
ﬁ<uR< E’H‘o' (3.84)

From these relations and from Theorem 2.6 we conclude that

2
KR?’

q |
Pt (2+p+

2
Kll >— Kug ) >
R p 4 0)

with p=1/1+2«kR?, and thus from (3.83) and (2.57)

]/IZu—ii/I:_—Cli>]/2(l—COSlp)+(A2—2) (3.85)

p—l—lV p_ W2 1 136

We may thus write, on the interval 7/2 <y <7,

with

_2)

(3.87)
2(1—cosy)Q
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where

1
- : 2 )
2(1—cos7) if 42>2

h= (3.88)
if 42<2.

b —

The inequality (3.87) is to be understood in the sense that u, can be re-
placed by any lower bound for which 4>0 continues to hold. In this re-
spect both the bounds (2.60) and (2.63) are admissible.

We now place the above estimates into (2.43a) and integrate between
m/2 and y. We obtain [60]:

Theorem 3.13. In the interval n/2 <y <, there holds

QVY/x(R—a,)

1 2
<1/2—log(1+}/2)—2 cos . +1 1He0s92 38901

b

SlIlA
<PV (R-a,). 2
1 rticular )
n particular |+ cos’
lim ]/E(R—ay)zl/i—log(l+ﬁ)—2cosé+log—m~—. (3.90)
ke siné

These relations take a particularly simple form when y=n. We have

then
lim /k (R —a)=1/2—log (1 +7/2). (3.91)

R—-w
The estimate of Theorem 3.13 is illustrated in Fig. 3.10.

An estimate above for the height ¢ of the drop is obtained im-
mediately from (3.66), together with either of the estimates (2.60) or
(2.63). To bound g below, we may write

q=u—uy=u—ug)+ug—uy)>f(ug)+glug)

- 5 -
f(uR):—(uR Sm))+]/—cosy+(uR——sm'> (3.92)
Ka., K Kd.

L 7

with

(Lemma 3.7) and

14/2
guy)= Vp+ ]/ il ug —u, (3.93)

from (2.57).
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Figure 3.10. Drop overhang; y=n.

We verify directly that f decreases in uy and in a,. As in §2.6 we find
that g decreases in u,, in the range u,<4/xR. We have found:

Theorem 3.14. In the interval n/2 <y <m, there holds
1 2 1 w2
q<ﬁ+{;(l—cos '}’) -—W+—2—} —Ug (394)

where u, can be estimated by (2.60) or (2.63). There holds also
- ( siny)+]/ 2 +( siny>2
- - ——Cos7y e
q "R Ka, oo \UR Ka,
ul

+14/2 p+1
+1/p——]/—+p 0 —Ug
p K p

with p=1/1+2KkR*. Here uy can be estimated from (2.51) or (2.52), a, can
be estimated by (3.89b), and u,, can be estimated by (3.4a), or by (2.64).

(3.95)

Since, as follows from limR_,m]/;uRz]/E, we find immediately from
(2.7a), (3.90), (3.23b), and (2.70a, b):

Corollary 3.14. For any y in 0 <y <m, there holds

lim 1/k g=1/2(1 —cos ). (3.96)

Vo o

We note for later reference that the right side of (3.94) decreases in R,

and that the right side of (3.95) decreases in R in the range ]/KR>
1/(1 —cos?y).

In order to express the above bounds in terms of ¥~, we return to the
formula (3.9). We have immediately:

Theorem 3.15. The relation

2
Y =n (azu—; a, siny), (3.97)
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in conjunction with the inequalities (3.57), (3.89), (3.94), and (3.95), yields a
set of parametric inequalities from which a, q, and ¥ can be estimated
above and below in terms of R.

Alternatively the relations can be used to estimate a, ¢, and R in
terms of the “physical” parameter ¥". In that connection, we note that
the right side of (3.96) is increasing in a,.

We may also obtain analogues of Theorems 3.10 and 3.11 suitable for
large drops; to do so, we estimate u in terms of R by (3.57¢) or (3.82) (to-
gether with (2.57) and (2.60) or (2.63)), then R in terms of a., using (3.89),
and ‘insert the result into (3.96). In this case there is no nonuniformity.
For the case y=m, we carry out the procedure in detail in Chapter 8. The
results are shown in Fig. 3.11 and also in Fig. 3.9, where they are seen to
improve the “small drop” estimate over part of the range.

As an example, we apply our estimates to a configuration studied by
Laplace (1830), who considered a drop of mercury on a glass table, with
diameter of wetted disk equal to 10cm. Using the values x=400/13,
y=136.8 degrees, Laplace calculated, by a method of matching expan-
sions, g~0.3397 cm. Laplace gave no estimate for R.

The above bounds, applied to the same configuration, yield

5.0326 <R <5.0334
(3.98)
0.3387 < g <0.3416,
thus confirming Laplace’s calculations.
From (3.94) and (3.95) we obtain additionally the estimates
8.245< 77 <8.318. (3.99)

We remark that the above values for x and y differ significantly from
those in current usage; they may however have conformed to the mer-
cury samples available at the time, when techniques for purification were
less developed than they are at present.

2 _.”3:2
R o S 3B
| ' ' 10 B 100 11000

Figure 3.11. Volume-wetted area relationship; large drops.
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Figure 3.12. Drop height, large drops; y=m.

The bounds for ]/Eq indicated in Theorems 3.14 and 3.15 are plotted
in terms of 4 in Fig. 3.12. The lower bound (for ¢/R as function of B) is
extended onto Fig.3.8(a) and is seen to improve the “small drop” es-
timate over part of the range. Thus, the two estimates taken together
provide useful information for configurations of all sizes.

The upper curve in Fig. 3.12 indicates the nonmonotonicity of drop
height with volume; see Theorem 3.6.

Notes to Chapter 3

1. §3.1. The existence (locally) of a solution to (2.2) with prescribed u,
was first proved by Lohnstein [119], who proved the convergence of a
formal power series (an earlier “proof” given by Lasswitz [115] is not
correct in all details). In connection with the “pendent drop” equation, a
simplified version of Lohnstein’s proof (due to Wente) is given in Chap-
ter 4. The same method applies to the case considered here.

2. §3.3. An explicit determination of u, in terms of 1 (for given 7, 7)
and conversely presents technical difficulties. Some estimates appear in
[57, 60]. In [57] a “reciprocity principle” is established, relating the
quantity siny/u, (for the capillary tube) to the quantity ¥"/siny (for the
sessile drop). The correspondence becomes asymptotically exact in both
limits, as the quantities in question tend to zero or to infinity.

3. §3.3. The global existence of a sessile drop on a horizontal plate
with prescribed volume was first proved by Gonzalez [90], who obtained
it as a configuration of minimizing energy. The method yields also the
symmetry of any such configuration, but not its uniqueness. The unique-
ness proof of §3.3 applies to any symmetric equilibrium configuration,
and does not assume it to be minimizing. Independently, Wente [186]
proved that any equilibrium configuration is symmetric. Putting all these
results together, we find that there is exactly one equilibrium configu-
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ration, that it is symmetric (in the sense it can be generated by an interval
of disks centered on an axis orthogonal to the base plane) and that it pro-
vides a strict minimum for potential energy. A particular consequence is
that the drop is statically stable, that is, any change in shape will increase
its potential energy.

4. The problems considered here can be much more difficult if the sup-
porting plane is not of homogeneous material; one must then impose
conditions to ensure that the liquid does not flow out to infinity. Hypoth-
eses under which existence can be assured have been introduced by
Giusti [88] and by Caffarelli and Spruck in a work now in preparation.
Uniqueness can in general not be expected; Finn has given an example
of a continuum of distinct solutions.

5. We have noted in §1.9 that if a capillary tube is closed at the bottom
and if there is enough liquid to cover the base, the shape of the free
surface will be identical to that obtained when the open tube is dipped
into the liquid. In this sense the configurations studied in Chapters 2 and
3 are both limiting cases for the situation studied by Giusti in [88], of
liquid on a supporting surface % that rises to infinity (although neither
case is included in Giusti’s hypotheses). In these two special cases unique-
ness proofs are provided by Theorems 3.2 and 5.1. For general con-
figurations (even symmetric ones) uniqueness clearly fails; it would
thus be of interest to characterize surfaces & for which it will hold. For
example, if & is rotationally symmetric and convex, then uniqueness
should be expected; however, that has not yet been proved.



Chapter 4

The Pendent Liquid Drop

4.1. Mise en Scene

If, in the configurations considered in Chapter 3, the direction of the
gravity field is reversed, we obtain the problem of a drop suspended from

a horizontal plate. The equation of the free surface now becomes, from
(1.44),

2H= —xu+2/1. (4.1)

The theorem of Wente [186] shows that any solution is symmetric and
generated by horizontal disks about a vertical line, whose heights fill out
the range u,<u<uy; thus, as in (3.6), (4.1) can be written in the form

(rsiny),= —xru (4.2)

after suitable choice of coordinate origin, in any neighborhood in which
the generating curve projects simply onto the r-axis.

The behavior of solutions of (4.2) differs basically from that of the
solutions of (3.6). In general, it cannot be expected that solutions corre-
sponding to prescribed boundary data exist. There is, however, a local
theorem, which goes back to Lohnstein [119]. The proof in the following
section is (essentially) due to Wente [187]. The underlying idea is the
same as that of Lohnstein, but the details are simpler.

4.2. Local Existence

Theorem 4.1. For any prescribed u,<0, there exists Ry=R(u,), such that
a solution u(r;u,) of (4.2) exists in 0<r<R,, with lim,_ qu(r; ug) =u,.

Proof. By a similarity transformation, we may normalize (4.2) so that k
=1. We write v=siny, then (4.2) takes the form

v+ (v/r)+u=0. (4.3)
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We restrict attention to the interval 0 <y <m/2. By differentiation of (4.3),
u can be eliminated and we find

-
vy + (V’VW_) v=0, W=(1—v)"2 (4.4)

r

Whenever existence holds, we find by integration of (4.2) that
lim, ., (v/r)= —3u,, and hence, by (4.3), lim,_,v'= —3u,. We thus seek a
solution of (4.4) such that v(0)=0, v'(0)= —3u,. One sees easily the
equivalence of this problem with the original one.

We write v(r)=Y.7a,r", a; = —3u,, and we rewrite (4.4) in the form
L(v)= M (v), where

L@)=(v) —vfr =i(n2 —1)a,r"*
2

and
M@)= —rv/W= —r (v—l—chv")
2

=—{a,r*+(a,+c,a})r*+ -
FP(A1s s Oy 15 Cpyeey Cu )P40
where P, is a polynomial of degree (n—1) in ay, ...,a,_, and is affine in

Cy»---yC,_, with positive coefficients. Here c¢,=1. The coefficients
a,,ds, ... can be calculated formally from the relations

(n?=1)a,=P,_ (Ays..cs@y_35Cpyeees Cp_)e

o Hn—2o e tn—2

Since the series for M(v) has radius of convergence 1, we have
le,|p"<c< oo for every p with O0<p<1.

Now set L,(v)=v'(r)—v'(0)=0v'(r)+3u,, and set M,(v)=Cr[(v/p)/
(1—(v/p))]. We consider the auxiliary problem L, (w)= M, (w) for a function
w=Y 7 b,r", with w'(0)=|a,|. We have

L,(w)y=) nb,r"
2

If w>0, there follows

M, (w)>r(cylw+lc,|wr+ )

NM‘%

Ebyy.osby_ s leqls s le, D,
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Also, nb,<(n*—1)b, when b,>0, n>1. Setting b, =|a,|, we thus obtain,
successively, b, >1a,|, all n>1, and thus the series for w will majorize the
series for v.

The stated problem for w admits, however, a convergent series solution
with the required properties. We have

yume /03]

The initial value problem with w(0)=0 is nonsingular at r=0 and thus
can be solved by a convergent power series; for this solution, w'(0)=3u,
=a, >0. Clearly, w is increasing and thus remains positive for all »>0 in
the circle of convergence. We conclude that the series for v is also con-
vergent, as was to be shown.

4.3. Uniqueness

The above proof establishes uniqueness among solutions that are analytic
at r=0; in fact, uniqueness holds quite generally.

Theorem 4.2. For any u,, there is at most one solution u(r;u,) of (4.2) in
0<r<R(ug), such that lim,_ o u(r; uy)=1u,.

Proof. Let u(r;u,), v(r; u,) be solutions, with corresponding inclination
angles ¥, @, and let s=siny, t=sin ¢. Then

1
ur_vr:mg/—z(sﬂtk (45)

where ¢ lies between s and t. From (4.2) we find
. K ("
s=sing == | putos u)dp: (46)
0
thus, given ¢>0, there exists r,(¢) such that

1+e¢
s<

K|u0|1‘<%ﬁ (4.7)

on 0<r<ry(e). We may assume t<%]/§ on the same interval, so that
(1—¢&%)>1/2. Thus from (4.5) and (4.6)

1 K

U= S ey jo(“"v)PdP
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so that
— r 1 T
Ill—U[SZ]/ZKs - j lu—vlpdp
0T Jdo
on 0<r<rg, by (47). Let M=max,_,_, |u—vl|, then Mgé]/i;cMré. If
now r, is chosen sufficiently small, we obtain a contradiction unless u=v
on O0<r<r,. Thus the two solutions coincide on some initial interval;

their identity throughout the traverse then follows from standard unique-
ness theorems.

4.4. Global Behavior; General Remarks

To prove the existence of the pendent drop solutions and to characterize
their shape, it is necessary to examine the continuations of the solutions
just found. A cursory investigation indicates that for large |u,| neither r
nor ¥ can be adopted as parameter; for that reason we introduce arc
length s along the trajectory as independent variable, obtaining the sys-
tem

@:cosd/

ds

du .

E—Sln w (48 a, b, C)
dy siny/

— = —Ku—

ds I3

(see the remark preceding (4.9)).

From the point of view of classical theory, one expects a solution of
(4.8) to be determined by the initial data 7(0)=0; (0)=0; u(0)=u,; how-
ever, as we have just seen, because of the singularity of the system at s
=0 the condition Y(0)=0 is superfluous. As with the sessile drop, this
circumstance yields an important simplification for the problem of char-
acterizing all solutions. It suffices to describe the one parameter family
determined by u,, and it is that approach we shall adopt.

These solutions have remarkable continuation properties. Although
they cannot in general be continued indefinitely as solutions of (4.2), we
shall show that for any u, the function u(r;u,) can be extended as a
parametric solution of (4.8) for all s, yielding a curve without limit sets or
double points. The resulting capillary rotation surface does not again
contact the axis r=0 (although it can come perilously close to that axis)
and in fact for large s, r increases beyond all bounds, with the trajectory
again projecting simply onto the r-axis. This behavior seems noteworthy
in that for large values of s the associated rotation surfaces, when consid-
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ered as interfaces bounding drops pendent from horizontal planes
through those points, are always physically unstable. (If |u,| is large, in-
stability occurs already for small s.)

Numerical evidence suggests there are very few solutions of (4.8) with-
out double points. In that respect the solutions we shall study —and es-
pecially the singular solution discussed in §4.13 —appear to have an iso-
lated character. We take up that matter in §4.14.

The central difficulty in the general study of the solutions of (4.2) lies
in the failure of the maximum principle. We replace that principle here
by a simple geometrical one, the conceptual content of which is that if
surfaces S; and S, contact at p, and if the normal sections of S, at p in
two orthogonal directions have (planar) curvatures exceeding those for
S,, then there is a neighborhood of p in which S, does not again meet
S,. The analytical formulation (Lemma 4.11) of that principle in the situ-
ation encountered here yields a global result and also encompasses cases
in which the curvatures at p are respectively equal. For the case of large
lugl, it is the key to success of the method.

The comparison technique just mentioned has proved effective also in
other contexts, and has led in particular to new information on the be-
havior of solutions of (4.2) near isolated singular points (see, e.g., [54]).

In order to simplify notation in what follows, we will assume through-
out the remainder of this chapter that (4.2) and (4.8) have been normal-
ized (by a similarity transformation) so that x=1. Thus, (4.2) becomes

(rsiny), = (I/:j’r_uz) = _ru. (4.9)

We may also assume u,<0. The case u,>0 can be transformed to that
one by a simple change of sign, while if u,=0 the unique solution of (4.9)
is u=0.

4.5. Small |u,|

Theorem 4.3. If in the initial value problem for (4.9) there holds uq> —2,
then the function u(r;u,) can be continued as a (nonparametric) solution of
that equation for all r>0. It has an infinity of zeros. For any two suc-
cessive extrema at r,, 1, of u(r;u,) there holds Iu(rb)|<|u(ra)|<]/2. Be-
tween any two extrema occurs exactly one inflection, which appears on a
(monotone) curve segment approaching the r-axis in the sense of increasing
s. At any two successive points o, f at which |u(x)|=|u(f)|, there holds
Idu/dr|a>|du/dr|ﬁ. Asymptotically as u,—0, the ratio u/u, tends uniformly
on compact sets to the Bessel function J,(r), and the first zero occurs at
rx2.405.

The proof of Theorem 4.3 will follow from the lemmas of this section.
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Lemma 4.1. Let u(r) satisfy (4.9) in 0<r<R, and suppose lim,_ ,u(r)
=u,<0. Then there is an interval 0 <r<r, in which u(r) is increasing, and

i sin u
< 4 <2
2 r 2

(4.10a, b)

in that interval. The interval includes any initial segment 0 <r <R in which
u(r)<0.

Proof. The proof follows immediately from the relation
. L(r
smt//=—~j pudp (4.11)
rdo

which under the hypotheses is equivalent to (4.9).

Lemma 4.2. Under the hypotheses of Lemma 4.1, suppose u<0 in 0<r<R.
If uy> —2, then there exists Yy (R)=1lim,_ z ¥(r), and 0 <y R)<m/2.

Proof. The existence of y/(R) follows from (4.11) and Lemma 4.1. Let us
write (4.9) in the form

r=lsiny +(siny), =r"!siny —(cos ¥),= —u (4.12)

(which is permissible since u,>0) and integrate from u, to u(R). Using
(4.10a) we find

cos(R)>1—1(u2 —u?(R)),

which implies ¥(R)<n/2. We obtain 0 <¥/(R) as a consequence of (4.11),
for any R < co. This restriction is however superfluous as follows from

Lemma 4.3. If u(r) satisfies (4.9) and u(r)<0 in O<a<r<R, and if
siny(a) >0, then

R<aexp{ —u@ } 4.13)

asiny(a)

Proof. By (4.9), rsiny >asiny(a), and therefore siny>0. Thus

d
d—:ztam//>sinzp2ar”1$impa (4.14)

on the interval, and the result follows on an integration.
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We have also

Corollary 4.3. If u(r) satisfies (4.9) and u(r)<0 on O<r<R and if there
exists u,=lim,_ ,u(r)<0, then R<2e?~3.297.

Proof. From (4.9) follows siny >0 as above. From (4.13) and (4.10a) we
find R <aexp{2/a?}, which is minimized for a=2.

We conclude from the Corollary that the solution of the indicated ini-
tial value problem for (4.9) increases until a value R < oo at which either
u(R)=0 or sinyy=1. Under the conditions of Lemma 4.2, the former case
must occur.

Lemma 4.3 can be strengthened, as follows from the following two
lemmas.

Lemma 4.3(a). Let u(r) satisfy (4.9) and u(r)<0 on 0<a<r<R, and sup-
pose siny(a)>0, u(R)=0. Then

a>\ R R?>-a*> 1 R\? u(a)
R P “famD) <« 1Y 4.15
(1 2)na+ 4 +2(ana) = asiny(a) (4.15)

Proof. From (4.9) we find

rsinx/x(r)—asinx/x(a):—-s pudp (4.16)
from which follows sinyy >0 on a<r<R. From (4.14) we obtain

—u(r)>(asiny(a))ln 75

Placing this result into (4.16) and integrating, we obtain

r du>1+1 zlnR 1 2 R rz—a2
asiny(a) dr 2 4

since du/dr>siniy. An integration from a to R now yields (4.15).

Lemma 4.3(b). Let a,~1.443 be the (unique) positive solution of

(1 ——2—) l/‘?+§ [exp (;7 ﬂ——?) —1] —%%:0. (4.17)

a

Let Ry~2.8065 be the unique solution in the range r>a, of

at rz—a2 1 )
%) - °——( ! —) _Z o0,
( 2) ao 4 2 \% nao at
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If u(r) satisfies (4.9) and u(r)<0 on O<r<R, and if there exists u,
=lim,_ ,u(r) <0, then R<R,.

Proof. We may assume u(R)=0. In view of (4.10a) we may write from
(4.15), whenever 0 <a <R,

2 242 1
F(R;a)z(l—a—)l R R =a ¢~<

R\? 2
} aln~) ——<0.
2 a‘

t a * 4 2 a

We verify easily 0 F/OR >0, F(a; a)<0, and F(oc;a)=oc; hence there is a
unique #>a for which F(#;a)=0. This relation, together with ¢#/da=0,
determines a unique value a=a, as solution of (4.17). There holds
0f/daz0 according as aZa,, and thus 7 attains a minimum R, at a=a,,.
Since R <7 always (by Lemma 4.3a), there holds R <R,,.

We have thus established that if u,> —2 the solution curve can be
continued as an increasing function from its initial point (0, u,) until it
meets the r-axis at a point r=a,. To study the further trajectory, we
observe (because of Lemma 4.1) that the curve can be continued at least
locally across the axis as a solution of (4.9), and we compare its incli-
nation at a given height h with the inclination of the initial branch at an
equal negative height.

Lemma 4.4. If the curve can be continued monotonically to a height h
above the r-axis, then its inclination at that height is less than the in-
clination of the initial branch at the height —h, that is

du
dr

<du
h dl'

—h

Proof. We integrate (4.12) with respect to u between the heights —h and
h, obtaining

h

cos |, —cos llll_,,=§ hr‘1 sinyy du>0.

Lemma 4.5. Under the above conditions, in the indicated interval the curve
is strictly convex downward when u>0, and u,, < —u(l +u?)3?.

Proof. From (4.12)

u, .
(siny),=—555=—u—r-'siny < —u.
" (L4u)?

From Lemmas 4.4 and 4.5 we conclude that the curve can be con-
tinued as a solution of (4.9) until a strict local maximum is attained at a
height u,, <|u,y|. More precisely, we may now state
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Lemma 4.6. Let { be the value of Y at u=0. There holds
u2 <2(1—cosy)<iul. (4.18)

As a corollary, we find that uM<]/§ always. To prove the result, we
integrate (4.12) from u=0 to u=u,, to obtain

uns S' R 1
s ml//du—l—kcoslp:——ufu,
o T 2

which contains the first inequality of (4.18). To obtain the second in-
equality we integrate (4.12) from u, to 0 and use (4.10a); thus

0 Q1 2 2
§ Em‘—wdu+1—cosx/7=u?°>%?+1—<2051//,

up ¥
which completes the proof.

We now repeat the entire procedure, starting at the maximum point
instead of at u,. We obtain the qualitative picture indicated in Theo-
rem 4.3, of a curve oscillating about the r-axis with successively decreas-
ing extrema (see Fig. 4.1). We have further:

Lemma 4.7. Denoting by m a minimum point and by M a maximum point,
there holds between any extremum and the following zero

u roo u
——<———siny< -2
2 r2—y2 4 2

m

(4.19a,b)

Uy roo u
— M e siny < —
2 rr-ry V<=3

while between any zero and the following extremum there holds

u,, r . u
7<W Sin lp <§
(4.19¢, d)

. Uy
siny <—.
4 2

2 ri-r?

Figure 4.1. The case u,> —2; inflections.
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Proof. All inequalities follow easily from (4.9) by an integration from the
extremal point, since siny =0 at an extremum and u(#) is monotonic be-
tween any extremum and adjacent zero.

Lemma 4.8. On the interval up to and including the first maximum of
u(r; u,), there holds (d/dr)k,<0; on the interval up to and including the
first inflection of u(r;u,), there holds (d/dr)k,, <O.

Proof. We have always

d = d sim//_(sinv,b),_sinl//
dr' dr r  r r?
1 simﬁ)

= —— (14—!—2
r r

(4.20)

by (4.12). On the interval preceding the first zero (4.19a) yields

isimﬁ
dr r

1
< ——(u—u)=0.
r
Between the first zero and the first maximum we find from (4.19d)

d siny u g g
E ; <—; (1—*—;’2—— )=—;'2—Ll<0.

Finally we note from (4.12) and (4.19a)

dk, du 1 . sin
dr E—r(sml//)r-{— r?
dr r r 421)
<~d~u+1( — 1) |
dr o

1 r
= —; Lpuppdp<0.

It follows in particular that the inflection is isolated; a similar dis-
cussion applies to all later inflections.

To complete the proof of Theorem 4.3, we note that, in view of the
above estimates, the function v(r;ug)=u(r;u,)ug’ satisfies the Bessel
equation for J,(r) with an (analytic) inhomogeneous term that tends uni-
formly to zero with u,. The result then follows from the continuous
dependence properties of the inhomogeneous Bessel equation.
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4.6. Appearance of Vertical Points

From (4.10b) and (4.12) we find

Lemma 4.9. For any u,, the solution u(r;u,) can be continued at least until
the value r= —2/u,, with siny< —Su,r. There are no inflections in the
region ru< —1.

We intend to show that if |u,| is large, the trajectory cannot be ex-
tended indefinitely as a solution of (4.9).

Lemma 4.10. If u, <0, the lower circular arc
2 4 R
v(r=uy——— (7) —r (4.22)

meets the hyperbola rv=—1 if and only if uog—ﬁ. On the segment
of the arc between the u-axis and the hyperbola there holds v<u,—

2=V 2/ue) </ 2/2)uq.

Proof. The indicated circular arc is inscribed in a square, of which a half
side length is the horizontal segement joining (0,u,) to the hyperbola
ru=—2 (see Fig. 4.2). If u,= —]/2, then the arc is tangent to ru= —1 at
(1, —1) (see figure). In the general case it is tangent to the hyperbola
rlu—(uy—(2/uy))]= —2/ug, obtained by similarity transformation from
the symmetric configuration. On this latter hyperbola we have

2 2
rut+l=——-+r (uo——)—H.
ug U,

If u,< —ﬂ, then u,—(2/u,) <0, and thus ru+1<0 when ru,< —1. That
is, interior to the indicated square the hyperbola lies below ru= —1,
hence the arc (4.22) must cross ru= —1 to achieve the required tangency.

If ug>—7y2, then u,—(2/uy)>0, so that ru,< —1 implies ru> —1,
from which we conclude that the arc (4.22) does not meet ru= —1.

When the arc does cross ru= —1, the first crossing point lies below the
point of symmetry determined by r=u,—(2/u,)—v. Thus, on the initial
segment determined by (4.22) there holds u,—(2/uy,)—v> —]/2/uo. The
proof is completed by the observation that in the case considered,
Uy <2/ug.

We now introduce the comparison lemma referred to in §4.4.

Lemma 4.11. Let F(r,t) satisfy F,>0, all r>0. Let v'"(r), v'®(r) be func-
tions defined in a<r<b and such that [F(r,0'")],>[F(r,v'*)], on that in-



78 4. The Pendent Liquid Drop

Figure 4.2. Construction for proof of Lemma 4.10.

terval. Suppose v'"(a)>v*(a). Then v'V(b)=v'?(b), v'V(b) — v (b)>v'V(a)
—v®(a), and either equality holds if and only if v'V(r)=v®(r)+const. on
a<r<b.

The proof follows immediately on an integration. We shall apply the
lemma principally in two particular cases: F=r(t/}/1+1?), for which
(1/r)[F(r,u,)], is twice the mean curvature of the rotation surface defined
by u(r), and F= —(1/)/1+1¢?), in which case [F(r,u,)], is the meridional
curvature defined by u(r).

In the present case we make the former choice for F and choose as a
comparison surface the lower hemisphere (4.22), which has the (constant)
mean curvature —ug/2.
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Lemma 4.12. If u,< —7/2, the solution u(r;u,) continues into the region
ru< —1, but does not enter the region ru< —2. There holds k,>0,
dk,,/dr <O until the solution curve either again crosses the hyperbola ru=
—1 or a wvertical point appears. Throughout this arc, there holds k, <
—uf2 <k, < —uy/2.

Proof. Since u>u, on the initial trajectory (Lemma 4.1), there holds
(rsiny), = —u< —u, Using Lemma 4.11 to compare u with the function
v(r) defined by (4.22) and letting ¢ denote the inclination angle of v(r), we
find siny <sing, u<wv on the interval 0 <r < —2/u, in which v is defined.
Thus, since v(r) enters the region ru< —1 (Lemma 4.10), so does u(r). We
have

km:(sinl//)rz _11—512¢: _u_kl

u u
> —04+-2> —p4+—2>0

27"

by (4.10) and Lemmas 4.11 and 4.12. Thus there is no inflection on the
interval, and we may apply Lemma 4.8 to find (d/dr)k,, <0. The assertion
ru< —2 follows from (4.10a), and the final assertion follows from (4.10)
and Lemma 4.8.

Lemma 4.13. If u,< —2]/5 then a vertical slope appears at a point (ry,u,)

satisfying
2 1 8
——<rn<—z 1-/1—-— 4.23:
HO<11< 2“0( |/ ué) (423a,b)
2 1 ] /.8
Uy —a—<u1 <uy, ~3 o (1 -1/ 1 _F> . (4.24a,b)
0 0

Proof. Since sinyy >0 on the initial segment we may adopt u as inde-
pendent variable. Integrating (4.12) in u and using (4.10b), we find

—1
1 —Cos¢>7u(u—uo);

thus, if u,< —2]/5 a vertical slope appears at a value u, <fu,[l
+1/1—8ugy?].

To obtain a bound in the other direction we compare the solution
curve with the circle v(r) at corresponding values of u. Since k,=
—(cosy), < —3u,= —(cosp), by Lemma 4.12, we see that at each fixed u
there holds cosy >cos . It follows that u(r;u,) can be continued at least
to the height at which the comparison circle v(r) becomes vertical. That
is, u; >uy,—2/u, A further consequence is that r; > —2/u,.
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Finally we compare u(r) with the vertical section w(r) of the sphere of

constant mean curvature f~ ' = —1u,(1+7/1—8ug?), with center at (0,u,
+PB), so that u(0)=w(0). The curvature is chosen to correspond to the
height —28~*>u,, and so u>w, u,>w, until the height u, is reached.
The corresponding radius #, must be less than the radius of the sphere
w(r), thus r, <. The lemma is proved.

We note the vertical point of the comparison circle w occurs on the
intersection of that circle with the hyperbola ru= —2. The conclusion of
the lemma is illustrated in Fig. 4.3. The assertion can be rephrased in
terms of the respective coordinates (py,v,), (r;,uy), (o,,w,) of the three
vertical points. The relations (4.23) and (4.24) become

p1<rl<o-1 (425)
U1<L41<W1.

We have shown that if u,> —2 no vertical can appear, while if u,<
—271/2 a vertical must appear.

Lemma 4.14. Let u,, be the largest value of u, at which a vertical occurs.
Then if uy=u,, there is exactly one vertical point (r,,u,); it appears on the
hyperbola ru= —1, and is an inflection for the solution curve. This curve
can be continued beyond (r.,u,) uniquely as a solution of (4.9), and has the
oscillatory behavior described in Theorem 4.3. It does not meet the hyper-
bola again until it has developed a positive maximum; in fact, its slope

exceeds that of the hyperbola until the r-axis is crossed.

Proof. Let (r,,u,) be a vertical point for the (limiting) solution curve, as
Uy \uy,. Then =0 at (r,,u,). By (4.12), r,u,= —1, as asserted. From (4.12)

ru=—1
-2

Figure 4.3. Initial comparison surfaces, u, < — 2]/5.
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we find at (r,,u,)

from which follows that the curve can be continued locally beyond r, as a
solution of (4.9). In view of Lemmas 4.3 and 4.4, it will suffice to show
that the curve does not develop another vertical or return to the hyper-
bola before crossing the r-axis.

We have from (4.9)

rsinlp—rc=—j pudp<r—r, (4.26)

c

in the region ru> —1, so that siny <1 in this region; thus verticals with-
in the region are excluded. If the curve should return to the hyperbola in
the region u<0, there would be an intermediate value 7 at which the
slopes would be equal, so that

1

siny =

i

and thus rc<%]/§. On the other hand, r.> —2/u,. by (4.10b), while by

Lemma 4.13, u,,> —2]/2. Therefore r.>1)/2. This contradiction com-
pletes the proof of the lemma.

Figure 4.4. The case u,=u,,.
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We collect the results of this section in a general statement:

Theorem 4.4. If u,< —]ﬁ, the solution curve must enter the region ru<
—1. It does not enter the region ru< —2. It remains convex until it either
leaves the region or a vertical occurs. There holds k, < —5u<k, with k,,
k, both decreasing, k,,+k,= —u. There is a critical value u,,, —2>uy >
—Zﬂ, for which a (unique) vertical first appears, at a point (r,,u,) with
ru,= —1; see Fig.4.4. There holds dk,/du= —1 at (r,u,), and the curve
extends as a solution of (4.9) with the oscillatory behavior described by
Theorem 4.3. If u,< —21/2 the location of the first vertical can be esti-
mateld by (4.23) and (4.24).

4.7. Behavior for Large |u,|

It is clear that every solution curve can be continued locally past the
initial vertical point as a solution of the parametric system (4.8). We in-
tend to show that the continuation can be effected globally, to a com-
plete curve without limit sets or double points. Our basic tool will be
Lemma 4.11; for comparison surfaces we have recourse to a discovery of
Delaunay [41]:

Let an ellipse of major axis 2a and distance 2¢ between focal points roll
rigidly on an axis without slipping. Let € be the curve swept out by one of
the focal points. Then the surface generated by rotating € about the axis
has constant mean curvature H=(2a)~!.

We note that 4 is periodic with half-period 7 satisfying 2a<t<na,
and that each half-period can be represented in the interval a—c<r<a
+c¢ by a single valued function v(r) for which the equation

l(r sin l,b)r=l (4.27)
r a

holds, and for which sinyy=1 at the two end points (see Fig. 4.5).

We indicate the use of the roulades by showing that if |u,| is suf-
ficiently large, the curve u(r;u,) can be continued as a solution of the
parametric system (4.8) until a second vertical appears at (r,,u,) with
Py, > —1.

We observe first by (4.12), (4.10b), and (4.24b) that

ke =(sin), > =1y + 1> —Fug)/ 1-8ug 2 >0

when u, < —2]/5, and thus the curve turns back toward the u-axis and
can be described (locally) as a solution of (rsiny),= —ru. We compare it
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(rpsvp) (r,, v,)

(ry> V) (rps vﬂ)
(a) (b)

Figure 4.5. Delaunay arcs. (a) Outgoing. (b) Returning.

with a roulade v(r) whose mean curvature is —3%u, and for which a+c¢
=r,, which is positioned so that the vertical points coincide (see Fig. 4.6).
Since v,(r;)= —o0, Lemma 4.11 yields u,<v,, u(r)>v(r) as long as the
continuation of both u and v as single-valued functions is possible.

The curve v(r) can be continued toward the u-axis only until the point
(a—c,u;+1) with a—c= —(2/u,;)—r, >0. At this point the slope is again
infinite. It follows there is a value r,> —2/u, —r, beyond which this
branch of the solution curve cannot be continued as a single valued func-
tion.

From the geometrical interpretation of t as the half circumference of
an ellipse with major axis 2a= —2/u, and focal length c=r, —a, one
finds the expression for the height of the roulade

t=2aE(k), k:%, (4.28)

(a,—cy,u,+1,)

Figure 4.6. Comparison with roulades.
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where E(k) is the complete elliptic integral of the second kind. For large
luy| we will have

2 16 Inju,| ( 1 >
S — 0] . 4.29
’ u, 3 Ju,l? + lu,|? (429)

Let us estimate r, from above. To do so, we compare u(r) with a rou-
lade ©(r), which is determined by the conditions

i+i=r (4:30)

f=§ (a®>—c*cos® )2 d .

A formal estimate shows that such a roulade exists if u, < —2}/x.

The conditions (4.30) are chosen so that the roulade can be placed
with its lower vertical point at (r,u,) (see Fig.4.6) and so that in that
configuration its mean curvature will be exactly the one determined from
the right side of (4.9) by setting u equal to the height at the upper verti-
cal. Applying Lemma 4.11 again, we obtain u,>d,, u(r)<#(r) for all r<r,
for which u(r)<u,+7. This condition clearly holds for r near r; since
d(r)<u, +7, we conclude that it holds on the entire interval d+¢<r<ry,
thus

0>v,(r)>u,(r)>0,(r)> —o0

on this interval, and hence the solution can be continued to the left of r,,
at least until the value

r,< —

—r,=f,. 4.31
u +7 "n=F ( )

For large |u,| we find

2 401 1
i=- 2D 2lio (1) (432)
u;, 3 Juyl Ju,|
and thus
2 4 ln|ul|)
e o ) 433
r,< . r u?+0(lulls (4.33)

We now proceed, essentially, as in the proof of Lemma 4.13. Denoting
by ¢ the inclination angle of v, we note that

. . 1 r 1
siny >sing = —5"h +7 (1 —}—ir1 ul>;
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thus from the preceding estimates and from (4.23) and (4.24) we find for
r<f, that

sing 3, In|ul|>
_—> —— 0 .
r 50u1+ (]ul|5

Using this estimate, we integrate (4.12) in u from u(f,); since cosy <0
until a vertical is reached, and since

cosy(B,)>cos(B,)= —%]/i+0 (lnlud),

l“llz

we are led to a contradiction unless the curve becomes vertical before u
has increased by an amount —16uj>. That is, a vertical must appear at
a value

u, <u;+7%, —16uy>.

The solution curve then turns back from the axis at (r,, u,) and initiates a
further branch.

It is now clear how to proceed, and the successive comparisons yield a
curve that continues with simple projection onto the wu-axis until the
r-axis is crossed. The following properties are easy corollaries of the
method.

Lemma 4.15. The successive horizontal distances of the inner vertical
points from the u-axis, and of the outer verticals from the hyperbola ru=
—2, increase monotonically. For sufficiently large |ul, there is exactly one
inflection between any two successive vertical points.

We prove also:

Lemma 4.16. In the initial region u<O0, the entire curve is bounded (strict-
1y) between the u-axis and the hyperbola ru= —2 (see Fig. 4.7).

Proof. We note from (4.12) that at any vertical point there holds

siny), = — 4L (4.34)

r

and thus each such point continues to an outgoing arc or returning arc
according as ru> —1 or ru< —1. We integrate (4.9) on an outgoing arc
starting from (r,,u,), o even (r,=0) to obtain

rsim//=ra—j pudp, (4.35)
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ru=—2

Figure 4.7. The initial region u <0.

which shows first that u,(r)>0 on any such arc along which u<0. Inte-
grating by parts in (4.35), we find

.

.S c Ll 22y 1 2

rsinyg —r, =5, r; —ui )+7§ pru,dp
Vo

> —3r, —3r(ur)
from which

r _
ur>=>2-=2siny > —2.
r
On an arc returning from (1, u;) we similarly obtain
: 1(, 2 o1 2
ry—rsiny=5(ur —uﬂr,,)—i-5§ pru,dp,
.

and since u,r;> —2 there follows

. 1 L1,
s1nxp>—§ur—§;§rp u,dp,

from which we easily conclude u,<0 in the region u<0. There follows
immediately r>1,>0 along such an arc.

4.8. Global Behavior

The discussion thus far has shown that the solution curve can be con-
tinued upward without self-intersections until it reaches the r-axis. We



4.8. Global Behavior 87

wish to show that after crossing the r-axis it continues outward to in-
finity without crossing any previous portion of the arc. Our first step is
to show that it crosses the r-axis with a positive slope.

Lemma 4.17. Let r=a, be the first point at which the solution curve meets
the r-axis. Then 0 <u,(a,) < oo.

Proof. Suppose u,(a,)<0, or equivalently, cosy; <0. The curve could
then be continued backward into the negative u half plane until a first
vertical (r,u,) (see Fig.4.8). By Lemma4.16, r,u,> —2. We integrate
(4.12) with respect to u, from u, to 0, obtaining

0si 1
.‘ h— du=cosy, +§uf. (4.36)
u r

o

To evaluate the left side of (4.36), we integrate (4.9) in r between r and r,:

To
r,—rsiny = ——X pudp<3(r*—rHu,
.
<3rtu,+r,

since r,u,> —2. Thus

> —3 u, (4.37)

on the entire arc. Placing (4.37) into (4.36), we find cosy, >0, which con-
tradicts the assumption.

It remains to exclude the case cosy; =0. Were that to occur, we would
find from (4.12) that (cosy),>0 at the point; thus if cosy, =0 there
would again be a backward branch from a, into the negative u half
plane, and we obtain a contradiction as before.

ru=—1
-2

(r,, u,)

Figure 4.8. Proof of Lemma 4.17.
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u

Figure 4.9. Proof of Lemma 4.18.

The proofs of Lemmas 4.4 to 4.6 now follow exactly as before, and we
see that the solution curve continues from the point (a;,0) as indicated in
Fig. 4.1. We show that the curve does not intersect the initial branch in
the region u<0.

Lemma 4.18. Let u,, u; be the heights at two successive points on the so-
lution curve, such that r,=r, with an intervening vertical at (r,,u,). If r,<r,,
then siny, <siny,; if r,>r,, then siny,>siny, (see Fig. 4.9).

Proof. Suppose r, <r,. From (4.9) we find

B
rpsiny,—r,= —g pudp

¥

rsiny,—r,= —s upudp

ry
and thus, since r, =7y,

Fx

ra(sint//,,—sim//a)=§ pu” —ut)dp<0;

ry

here u~ and u* denote values on the lower and upper branches. The case
r,>r, follows similarly.

Corollary 4.18. The r-coordinate, both of the inner and of the outer vertical
points, increases monotonically as the curve is traversed from the initial
point.

Consider now the coordinate r,, of the first (positive) maximum. By the
Corollary 4.18, either r,, exceeds the r-coordinate of any vertical point, or



4.8. Global Behavior 89

else there is a vertical segment r=r,, joining two points separated by a
single vertical, as indicated in Fig. 4.9.

From Lemma 4.18 follows that a<b in Fig. 4.9, and thus h, <b. But
h;<h,, any j>1, by Lemma 4.4. Hence h;<b, all j>1, and thus intersec-
tions are excluded.

Combining the above results we obtain

Theorem 4.5. The solution of the parametric system (4.8) defined by the
datum u, can be continued indefinitely without limit sets or double points.
It has the properties indicated in Lemmas 4.15-4.17, and has the form in-
dicated in Figs. 4.10-4.12.

Figure 4.10. u, = —4; singular solution.
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Figure 4.11. u,= —8; singular solution.

The figures show the results of computer calculations by Concus, cor-
responding to the values u,= —4, —8, —16, and also the singular so-
lution, cf. §4.13.

4.9. Maximum Vertical Diameter

Regardless of u,, there is a universal upper bound for the diameter of a
drop at a vertical point.

Theorem 4.6. Let 6x2.47341 be the unique positive root of the equation
=332 334 =0, (4.38)

£
Then 26 exceeds the diameter of any drop at a vertical point.
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Figure 4.12. u,= —16; singular solution.

We base the proof on a lemma, which also has an independent in-
terest.

Lemma 4.19. Let u(r) represent a solution curve passing through (a,u,) with
—1<au,<0, and such that

asiny,>3a. (4.39)
Suppose u(r)<0 in a<r<R. Then sinyy>0 on this arc segment. If the

curve meets the hyperbola ru= —1 in a point (c,u,) with a<c<R, then
c<3"* and siny, > 1/2.

Proof. We integrate (4.9) between o and r, obtaining after an integration
by parts

rsing —osing, =%(c?u, —r? u(r))+%s p*u,dp (4.40)
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from which, if a=a,
rsiny > —%rzu(rH—%j p*u,dp (4.41)

by (4.39). Since u(a)<0, we conclude from (4.41) that sinyy >0 when r is
sufficiently close to a. Thus, if siny were to vanish at any points interior
to a<r<R, there would be a minimum such value r=r,>a at which that
occurs. But (4.41) would then imply

0=n/sinxpy>§§ /pzupdp>0,

a

a contradiction. Thus, sinyy>0 on a<r<c, and hence u,>0 on that in-
terval. Setting r=c in (4.41) yields

siny,> —tcu =1, (4.42)
as asserted.
Finally, we note that at r=c the inclination of the solution curve can-
not exceed that of the hyperbola. Thus, sinyy, <(1 +c¢*) =2, so that ¢* <3
follows from (4.42).

We proceed to prove Theorem 4.6. We first observe from (4.12) that at
any vertical point there holds

(cos 1//)u=%(ur+ 1) (4.43)

which is positive if ur> —1. It follows that for any such vertical there
must be a (next) vertical below it, at which ur< —1, and at which the
diameter would clearly be larger. Thus, if we label the starting point
(ro,utg), To=0, and the successive verticals by (r;,u;), j>1, then the maxi-
mum  diameter will be attained at a point (ry;, ,u,;, ),
—1=r;, uy;, > —2 (cf. Lemma 4.16). At the preceding point (r,;,u,;)
there holds either r,;=0 (if j=0) or else siny, ;= 1. In either event, (4.39)
holds with a=r,;. Also, —1<r,;u,;<0, and thus the curve crosses the
hyperbola ru= —1 at a point (c,u,), r,;<c<r,; . Finally, we observe
that interior to the region ru< —1 the curve has no inflections (Lem-
ma 4.12). Setting a=c¢, r=r,;,; in (4.40) and applying Lemma 4.19, we
find

131 =331, —3%4 <0, (4.44)

The (single) positive solution of (4.38) exceeds any solution of (4.43), thus
that solution provides the desired bound.

We note the following corollary of the method of proof:
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Corollary 4.6. At each intersection point (r,,u.) of the solution curve with
the hyperbola ru= —1, such that (r,,u,) is connected, either to the initial
point (0,u,) or to a vertical rju; with r;u;> —1, by an arc of the curve on
which u<0 and on which no other verticals appear, there hold siny,>1/2,

c< 34,

In particular, these inequalities hold at the first point of contact of
u(r;uy) with the hyperbola. Corresponding to the largest value u,, for
which contact occurs before the r-axis is crossed, there hold siny, =1/2,
c=344

4.10. Maximum Diameter

There is also (cf. §4.9) a universal upper bound for the coordinate r=r,
of the first (and highest) maximum point.

Theorem 4.7. Let R be the coordinate of the first crossing point of the
solution curve of (4.8) with the r-axis, and let 6 be as in Theorem 4.6. Let
u~2.888 be the unique root r>0o of

8\, r r*=5% 1 o1
A PPN bl A PP RS 445
(1 2)“5Jr 4 2(‘”“5) 52 (4.49)

Then R<pu.

Proof. If no vertical points appear, the result is contained in
Lemma 4.3(b). We may thus assume there is a (last) vertical (r,,u,), after
which the solution continues as a graph u(r)<O0 satisfying (4.9), to the
crossing point (R,0). By Lemma 4.17, R>r,. From (4.9) we find on the
interval r,<r<R

rsiny —r,= —-[ pudp

ru

r (4.46)

—s62u, -+ | puorap

r

1 1.2
> =51, +5ru

since (by 4.16) sinyy >0 on the segment, and r,u,> —1. There follows
ru<2siny and hence, from Lemma 4.3a, F(R;a)<0 (as in the proof of
Lemma 4.3(b)) for any a in the interval. Again a unique 7>a is deter-
mined by F(r;a)=0, and 7 is increasing in a when a>a, as determined
by (4.17).

If R<a,, there is nothing to prove. If r,<a, <R, we set a=a, and de-
termine R<R, as in the proof of Lemma 4.3(b).
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If r,>a, we recall that r,u,> —1, siny,=1; thus (4.15) can now be
written

2 2

2\ R R -a®> 1, RV? 1
G(R;a)z(l—a—)ln—+ g +—(a1n—) ——<0,  (447)
a 4 2 a a

and (4.17) takes the form

(1—T)1/2a7+f[exp[;‘2M]-—1]—%+1=0 (4.48)

4 2

which has the unique positive solution b,~1.157<a,. Thus, in the equa-
tion G(R;7)=0 we will have R increasing in r,. We have however r, <
(Theorem 4.6), and it follows that R is bounded by the (unique) solution
r>0 of (4.45), as was to be shown.

Theorem 4.8. Let (ry,,u,,) be the coordinates of the first maximum point.
Let R be as above, and let

1
= VR+y/2. 1= . 4.49
2. R +12. 1 e (4.49)
Then
4
"2 < r (4.50)

(14+7)ln (1+%)—1

and hence, by Theorem 4.7, r,, <5.333.

Proof. We consider the segment of the solution curve joining (R,0) to
(ryp>ty). On that segment we have u>0, siny>0. Setting v=siny, we
find from (4.12)

0= —u—< L (4.51)
r r
and thus
rv<Ruvg (4.52)

on the segment.
By Lemma 4.6,

siny/ . =
u<uy, <} 2y 1-—cosy 2= <) 20,. (4.53)
w<V?2 x=V2 [+oosU, V20
Thus, by (4.9)

(rv),= —ru> —ruy,> —]/EuRr, (4.54)

Ruv 1/2 V2
o>k ( )—TUR; (4.55)

from which
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Thus, v(r) remains positive at least until the value AR, with 4 determined
by (4.49). We now observe du/dr>uv(r) and integrate (4.55) from R to r.
We obtain

u(r)>RvR{(I—k%]/ER)lnL—ﬁR ('— 1)} (4.56)

R 4 \R?

Once the height u(AR) is attained, we find from (4.9)

(rv),= —ru< —ru(iR) (4.57)
and thus, for AR <r<r,,,
2 _ N.R 2
ru<zRuR—u(zR)r—(2’f). (4.58)

It follows that the value r,,, at which v=siny =0, must satisfy

2/Rv,p
u(AR)

r2< +(AR). (4.59)

We estimate u(AR) by (4.56), and we estimate ARv,, by placing (4.56)
into (4.9) and integrating from R to AR. Using (4.49), we obtain the stat-
ed inequality (4.50).

We note that asymptotically as R—0, there holds from (4.49) and (4.50)

, 4 1
M <ta(/R) O (ln(l/R))’

which tends to zero. In view of Theorem 4.7, it follows that Theorem 4.8
provides a universal (finite) upper bound for ry,, for all possible pendent
drops. This bound has a physical significance, as any drop that extends
beyond the coordinate r,, of the first maximum would have to pass
through the supporting plane, which is physically unrealistic. Thus, (4.45),
(4.49), and (4.50) together provide a bound for the physical diameter of any
pendent drop.

4.11. Maximum Volume

If we restrict attention to (physical) drops as above, we may observe first
that any drop can be replaced by one of larger or equal volume by ex-
tending it to the coordinate r,,. But the volume of that drop is easily
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Figure 4.13. Initial null-point for drop profile and singular solution.
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Figure 4.14. Maximal volume for pendent drop and singular drop.

calculated. It is, in terms of arc length s measured from the tip,

Sm

d
VM=nrfluM~2n§ . pud—st

st d 4
=nrA24uM+2n§ . a-s(psinw)ds (4.60)

— 2
=Ty Uy,

by the governing equations (4.8). From Lemma 4.6 and the remarks at



4.12. Asymptotic Properties 97

the end of the preceding section, we have immediately, in view of Theo-
rem 4.8,

Theorem 4.9. The quantity

VE=71/2(r,)* <126.4 (4.61)
exceeds the volume of any (physical) pendent drop.

Figures 4.13 and 4.14 show results of computer calculations by P.
Concus of R and V, with increasing |u,|. See the remarks in Note 6 at the
end of the chapter.

4.12. Asymptotic Properties

Since the solution exists globally for every u,, it is of interest to exam-
ine its asymptotic behavior as u,— —co. This behavior exhibits a number
of striking properties, which are examined in some depth in [34]. The
underlying idea is simply to iterate the procedure outlined in §4.7, with
the hope of obtaining estimates sufficiently accurate that they will con-
tinue to have meaning in a fixed compact range, even as u,— —oo. Un-
fortunately that procedure, in which the detailed estimates are obtained
by placing into the integrals that occur the upper and lower heights of
comparison roulades, yields information that is not sufficiently precise,
and with repeated iteration control over the solution is lost. A degree of
success was however attained by placing into the integrals that appear
not just the bounds on the roulades but the analytic pointwise ex-
pressions for the roulades. The estimates are thus made to depend on
painstaking estimation of integrals of incomplete elliptic integrals. The
details are tedious and complicated and will not be reproduced here. The
results do seem, however, rather striking and we therefore present them
in outline. For a full presentation we refer the reader to [34].

We set r,=0, denote the successive vertical points by (r;,u;), and write
c;=In+1/ul,  kj=—cu;, odc;=c;, —c;
Set
2
q(k)=E(k) —32 +k?) E(k) — (1 —k*) K(k)],

where K and E are complete elliptic integrals of the first and second
kind. We then find

s, —2kiak) 4

J 3

1
Jj )
uj Vk;ut
J kj Llj

j even,
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with an analogous (more complicated) expression for j odd. Here
|A;]<A<occ, uniformly for all sufficiently large |u;|, in any range
O<ky<k<l.

Let u;, be the (unique) solution of the equation

4 In (47[) _ 1
u? ut) 64
and set

4 : 4
K — max {k: —2kq(k)< —24 (1 —k+-2—”) In (1 —k+L—;>}.
u !

my my

For sufficiently large |u;| we may then write

dc;=—PFc;
with
k 31qk
min 4O p gy 31901 (4.62)
k>k(D k / k>kM

We then obtain, for any fixed N and |u,| sufficiently large,
2NP~cy?—u}

for some P in the range (4.44). The symbol ~ denotes an asymptotic
relation. We find correspondingly

uy~ui—2AN, 2<A<nm

Theorem 4.10. Given any k'© with k' <k® <1, there exists n(k'®)>0 such
that the solution curve, starting at (0,u,), “separates” from the axis r=0
and the hyperbola ru= —2, after an interval uy—u,="[1—(1—n)"*]|u,l,
in the sense that for all u>uy the curve lies between the hyperbolas ru=

—1+k©. Above uy, the curve begins to contract toward ru= —1, and at
the heights |u;|<|uyu|=(1—n)""?|u,| there holds k<k'®. The curve can
be continued through successive verticals to a height |uyo)|~ Aluy|”'®, for
suitably large A, at which level it has contracted toward ru= —1 in the
ratio

Caen A \12

Co - (A+P)

For any o, (23/9)<a <3, the curve can be continued further through suc-
cessive verticals and is confined to a strip of sensibly constant width until a
height |uye)|~|uo|®** V. For smaller values of |u| (relative to u,) vertical
points presumably cease to appear; however, the curve lies within a strip
about ru= —1, of width determined by k= A|u|~?", for sufficiently large
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A (independent of u,). Specifically, there exists A such that for any fixed
(sufficiently large) 1, there holds, for (f,1) on the solution curve,

IF—1/0|<Ald)|=°"
uniformly in u,, as uy— — oo.

The four different stages of global asymptotic behavior are sketched in
Fig. 4.15.

(I=m'"u,
Alug|"?

A Iuol(21+ 1)/9

Aluol™

Figure 4.15. Asymptotic behavior for large |u,| at four levels (scales differ). (a) Ini-
tial separation from axis. (b) Contraction toward hyperbola. (c) Confinement to
strip of constant width. (d) Behavior far from |u,|.
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4.13. The Singular Solution

If k>0 in the underlying equation (3.6), it has been shown [50] that
every isolated singularity of a solution is removable. The theorem holds
without growth or symmetry conditions. If k<0, the behavior of so-
lutions can be quite different, although there are some conceptual anal-
ogies. The following result is due to Concus and Finn [32].

Theorem 4.11. There exists a solution U(r) of (4.9) with a nonremovable
isolated singularity at the origin. The solution admits the (divergent) as-
ymptotic development

1 7 123149 212466731
U(r)~ —7+§r3 _§i,.7 FL_ 66 r

P L TS 128

S (4.63)

The proof given in [32] is technically complicated and we shall not
present it here in detail; we mention only that it proceeds through a
representation of the nonsingular part of U(r) by a Fresnel kernel. The
resulting integral operator is then shown to contract a suitable ball in a
Banach space into itself.

The solution U(r) was observed independently in a computational
study by Huh [103].

Conjecture 1. U(r) is—up to inessential transformations—the unique so-
lution of (4.9) with a nonremovable isolated singularity.

The following results [33], while they fall short of a complete unique-
ness proof, do show that no other growth at a singular point is possible.

Theorem 4.12. Let u(r) be a solution of (4.9) in an interval 0<r<R. Then
either u(r) can be defined at r=0 so as to satisfy divT u= —u in the entire

open ball |x| <R, or else for any two constants L,>n+1 2, A, >V 2, there
holds
—Ador<U(E) +|u(r)|<i,r (4.64)

Sor all sufficiently small r.

Theorem 4.13. Let u(r) be a solution of (4.9) in 0<r<R. Then either u(r)
can be extended to a solution of divTu= —u in the open ball |x|<R, or

for any y>L(n+71/2)? there holds
Siny(r)>1—yr (4.65)

for all sufficiently small r.
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Again the proofs are technical and we do not present them here.

Although Theorem 4.11 ensures existence only in a sufficiently small
neighborhood of r=0, computer calculations suggest that the solution
can be continued indefinitely. Thus:

Conjecture 2. U(r) can be extended to a solution of (4.9) throughout the
interval 0 <r < co.

We observe next from Theorems 4.12 and 4.13 that any singular so-
lution must have at r=0 exactly the growth order of the hyperbola ru=
—1, which figured prominently throughout the discussion of the so-
lutions of (4.8) for large |uy|. In fact, it is shown in [34] that for any
sequence u)— 00, a subsequence converges, uniformly in compacta, to a
solution of (4.8) without boundary points, limit sets or double points. The
limit solution is asymptotic to the hyperbola as r—0 and projects simply
onto the r-axis for large r. We are led to:

Conjecture 3. The global solutions of (4.8) corresponding to initial datum u,
converge as u,— — 00, uniformly with all derivatives in any compact set, to
the (unique) singular solution U (r).

In Figs. 4.10-4.12 are shown the results of computer calculations that
appear to support the conjectures.

There is a more striking form of Theorem 4.12, which emphasizes the
constraint imposed on the solution by the nonlinearity in the equation,
and which also does not require rotational symmetry [54]:

Theorem 4.14. Let u(x) be a solution of divTu= —u in the punctured disk

0<r<R. Suppose there exists ry, 0<ry<R, such that on |x|=r, there
holds

1
U(x)> ——+ 1. (4.66)
T, 2

Then for all x in 0<|x|<r, there holds

1 —
u(x)> "7+‘72£"° —Y/4rZ =% +1/31, (4.67)

0

If (4.66) holds with the reverse inequality, then so does (4.67).

Thus, if particular bounds above or below are known on a single cir-
cumference, then corresponding bounds must hold throughout the punc-
tured disk. In particular, any solution whose growth rate at the singular
point is significantly less than that of U(r) must be bounded at the point.
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We have also [54]:
Theorem 4.15. Let

VE ,
= lLub. s x do

0<e<1 71/51/1*&2
where
l—e+(1—0)?
T 2(l+o0)

Let u(x) satisfy divTu= —u in 0<r<R. Then there is no r,, 0<ry<3R,
for which

1
|u (o)l = —+ pry
To
in 0<|x|<r,.
Thus, there is no solution with uniform growth rate exceeding that of
U(r).
Both results are proved by comparison with suitable roulades.

L. Simon has shown that there exist solutions of div Tu= —u that are
bounded at isolated singular points.

4.14. Isolated Character of Global Solutions

It is possible to continue the solution u(r;u,) not only upward from
(0;u,) as we have done, but also downward, simply by choosing the ini-
tial value of ¥ to be = rather than zero. In that case the curve bends
initially downward rather than upward (see Fig. 4.16(a)); if we join the

(a) (b)

Figure 4.16. Continuation in extended sense (not to scale).



4.14. Isolated Character of Global Solutions 103
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Figure 4.17. Singular solution and other solutions of (4.8).



104 4. The Pendent Liquid Drop

two branches together, we obtain what can be considered as a single
solution arc, in the extended sense that it passes through a singular point
at (0,u,), at which ¥ has a jump discontinuity. We justify the procedure
by looking at a situation in which |u,| is large; at one step upward Y
changes abruptly near the u-axis, from ~7 on the upper “branch” to
¥ ~0 on the lower one (see Fig. 4.16(b)).

The behavior of the global configuration is considered in [34] with the
aid of computer calculations; the case u,= —8 is illustrated as the first
curve in Fig. 4.17. Above the height u, the configuration looks roughly
like a succession of roulades of ellipses, while below that height the ap-
pearance resembles roulades of hyperbolas, with the characteristic double
points of those curves.

The solution curves of (4.8) in Fig. 4.17 were obtained by choosing as
initial point p the intersection of u(r; —8) with the singular solution, and
then choosing initial angles in increments of 7/6, measured counterclock-
wise from the arc of u(r; —8) emanating from p in the direction of in-
creasing u. One sees that in several of these curves a similar transition in
behavior occurs, even though no contact is made with the u-axis (and
thus no singular point appears). Thus it seems natural to consider the
solutions we have constructed (with their extensions) as isolated limiting
configurations of the manifold of all solutions of (4.8). If we adjoin these
“ideal elements” and agree to consider them as global solutions, we are
led to:

Conjecture 4. The singular solution U(r) is the only (nontrivial) solution of
(4.8) that can be extended indefinitely without double points.

4.15. Stability

There is a considerable literature on stability of pendent drops. From a
theoretical point of view, the references [120, 146, 147, 18, 130, 26, 187]
indicate some of the major contributions. The deepest and most defi-
nitive results are those of Wente [187]. Of the three problems studied by
Wente, we restrict attention here to the drop of prescribed volume pen-
dent from a horizontal plate.

Wente adopts—as do his predecessors—a criterion of local static sta-
bility, according to which a configuration in static equilibrium is called
stable if the second variation of energy is positive for all smooth varia-
tions of the surface that leave the volume unvaried. We indicate here
some of his results. We denote by 7y the angle of contact with the wall,
measured within the fluid, and we remark that according to another
theorem of Wente, the drop is symmetric about a vertical axis; thus the
above results on existence and shape of the drops apply.
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Theorem 4.16. a) Suppose 0<y<n. Then for any sufficiently small volume
V, there exist stable drops that are convex and resemble spherical caps.
These drops are generated by profile curves whose tip is at ug, where |u,| is
large. As V increases, so does u,, until an inflection point is reached. This
drop is stable. With further increase of V, u, decreases; the drop profile
contains an inflection but continues in some interval to remain stable. In-
stability occurs prior to appearance of a second inflection.

b) If y=0 all profile curves contain an inflection. The curves are gener-
ated by starting with the solution u=0, then letting u, decrease and con-
sidering the portion of the curve up to the first maximum. The limit of
stability is reached prior to the appearance of a vertical point, i.e., before

o= —21/2 (cf. Lemma 4.13).

c) For any angle of contact, the drop height increases monotonically
with volume throughout the range of stability.

These various steps in drop formation are illustrated in Figs. 4.18 and
4.19. Stable configurations are obtained from a small part of the drop

o

(@) (b) (© (d) () ()

Figure 4.18. Drop formation with increasing volume, y=m/2. The line segments
indicate the plane of support. Configurations (a)-(e) are always stable; (f) will be
stable if the increase of volume from (e) is sufficiently small.

Zalihyi

(a) b) ©

Figure 4.19. Drop formation with increasing volume, y=0. Configurations (a) and
(b) may be stable; (c) is unstable, since vertical appears.
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near the tip if y>0, or from a portion of the drop without vertical points
and extending to the first maximum, if y=0.

It should be noted the theorem does not assert that all stable drops
are obtained in the indicated way; in particular the uniqueness of a sta-
ble drop with given y and V has not been proved. These properties are
however reduced by Wente to a monotonicity property of a mapping,
which is supported by computer calculations.

Wente also establishes stability criteria for two other configurations, in
which the fluid drop hangs from a fixed circular aperture, under con-
ditions either of constant pressure (the nearly empty medicine dropper)
or of constant volume (the filled medicine dropper). In the latter case he
shows that stable configurations can occur in which both a bulge and a
neck appear, and he gives explicit geometric criteria for instability.

Notes to Chapter 4

1. §4.2. As was already mentioned, the local existence was first proved by
Lohnstein [119]. An alternative proof, due to Concus and Finn [34], is
based on the Schauder fixed point theorem and has the advantage that it
makes no use of the analyticity properties of the equation; the method is
thus better suited for characterizing other equations that share analogous
properties. It also seems likely that the Picard iterative procedure, as
developed by Johnson and Perko [105] for the case x>0, could be used
also in the present case. Brulois [21] observed that when x>0, the
Lohnstein-Wente proof can be simplified greatly by using the one-dimen-
sional solution as a majorant.

2. Remark following (4.9). The case u,>0 can be interpreted physi-
cally as describing the free surface of a bubble in equilibrium at the top
of a tank filled with liquid.

3. Theorem 4.3. J.B. Serrin has proved that the successive extremal
heights tend to zero (oral communication); cf. Note 11.

4. Lemma 4.6. The result LIM<]/§ was first proved by Wente [187],
using another method.

5. Theorem 4.5. The pendent drop solution does not provide a mini-
mum for the potential energy (e.g., the energy can always be reduced by
lowering most of the mass to a sufficiently small height and then con-
necting it to the plane by a thin tube containing the remaining mass).
However, Giusti [87] and, independently, Gonzales, Massari, and Ta-
manini [92], obtained partial results by introducing a “floor” as obstacle
and considering only configurations that lie on or above the floor. If the
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gravitational field is sufficiently small, they are then able to prove exis-
tence of a minimizing configuration that is in contact with the ceiling but
not with the floor. Earlier results in this direction had already been ob-
tained by Wente [185], who proved existence, for sufficiently small
gravitational field, of a drop of liquid hanging from a prescribed aperture
of general shape. As already indicated in connection with Chapter 3, an
existence result obtained in this way yields simultaneously a stability
property of the configuration.

6. §84.4-4.11. All estimates are in nondimensional form. To obtain the
corresponding dimensional results for a given physical configuration we
need only multiply each spatial coordinate that appears in any relation

by ]/K. Thus, for a water drop hanging from a glass plate in vacuo in the
earth’s gravitational field, for which situation one has y~0 and k=29, we
find 6~0.46 cm, u~0.54 cm, r,;<0.99 cm, and V*~0.81 cm®. These val-
ues, although they are within the range of reality, are certainly not sharp.
The results do provide, however, general qualitative information that
could not have been obtained from methods that were previously em-
ployed.

7. §4.11. Lohnstein [120] was apparently the first to suggest that there
should be a finite upper bound for the volumes of all physical pendent
drops, although it seems likely he had in mind only those drops up to a
(not clearly defined) limit of stability. Lohnstein supported his view by a
procedure that was in part numerical. Again from a numerical point of
view, the question was considered in full generality by Hida and Naka-
nishi [100], who made computer calculations of the volumes of drops, as
function of the parameter u, They found an oscillating pattern that
seemed to approach a finite limit as u,— —oo. Later calculations by
Concus with more sophisticated computers, of ¥ and also of R (Figs. 4.13
and 4.14), suggest that either these quantities converge very slowly to the
corresponding values for the singular solution U (r), or else they oscillate
about those values. The computer results provide support for the conjec-
tures of §4.13, at least in the sense that they do not conflict with the
conjectures.

The first attempt to obtain a global description of pendent drops
seems due to Bashforth and Adams [8], who used the problem to test a
new numerical procedure. Lohnstein was aware of this work but over-
looked the section on pendent drops. In a later note [120] he remarks
“... entnahm ich kiirzlich das genannte Werk der hiesigen Koniglichen
Bibliothek, und da fand ich dann die erwdhnte Tabelle, deren rechtzeitige
Benutzung mir viel Arbeit gespart hitte”.

Kelvin [179] proposed a geometric integration procedure; he was the
first to discover global solutions with repeated bulges. His result in a
specific case is reproduced in Fig. 4.20.

Modern computing methods have facilitated the numerical integration
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Figure 4.20. Pendent drop (Thomson, 1886).

of (4.8), and many particular cases in agreement with Kelvin’s discovery
have since been worked out, see, e.g., [103, 100, 144, 96, 34]. Hida and
Nakanishi [100] were apparently the first to find configurations with a
large number of bulges. Although such solutions are globally unstable,
individual portions of them can appear as stable configurations that
would be physically observed, cf. Theorem 4.16.

8. The bound (4.61) for the volume has an interesting heuristic con-
sequence. Imagine a symmetric sessile drop of volume exceeding V*; the
existence of such a drop as a formal solution of the equations follows
from Theorem 3.2. We now rotate the plane IT of support about an axis
through the diameter of the wetted disk D, supposing that the adhesion
forces suffice to keep the wetted surface unchanged. It is shown in [162,
67] (see also Chapter 8, Theorem 8.3) that the contact angle distribution
cannot remain constant when IT is tilted; nevertheless it seems reason-
able to suppose that, at least for small angles of tilt, a formal solution of
the basic equations continues to exist. If IT could be rotated through an
angle 7, we would obtain a pendent drop configuration, which by
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Wente’s theorem [186] must be symmetric and governed by the system
(4.8). But by Theorem 4.9, no such solution exists. Thus, at some angle ¢,
of tilt, the formal solution must either penetrate I or develop an in-
stability of a sort that prevents its further continuation. The latter be-
havior would differ from what was encountered in this chapter, in which
the formal solution in its dependence on u, does not seem cognizant of
any instability. Some evidence of such noncontinuability was in fact en-
countered by Milinazzo (see the Appendix in [72], also the discussion in
§8.15).

9. §4.15. In his discussion of stability, Wente restricts himself to varia-
tions directed normal to the surface. Since such a variation of the (physi-
cal) surface will in general not maintain contact with the supporting
plane, he extends the original surface through the plane and makes an
appropriate variation of the extension. The cases y=0, © require separate
discussion. The procedure is satisfactory for the particular problem con-
sidered, in the sense that every neighboring surface that can be achieved
by a variation of the type considered in Chapter 1 can be achieved also
(when y=0, m) by such a normal variation; however, in a general situa-
tion, e.g., if I1 is replaced by a curved surface, the procedure would seem
to require more differentiability hypotheses than should be needed. A
formula for the second variation corresponding to the variations intro-
duced in Chapter 1 does not seem to appear in the literature.

The Wente procedure would not be satisfactory from the point of view
of establishing the equilibrium equations from physical principles (see
Chapter 1) as it does not correspond to the principle of virtual work,
which requires that physical particles be mapped into physical particles.

10. A further class of symmetric capillary surfaces with striking prop-
erties was investigated by Vogel [182]; see also his later papers [183,
184].

11. Added in proof: M.F. Bidaut-Veron has proved Conjecture 2 (§4.13)
and has established a uniqueness result that overlaps Theorems 4.12 and
4.13. Her proof yields also that the successive extremal heights tend to
zero (cf. Note 3).



Chapter 5

Asymmetric Case; Comparison Principles
and Applications

5.1. The General Comparison Principle

We wish to estimate the behavior of capillary surfaces in tubes of general
section. We approach the problem in the spirit of the preceding chapter,
and attempt to gain information by comparison of a given solution with
an explicitly known “near solution” of the equation. Since symmetry will
no longer be assumed, we need a more sophisticated tool than Lem-
ma 4.11, and we have recourse to a form of the maximum principle for
elliptic equations. The statement we give is formally analogous to the
familiar maximum principle for the Laplace operator; however there is
an important new feature, which reflects itself in some striking distinc-
tions, between the behavior of capillary surfaces and that of surfaces de-
termined by the solutions of linear elliptic equations.

The material of this chapter will for the most part be restricted to the
case k>0; for purposes of later reference some of the results will be
formulated to include also the case x=0. We restrict attention to graphs
over a base domain Q; as in §1.9, we are led to an equation

divTu=xu, Tu=———Vu (5.1)

in Q, under the boundary condition

v-Tu=cosy (5.2)
on X=0Q. We write Nu=divTu—«xu.

Theorem 5.1 (Concus and Finn [30]). Suppose k>0, Nu=Nv in Q. We
suppose X admits a decomposition X=X, ,0X,0 X, such that

v=u on X2,

v-To=v-Tu on X,
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and X can be covered, for any £>0, by a countable number of disks B
of radius 0, such that X5;<e. It is assumed that XyeC'", however no
regularity hypotheses are needed on X, or X,. We conclude:

) if k>0o0rif X,%0, then v>u in Q; equality holds at any point if and
only if v=u.
il) if k=0, 2,=0, then v(x)=u(x)+ const. in Q.

N.B. If Z,=0 the result is (essentially) the classical maximum prin-
ciple. But if 2, contains even a single point, the statement would be false
for linear equations unless growth hypotheses at X, are introduced. The
result as stated thus depends essentially on the particular nonlinearity in
the equation. We note the hypothesis on 2, is equivalent to the require-
ment that X, have one-dimensional Hausdorff measure zero.

Proof of Theorem 5.1. Suppose there were a subset of Q in which u>w.
Then, for ¢ small enough, the set

Qi (e)={xeQ:0<u—v<M}n{Q\UB,}

would be non-null for some M>0. Define Q~, Q* analogously, corre-
sponding to u—v<0 and u—v>M, set A=Qn3d{{)B,} and define the
function w(x) in Q by

0 in Q-
w=u—v in QY
M in QF.

Set Q,=Q\B;,. Then (see Fig. 5.1)

Osj w(Nu—-Nv)dx=—§ Vw-(Tu—Tuv)dx
Q. Q.
—ICS w(u~u)dx+§ w(Tu—Tv) -vds (5.3)
Q. 4

+Mj (Tu—Tv)-vds+j w(Tu—Tv) vds

It pF

or, assigning symbols to the integrals on the right in order of appearance,
0<—Q-W+.7,+5"+7". (5.4)

We have clearly W>0, equality holding only if x=0. Since Z* <X, we
find #* <0. Also, all points of Z¥ at which w=0 are in 2, hence
S <0. With regard to Q, we may write

0= Viu—v)-(Tu—To)dx.

M
QO
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xy

Figure 5.1. Construction for proof of Theorem 5.1.

We write Vu=p, Vv=q, Tu=A(p). Consider the function

F(W)=(p—q) [Alg+t(p—9)—A(gp], 0<t<L

We have #(0)=0, Z(1)=V(u—v)-(Tu—Tuv). Since

lp—ql”

F'(1)= >0
[1+lg+t(p—a)*1*"
we conclude at once that Q >0, and equality holds only if Vu=Vv in QY.

Finally we observe that |Tf|<1 for arbitrary f with finite first deriva-
tives; it follows that |.#,|<4nMe.
Letting e—0, we find from (5.4)

lim(Q + W)<0

e—0

from which, since both integrands are nonnegative, Q =W =0 for any e.

If k>0, we conclude at once that the construction of QY is not possi-
ble for any ¢, M; that is, v>u in Q. If k=0 the procedure tells us that if
there is a subset on which v<u then v=u+const. in Q. It follows that
lim,_ ,QM=0Q, so that v=u+const. in Q, and either X, =0 or v=u in Q.
However, if k=0 and X_ =0, then an arbitrary constant can be added to
v without changing the hypotheses. Thus, in every such case there holds
v=u+const., as was to be shown.
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It remains to show that in every case for which v>u in Q, equality at
any point implies equality throughout Q. To do so, we use the following
result, due to Hopf [1017]:

Lemma 5.1. Let w(x) satisfy an inequality
a(x, y)w +2b(x, y)w, +elx,y)w,, +d(x,y)w, +e(x,y)w,—kw=0 (5.5)

in an open disk D, with k>0, ac —b*>06>0. Suppose w<0 in D, w(p)=0
at some pedD at which w is continuous. Then the normal derivative
jal ~ . Yy . . . ") . .
c.w/()Jv]p>0. (If w is not differentiable at p, the lower derivate is posi-
tive.

In our case, the inequality Nu>Nwv can be put into the form (5.5) by
setting w=u—v and using the mean value theorem. Suppose w<0 in Q,
w=0, and suppose there is a non-null set P<Q on which w=0. There
would then be a point ge Q\ P, whose distance to Q2 exceeds its distance
to P. The open disk D about ¢, of maximal radius such that DcQ\P,
would then have positive distance from 0Q and would contain on its
boundary a point peP. Applying Lemma 5.1 at p, we find dw/dv>0 at p,
which would imply the existence of points in Q at which w>0. This
contradiction completes the proof of Theorem 5.1.

Corollary 5.1. If x>0, the solution of the capillary problem (5.1), (5.2) for
a domain Q, with smooth boundary up to an exceptional set X, is unique.
If k=0, the solution is unique up to an additive constant.

Proof. If Nu=0, Nv=0, then Nu=Nv. By (5.2), v-Tu=v-Tv on X;,=
I\Z,, and X,=0. By Theorem 5.1, if x>0 then v>u and also u>v in Q,
so that u=wv. If k=0, we apply the theorem to obtain u=v-+const. in Q.

5.2. Applications

Theorem 5.2 (Concus and Finn [31]). Let u define a capillary surface over
Q, so that (5.1) holds with k>0. Let B; be a disk of radius 6, with B;<Q,
as in Fig.5.2. Then

2
in By.
The theorem asserts that there is no way in which the boundary of Q

or the contact angle could be changed outside B;, so as to raise liquid
above the bound (5.6) in B,.
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Figure 5.2. Comparison disks for Theorem 5.2.

Proof. Choose &', 0< ¢’ <4, let By be a disk of radius &', concentric to B;,
and let v' denote a lower hemisphere over B, whose lowest point has
the height v, =2/k¢". Then B, €, and

2
diVTD'=§=KU/OSKD/ in By
v-Tu<l, v-Tv'=1 on X;=0B;.

We apply Theorem 5.1, with X, =%, X =% =0. Thus

u<v' < +0’

Ko
in By. Letting 6’4, the result follows.

Corollary. If every point of Q lies interior to a disk B;=Q, then (5.6) holds
throughout Q.

Theorem 5.3. Let X have a continuous normal except perhaps on a set X,
as above. Let u define a capillary surface S over Q, which meets the bound-
ing cylinder Z over X\X, in the angle y, so that v-Tu=cosy on 2\X,.
Let By be a disk of radius ¢ such that QN Bs+0 and such that a lower
hemisphere v over By meets Z (if at all) in angles not exceeding y; that is,
v-Tv>cosy on (X\Z,)N By (see Fig.5.3). Then (5.6) holds in QN B;.

Proof. We wish to apply Theorem 5.1 in the domain QN B,. As set X, we
may choose the set X, Q, together with the set (X\2;)n B;. The remain-
ing set 2§ on the boundary of QN B, consists of X,nQ and the set of
endpoints of maximal open intervals of ¥, B;. The set of such intervals
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Figure 5.3. Comparison disk for Theorem 5.3.

\|

is countable, hence so is the associated set of endpoints, hence this set
has zero Hausdorff measure; thus Theorem 5.1 applies and the result fol-
lows.

Theorem 5.4 ([31]). Suppose Q has a corner with opening angle 2o, suppose
Nu=0in Q, v-Tu=cosy on Z*\V, where XZ* is the subset of X cut out by
Bj; as indicated in Fig. 5.4. Suppose in addition that a+y>n/2. Then (5.6)
holds throughout Q*=QnN B;.

Proof. A lower hemisphere v over B; makes a constant angle y, with a
vertical cylinder over XZ* (except at the isolated point V where the angle

Figure 5.4. Comparison disk for Theorem 5.4.
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is not defined), and y,=(n/2) —« (see figure). The result is thus a corol-
lary of Theorem 5.3 above.

N.B. This result holds for every solution u in Q that satisfies v-Tu
=cosy on X*\ V. No growth condition at V' is needed, nor is any bound
imposed for u on I The reasoning however fails if «+7<m/2. In fact, in
this case the solutions behave quite differently.

Theorem 5.5 ([31]). In the corner configuration above, suppose o+7y<m/2.
Let r, 0 be polar coordinates centered at V, set k=sina/cosy. There exists
a constant A, not depending on the particular solution considered, such that

l _cos@—1/k* —sin’0

o <4 (5.7)

in Q%

Proof. We seek a “near solution” in the form of a function whose level
curves are circular arcs that meet X in the angle y, see Fig. 5.5. Any such
function has the form

f (5.8)

(cosO —1/k? —sinzé?)
r 2

and any function f(x) with f’(x)#0 yields the required property. Choos-
ing f(x)=x, and setting

v=— (5.9)

Figure 5.5. Coordinate system and Ansatz circles.
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with the above indicated argument, we find after some calculation

divTo=xv+n, Inl=0(>) (5.10)
in Q, and
v-To=cosy—{, {=0(@*%, (>0 (5.11)

on Z*\V.

The arc I' can be covered by a finite number of balls B; =, hence by
Theorem 5.2 above there is a constant M such that for any solution u in
Q, lul<M on I. Setting w=v—A’, we have

divTw=kw+(H+xA) (5.12)
in Q* We choose A’ so that the two conditions

w<u on I
) (5.13)
n+kA'>0 in QF

are both satisfied.
Since v- Tv<cosy on Z*\V, we may apply Theorem 5.1 (X, becomes
now the arc I') to obtain

u—v>—A’ (5.14)
in Q*
If y+0 and we replace y in the argument of v by any 7<y, we will
have

v-Ti>cosy (5.15)

on X*\V for all sufficiently small 6. Having chosen 6 we may choose A"
so that, now setting w=7+ A", we will have

w>u on I’

5.16
n—kA”"<0 in Q% (.16)

Theorem 5.1 now yields

u—ov<A” (5.17)
in Q%

An estimate of this form holds for any 7 <y; we wish to obtain a cor-
responding result for y. To do so, choose r,<min{l,J} and sufficiently
small that § can be chosen to satisfy cosj>cosy+ Cry for some constant
C. We choose 7 in the range

cosy+ Cry<cosj<cosy+2Cry (5.18)
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and observe from the explicit form of v(-;y) that there is a constant C,
such that (5.18) implies

4
A A r
v=v( ;) <v(c;y)+ Co% (5.19)

uniformly in r<r,, and with C, independent of r, in the range consid-
ered. In particular, in the interval rf <r<r, there holds

(3P <v(-37)+Cor3 (5.20)
and hence by (5.17)

u<v(*;9)+A"<v(-;9)+ A"+ Corg. (5.21)

A

Using again (5.18), we may choose §,, <7, <7, such that for r<r3
there holds

A o
(=39, <v(*;7)+ Co7° (5.22)

so that in the range ry <r<rg there holds
(-39, <v(39)+ Corg. (5.23)

We note (8/é(cosy))v>0; thus v(-;7,)>v(+;y) and it follows that on
the arc r=r2
u—v(+;7,)<A"+ Cyr3. (5.24)

We now apply the proof of (5.17), in the domain r<rj and with §
replaced by 7,, to obtain

u<v(-39,)+A4"+Corg

(5.25)
<v(*39)+ A"+ Co(rg +713)

in the range r* <r<rZ Iteration of the procedure, with rJ replaced suc-
cessively by 73, 18, ..., yields the estimate, for all r<r,,

2

u<v+ A"+ Co—l%r—z (5.26)
0

which completes the proof of (5.7) in the case y>0.

Finally, suppose y=0. In this case the boundary condition holds exact-
ly for v, that is, we may set {=0 in (5.11). Thus, there is no need to
introduce § and the original reasoning yields the desired estimate.
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Corollary 5.5. Capillary surfaces in a domain with corner depend discon-
tinuously on the boundary data. That is, throughout the closed interval
n/2>7v>m/2 —a every solution u satisfies u<(2/kd)+9 at all points of Q¥,
whereas for any y<m/2—o there holds u— oo for any approach to V in the
corner.

The discontinuous dependence can be verified experimentally with the
help of two acrylic plastic plates and a level surface. Figure 5.6 shows an
experiment performed by Tim Coburn in the Medical School at Stanford
University. A small amount of water was placed in a wedge opening
formed by the plates, and the opening was then varied slightly about the
critical angle. In Fig. 5.6(a) the opening is just above critical and the
maximal rise height of the water is seen to be slightly under the bound
given by (5.6). In Fig. 5.6(b) the opening has been closed about 2°. The
observed rise height is more than ten times the bound predicted by (5.6).

The existence of solutions in domains with corners was shown by Em-
mer [46] for the case a+7>mn/2, and later by Finn and Gerhardt [68]
without restriction on angle (cf. §7.10).

Figure 5.6. Discontinuous dependence on boundary angle. (a) « > critical.
(b) a<critical.
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Theorem 5.4 yields boundedness at a corner when a+7>m/2, but pro-
vides no further information on local regularity of the solution surfaces.
This question was taken up concomitantly and independently from dif-
ferent points of view by Korevaar [107] and by Simon [166]. Simon
showed that if a+y>n/2 and a<n/2, then u(x) is of class C') up to V.
Later Tam [173] obtained the deeper result:

Theorem 5.6. If a+7y>n/2 and a<m/2, then the normal vector to S is con-
tinuous up to V.

The result of Korevaar indicated above clarifies the role of the hy-
pothesis a<m/2 and shows that Theorem 5.6 is definitive. Korevaar
proved:

Theorem 5.7. If a>mn/2 at a vertex V, then there exist solutions of (5.1) and
(5.2), defined in a neighborhood of V in Q, that are discontinuous at V.

It should be noted that in view of Theorem 5.3, only bounded discon-
tinuities can occur.

To simplify notation, we present the reasoning only in the special case
a=3n/4. Given the vertex V with angle 2a, we extend it to a bounded
domain Q as indicated in Fig. 5.7. Here ¢>0 is to be determined, Q is to
be smooth except for V and its reflection V'. According to the results of
Emmer and of Finn and Gerhardt referred to above, for any y in the

— ~

Ve ~N

Y
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P 77 T ; ° /:'
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—_— —

Figure 5.7. Geometry of base domain for Theorem 5.7.
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range 0 <y<n/2 there is a unique solution of (5.1), (5.2) in Q. We consid-
er that solution in its dependence on ¢, all other parameters being fixed.

We first observe that for any fixed sufficiently small >0 there holds
by Theorem 5.2

2
u<—+90 (5.27)
KO

in B; (see Fig. 5.7), uniformly as ¢—0. Now consider a circular arc I (of
radius esec y) making equal angles y with the parallel segments, as in-
dicated in Fig. 5.7. We extend the arc to half the underside of a torus,
whose principal radii are R, ¢sec 7 (see Fig.5.8), and which meets the
“strip” region again in a reflection I of I.. This torus has mean curva-
ture satisfying

H>1(1 1)~ (5.28)
~2\¢e R-—-¢/)’ '

thus, if we denote its defining function by v,, we will have

1 1
divTo,=2H> (—— ) . (5.29)
& R—¢

Let us move the torus vertically, until its maximum height 7 satisfies

1 /1 1
D=— (w— ) . (5.30)
K\ R-—¢

i i e

o e e v

v

Figure 5.8. Comparison torus for Theorem 5.7.
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We will then have
divTo,>ki>xv, (5.31)

throughout the region of definition of v,.
The torus meets the bounding walls over the parallel lines in the con-
stant angle y, thus

v-Tov,=cosy (5.32)
on these lines. On I; and I there holds

v-To,=—1. (5.33)
If we choose the four intersection points of I, I’ with the boundary as
the singular set X, then the conditions of Theorem 5.1 (with u and v

interchanged) will be satisfied over the domain Q,cQ covered by v,; we
conclude u>v, in Q,. But v,>0—R at all points of definition, and thus

the solution u satisfies

1 /1 1

u>— (—— ) —R (5.34)
kK \e R-—c¢

throughout Q.. Comparing the inequalities (5.27) and (5.34), we see that
for small enough ¢, u must be discontinuous at V, V'.

5.3. Domain Dependence

We now consider the following question: does a “small” capillary tube

always raise liquid to a higher level than does a “big” one? To express

the idea precisely, consider domains €', Q° with Q'cQ° Q'£=Q° and

solutions v’ in ', u°® in Q°, with the same constant data y on X%, 2° The

question then becomes: for xe@', is u'(x)>u°(x)? A related question is:

does u' raise a larger volume of liquid than does u® over the section Q'?
We consider first some special situations.

Theorem 5.8 ([55]). If Q° is a disk, then always u'>u® in Q.

Proof. Let v° denote, at any point in Q°, a radially directed unit vector.
By the symmetry of u°, we have

Ve TufT,<v0 - Tul]y

where V' is the unit exterior normal on X'. By the convexity of the surface
ugy, we find

VO Tu%), <v0 Tu®] 0=cosy,

equality holding only at points of X°.
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Therefore

v Tu]=cosy=v-Tu,,
hence by Theorem 5.1 we have u'>u° in X'
Theorem 5.9. If y=0 then always u'>u°.

Proof.
v-Tulp<l=v-Tul,.

Theorem 5.10 (Siegel [163]). If Q' is a disk that can contact X° at any
peX® from inside Q°, then u'>u® in Q.

Proof. We shall assume that the derivatives of u° up to the second order
are bounded in Q° The proof will thus not apply when y =0; however,
that case is covered by Theorem 5.9 above. The corresponding bounds
for the derivatives of u' in Q' follow from the material of Chapter 2, since
u' is a symmetric solution in a disk.

Carrying out the differentiation in the equation div Tu=xu, we find an
equation

a(p, @t +2b(p, Quy, +c(p, @) uy, =ru (5.35)

for each of u', u°, with p=u_, g=u,, and ac—b?>>0. Subtraction of the
equation for u' from the one for u° leads to

a®wo 20w 4+ cOw +(@® —d)ul + =KW (5.36)

with w=u’—u', a®=a(p° q°), etc. Applying the mean value theorem to
expressions of the form a® —a’, we are led to an equation

a(x, y)w +2b(x, y)w, +c(x, y)w,, +d(x,y)w, +e(x,y) w,—kw=0  (5.37)

for w in @'; here ac—b>>5>0, |a|+|b|+|c|+|d|+|e] <M < oo, indepen-
dent of the position of Q' in Q°.

Suppose the theorem were false; then there would exist Q'=Q° and
solutions u', u® with 0<y<m/2, such that u®>u' at some point of Q. By
Theorem 5.1 there exists p'eX’ at which u®>u’. Applying again Theo-
rem 5.1 to the difference between u® and the solution v°=0, we find there
exists p°eX®, with u®(p®)>u’(p)>u'(p’). We may in fact choose p° so
that u°(p°®)=max,u’.

Now move X' rigidly so that it contacts ° at p° from within Q°. The
solution u’ is invariant relative to points of €, and is symmetric in Q'.
Thus,

u' ]y <u®(p°).
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We may now decrease the radius of X, while maintaining contact at
p°. Since (see Chapter 2) u'],;— oo as the radius —0, there will be a criti-
cal radius at which u'],=u’(p,). Since u°(p)<u®(p,), for all peQ°, we
have w(p) <0, for all peX’, while w(p)<0 in @', w(p®)=0 (we have used
Theorem 5.1 twice).

We now have recourse to the Hopf Lemma 5.1. We may assume for
simplicity that v has the direction of the positive x-axis. Then, since u°
achieves a maximum at p° relative to 2°, du®/dv=ug and u?=0. Similar-
ly, 0u'/dv=ul, u,=0. Thus, by Lemma 5.1

0 i
uy, u

o= > X =
YT+ Y1+ ()
=v-Tu'] o=cosy.

cosy=v-Tu"]

This contradiction establishes the result.

Theorem 5.11. Suppose the length of X' exceeds that of Z°. Then u' raises
the larger volume over its section, that is,

E (' —u®)dx>0.
Qi
Proof. We write for simplicity X', X° for the respective lengths. We have

hj (u"—uo)dx=h‘§ uidx—rcj uodx+;c§ u®dx
Qi Qi Q0

Q0. Qi

=(Zi—20)cosy*+;cj udx.

Q0. Q!

Applying Theorem 5.1 to the two solutions u°, v=0 in Q°, we find u°>0
in Q° and the result follows.

5.4. A Counterexample

In all the preceding cases, either the “smaller” capillary tube yielded a
pointwise higher solution, or it at least raised a larger volume of fluid
over its section. We now show by example that the reverse situation can
also occur (Finn [55]). The underlying idea is to construct a domain Q°
whose boundary X° contains a point p of large curvature surrounded by
large segments of small curvature, and to show that such a domain raises
more fluid near p than does an inner domain ' whose boundary curva-
ture changes are less rapid.
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Definition. A subdomain 4" <@ is said to satisfy an internal sphere con-
dition with constants 6, y in Q, if for all xe.#] there holds xeB; such
that the lower hemisphere v over B; meets the vertical walls over X=0Q,
from within the component of B;nQ containing x, in angles not exceed-
ing y, or does not meet the walls (see Fig. 5.9).

We write A"€lSC(0;y;Q). The definition is to be understood in the
sense that the conditions hold up to a set of Hausdorff measure zero on
2, on which no conditions need be imposed.

Theorem 5.12. Let A"€ISC(J;7;Q), let u(x) denote a capillary surface in Q
with boundary angle y, and 0<y<n/2. Then

2
u(x)<—+0
Ko

in A

Proof. The proof is as in Theorem 5.3 above.
Theorem 5.13. Let Q° be a domain for which there is a point peX® with
the properties:

i) There is a neighborhood N, of pin Q° such that JVpeISC(é;y;QO)
for some 0>0, 0<y<m/2.

Figure 5.9. Internal sphere condition.
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ii) The curvature H, of X% at p (considered as positive when the curva-
ture vector points into Q°), satisfies H ,cosy>(2/0)+xK0.

Then there exists Q' = Q°, such that the corresponding solution u' in '
satisfies

j W’ —u)dx>0.
0i
Note that the theorem fails when y=0, cf. Theorem 5.9.

Proof of Theorem 5.13. We choose coordinates so that X° can be repre-
sented near p in the form

I
oy

y:gx2+0(x2), a
2
V' =ax+o(x).
For a<a and >0 (to be chosen) we introduce in Q a curve I" defined by

_gxz_*_.g_
Y=Y Ty

For ¢ sufficiently small, I'nX° consists of two points determined by x=
+Ve/i+o(e'?), and I'=.A,; here A=a—a.
We compute, for the difference in lengths,

_ate
312

while for the area .o/ bounded between I' and 2*, we find

iy 32 4 0o(c3?) (5.38)

2
o =——¢¥2 4 0(3?). (5.39)
314

Since A,€ISC(6;7;Q) we have

2
<—+0
u K5+

in .4, hence also in .o/. Thus, letting Q' be the part of Q above I, we
have
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ICS (llo—ui)dx=hf§ uodx—h‘g ltidx—KS udx
o Qo o o

=(Z*—F)cos~;——;cj u®dx
o/

o) ~ (5.40)
>(Z*—T)cosy— (5—5—1\‘())&3/

1 ,
>——¢*?[a+a—2H, +0]cosy+o(e¥?)
317

for some 0>0, by the above estimates and the hypothesis (ii). We now
choose a<a=H, sufficiently large that a+a—2H+0¢>0. Having done
so, we may choose ¢ sufficiently small that « [ (u® —u')d x>0, which was
to be shown.

If the theorem is to be of any use, we must show that it is not vacuous,
that is, we must show that there exist Q° peX® for which the hypotheses
(i) and (i) are satisfied. We give an explicit construction, by starting with
B;, then constructing .4, so that the single B; will work for all xe./,,
then finally extending .4, to Q°.

Consider a ball B; and corresponding lower hemisphere wv. If
0<y<m/2, the set of all vertical planes cutting v in the (constant) angle 7y,
envelop a vertical circular cylinder. The traces on the plane of B; are a
concentric circle X, and the set of its tangent lines. Through any point g
in the annulus between X, and X; pass exactly two such tangent lines.
Any vertical cylinder passing through q, in a direction which when extended
does not meet X, will meet v over q in an angle less than y (see Fig. 5.10).
This determines at g a permissible range of directions for the curve X°

>

Figure 5.10. Permissible direction.
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Figure 5.11. Construction of Q.

that is to be constructed. Further, if a straight line L has a permissible
direction at q, then L has a permissible direction at all points of LN B;.

Given y in the range 0<y<mn/2, we now choose peB; exterior to X,
and a direction at p within the permissible range. Most simply, we
choose a direction orthogonal to the segment joining p to the center of
B;. We may satisfy the condition (ii) by taking a circular arc X° through
p with the given direction, of curvature H,>(1/cosy)((2/6)+x ), with the
curvature vector directed toward the center of B;. We consider a suf-
ficiently small segment of X° so that the tangent directions will still lie
within the possible range, and then extend X° with straight segments un-
til the boundary X is crossed (see Fig. 5.11). 2% can then be completed to
a closed curve (bounding a domain Q°) in any way at all, provided only
that the curve does not again enter B,. We may then choose .4
=B§mQ°, and the construction is complete. For all xe.V,, there holds
xeB;, and the lower hemisphere v over B; meets the vertical cylinder
over X° in angles not exceeding 7, as follows from the method of con-
struction.

The construction fails when y =0, as it must (see Theorem 5.9).

5.5. Convexity

The symmetric surfaces studied in Chapters 2 and 3 are all convex (even
absolutely monotonic, see Brulois [21]); we may ask whether there are
natural conditions on the section Q of a capillary tube, under which the
convexity property will be retained.

Theorem 5.14 (Korevaar [109]). Let Q be a bounded domain of class C*)
and strictly convex, in the sense that any segment joining points of X lies.
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except for its end points, in Q. Let u(x) be a solution of (5.1) in Q, differ-
entiable up to X, with v-Tu=1 on X. Then u(x) describes a strictly convex
surface over Q.

The result is obtained as special case of a general procedure that has
also found applications in other directions (see, e.g., [22, 106, 110, 112]).
Let x;,x;eQ, let 0<A<]1, and set

X, =Ax;+(1—=A)x,.
The “concavity function” &, defined by

Kxy, x5, A)=u(x,)—Au(xs)— (1 —u(x,),

will be <0 for all x,, x5 in Q and Ae[0,1] if and only if u(x) determines
a convex surface over Q.

Lemma 5.2. Let ue C(Q) and suppose u(x) is not convex. Then K(x,x35,4)
attains its positive supremum for points x;, x;€Q, such that x,#xs,
0<i<l.
Proof. Let (x%,x%,7%) be a maximizing sequence; we may assume
(x}, x5, 29— (x,,x,,4), and hence K(x%,x% 29—8K(x,,x,,2). We have x,
*x3, 0<i<1, since K>0.

We now write the equation (5.1) in the form (5.35)

a’u;=xu (5.41)

and observe that a” is a function (only) of Du=gradient of u, satisfying
a’=a’, [d']>0.

Lemma 5.3. Let ue C*(Q) satisfy (5.41) in Q. Then K(x,,x3, 1) cannot have
a positive local maximum at any set of three interior points.

Proof. From V, 8 =0 we find
0=(1—=A)Du(x,)—(1—=A)Du(x,);

similarly from V,, 8 =0 we obtain

0=ADu(x,)—ADu(x,;).
Therefore, since 0<i<1,

Du(x{)=Du(x,)=Du(x,). (5.42)
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Now let us make a rigid translation of all three points by a vector v.
Setting

F)=8(x;+v,x;+0,4)

we find, for the derivative in direction v,

D, F(0)=0 (5.43)
and for the Hessian
[D*F(0)]<0 (5.44)

since F has a local maximum at 0. Since a”/=a’ and [a"]>0, we obtain

a’F;<0, (5.45)
and choosing a'/ to be the value corresponding to the (equal) gradients
(5.42), we may write (5.45) in the form

alug(x,) = Aa u;(x5) — (1 —2)a u;;(x,) <0. (5.46)
In view of the equation (5.41), we may write

u(x,) <Au(xs)+(1—=A)u(x,),

which contradicts the hypothesis that & has a positive maximum at
(x1,X3,4).

We return to the proof of the theorem. Under the hypotheses, if u is
not convex, then by Lemma 5.2 a positive maximum is achieved by &,
while by Lemma 5.3 and the strict convexity of Q, at least one of the
points x; or x; must lie on Z. Suppose x,€Z and let s denote arc length
along the segment X, x;. Since v-Tu=1 on X, we find du/ds],, = oo, with
u increasing as x, is approached. Thus & could be increased by moving
x; a small distance into @ along X, X; with x,, x, held fixed. This con-
tradiction establishes the result.

The condition v-Tu=1 (y=0) of Theorem 5.14 is essential. Korevaar
showed this by using the special properties of the “wedge solution” of
Theorem 5.5.

Notes to Chapter 5

1. Theorem 5.1. Our proof has suppressed some details regarding exis-
tence and integrability of Fw. The theorem holds in fact under much
weaker hypotheses than we have indicated, cf. Emmer [46], Finn and
Gerhardt [68], and Chapter 7, Theorem 7.7.
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2. Theorems 5.4 and 5.5, Corollary 5.5. The results reappear in a less
precise form in Mason and Morrow [122].

3. Theorems 5.4 and 5.5. It is a simple exercise to show that if a
function u(x, y) is of class C'* up to the vertex V of a wedge domain Q
with opening angle 2a, and if v-Tu=cosy=const.+0 on the sides, then a
+7>mn/2. Thus the criterion for discontinuous behavior appears again in
terms of properties of general functions. Nevertheless, for any given 7y it is
easy to give examples of functions u(x,y) that are continuous in the
closure of Q and C™ except at V, and such that v-Tu=cosy on the sides.
We therefore see that the two theorems express a subtler property,
appropriate to the solutions of (5.1).

4. Theorems 5.4 and 5.5, Corollary 5.5. Recorded observations of the
behavior of fluid in a vertical wedge can be traced at least to Brook
Taylor [176], who examined water in a wedge formed by two glass plates
with opening angle 2a~2.5°, and identified the curves of contact on the
plates as being “very near to the common hyperbola.” Further experi-
ments under varying conditions were performed by Hauksbee [97, 98,
99]. “Proofs” of hyperbolic form appear in Musschenbroek [142], in Fer-
guson and Vogel [49], and in Princen [150, p. 367ff.]. The methods in
the former two papers lead to an asymptotically hyperbolic form for any
opening angle less than 7, a result that conflicts with Theorem 5.4. Prin-
cen develops his method only for the case y=0, stating that “the problem
can be solved readily for any contact angle”. Had he looked more closely
at the case of general y, he might have been led to the discontinuous
dependence (Corollary 5.5). His procedure is in any event inexact, and
even for y=0 the result falls short of Theorem 5.5.

5. Theorem 5.5. The result has been applied to problems of oil re-
covery from pore networks, see Campbell and Orr [23].

6. Corollary 5.5. The experiment of Coburn (essentially a kitchen sink
experiment) establishes that the contact angle of water with acrylic plas-
tic lies in the range between 78° and 81°. An experiment under controlled
laboratory conditions could presumably yield still greater accuracy.

7. §5.3. The question considered here was raised informally by M. Mi-
randa.

8. Theorem 5.8. The method has a much broader range of application
and has been used to obtain local bounds from below under fairly gener-
al conditions (Finn [55]). If the methods of proof of Theorems 5.2 and
5.8 are combined, we obtain immediately that if Q lies interior to a disk
of radius R then the capillary surface u over Q with boundary angle y
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satisfies

- ( 2 R )
e ———— ) cOSY,
"R 1+siny !

and thus u—oo uniformly if k (or equivalently the gravitational force)
tends to zero. An alternative proof of this latter result was given by Em-
mer [47].

9. Theorem 5.10. Siegel [163] has given still another comparison result
for the case in which Q' is a disk. Let B be the maximal concentric disk,
in the sense that the solution in B is vertical on ¢B. Siegel proved that if
BnQ° is convex, then u'>u® in Q'. The proof is obtained from the mono-
tonicity of k,=siny//r for the symmetric solution. Siegel used this result
to prove the uniqueness of the capillary surface in an infinite wedge.

10. Theorem 5.13. A somewhat different result in this direction, for a
situation in which the rise height in the corner is infinite, was given by
Concus and Finn [35].



Chapter 6

Capillary Surfaces Without Gravity

6.1. General Remarks

On the earth’s surface, the shape of the free surface in a capillary tube is
determined by an interaction of surface and gravity forces. If a significant
mass of fluid is present the gravity forces will predominate; thus the ef-
fect of rising liquid is observed only in tubes of small diameter.

If gravity is removed the effect becomes a consequence purely of sur-
face forces, and geometrically similar free surfaces appear in geometri-
cally similar containers. Thus the form of a capillary surface can change
markedly, depending on whether or not an external force (gravity) field is
present. In some situations the change can be quite striking, as it has a
discontinuous character.

The problem cannot be considered without volume constraint as in
Chapters 2 and 5, as it is then physically unrealistic and in general ad-
mits no solution. We may however close one end of the tube and attempt
to cover the “bottom” Q by a finite volume of liquid. It may not be a
priori clear how much volume is needed for the purpose, however if the
mathematical formalism leads to a graph over Q that is bounded below,
then a physical solution can be obtained by adding a suitable constant.
We note again in this connection that in view of Miranda’s Theorem 2.2
of [139] it is natural to seek solution surfaces as graphs over €, as no
surface over Q that is not a graph could minimize the energy.

The material of Chapters 2 and 5 could also have been presented from
the above point of view. With the aid of Theorem 5.1, one sees easily that
in a uniform (or null) gravitational field directed toward @ through the
fluid, changes of volume are effected simply by raising or lowering the
surface uniformly over Q.

In the absence of an external force field, equations (1.51) and (1.44)
take the form

divTu=2H =const. (6.1)
in Q, while the boundary condition remains

v-Tu=cosy (6.2)
on 2=0Q.
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Figure 6.1. Capillary tube; general section, volume constrained case.

The constant H is not arbitrary: integrating (6.1) over Q and using the
divergence theorem, we obtain

2HQ=(§ v-Tuds=2cosy (6.3)

z

by (6.2). Thus, H is known in advance and (6.1) becomes
) z
dlvTu———Ecosy. (6.4)

The problem thus becomes: to find a surface of constant mean curvature

determined by (6.3), which meets the cylindrical boundary &* over X in the
prescribed constant angle y; see Fig. 6.1.

6.2. A Necessary Condition

It was pointed out by Concus and Finn [30] that the problem (6.4), (6.2)
in general admits no solution. Consider an arbitrary subdomain Q*cQ
and let '=0Q*NQ, 2*=00Q*N X (Fig. 6.2). If we now integrate (6.4) over
Q* and use the boundary condition (6.2) on X*, we find

(-Z—Q*—Z*)cosy=§ v-Tuds. (6.5)
Q r
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Z‘*

Z‘*

Figure 6.2. Subsets for the general necessary condition.

For any differentiable function f there holds

L ipy<t. (66

V1+1Vfl

We write H =(2/@)cosy and place this bound into (6.5); we find im-
mediately [30].

ITfl=

Theorem 6.1. A necessary condition for the existence of a solution of (6.4),
(6.2) in Q is that the functional

O[Q*]=I—2*cosy+H,Q*>0 (6.7)
for every Q* of the type considered, with Q* & ¢, Q.
We note that the original equation does not appear in any way in
(6.7); the question hinges on a geometrical property of the domain Q.
Let us examine this result in the special case in which Q contains a
corner of opening angle 2« (Fig. 6.3). We find, for the indicated I,
@[Q*]=2I(sina —cosy)+ O(I?). (6.8)
Letting [—0, we obtain the result [30]:

Theorem 6.2. If Q contains a corner with interior angle 2o, and if
o+7y<m/2, then the problem (6.4), (6.2) admits no solution.
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Figure 6.3. Nonexistence criterion.

The difficulty does not arise from the boundary discontinuity at the
vertex V. One sees easily that the same contradiction can be obtained
when the boundary is smoothed at V. Thus, we are faced with an elliptic
boundary value problem that arises directly from physical considerations,
which is in general not well posed, even in a smooth convex domain.

The condition we have found is remarkable in that it is sharp. Let X be a
regular polygon and C the circumscribed circle (Fig. 6.4). A lower hemi-
sphere whose equatorial circle lies over C provides an explicit solution of
(6.4), (6.2) (up to the set X, of vertices, see Theorem 5.1) for the case a+7y
=m/2. The solution is analytic up to the polygonal walls and continuous
in the closed region. Replacing the hemisphere by spherical caps of in-
creasing radius, we find explicit solutions of the problem for any y sat-
isfying o+ y>mn/2. Thus, there is a discontinuous dependence on boundary
data. As y decreases from n/2 to (n/2) —a, the solutions exist and remain
equibounded and analytic in Q. But if y <(n/2) —a, no solution exists.

Theorem 6.2 should be compared with Corollary 5.5, in which the
identical geometrical condition appears and leads also to a discontinuous
dependence. In a gravity field this behavior manifests itself in the so-
lution becoming unbounded; when the gravity field is absent the solution
simply disappears.

The behavior just described was verified experimentally by W. Masica
at the NASA Lewis Laboratory in a “drop tower”, which provided about
five seconds of “free fall” without gravity; see Fig. 6.5. If a+y>m/2 the
“spherical cap” solution is observed; if o4y <m/2 the fluid ascends into
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Figure 6.4. Spherical solution surface over regular hexagon.

Figure 6.5. Discontinuous dependence. (a) o> critical. (b) o < critical.

the corners, to infinity or to the top of the container, whichever comes
first. Thus, the discontinuous dependence is reflected in reality and is not
an idiosyncrasy of the mathematical formalism.

We point out here the consequence of Theorem 5.1, that whenever a
solution exists, it is uniquely determined up to an additive constant. In this
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result, any set of Hausdorff measure zero on the boundary can be ne-
glected, thus the presence of the vertices in the above example, at which
the data (6.2) cannot be prescribed, does not affect the uniqueness of the
solution.

From Theorem 6.1 we obtain easily the following result (cf. [30], Cor-
ollary 3.3).

Theorem 6.3. Capillary surfaces without gravity are always unstable with
respect to boundary perturbations, in the sense that for any boundary X for
which a solution of (6.4), (6.2) exists, there is an arbitrarily small pertur-
bation ¥ -3 such that £ admits no solution. If y=0, the perturbation can

be chosen to be arbitrarily small, both in X and in the unit normal vector to
2.

The situation in which there is an interval on X with curvature
H* >H, has a special interest. With a view to a later application, we
formulate it for the case in which y is allowed to vary on X. The criterion
(6.7) then becomes

QD[Q*]EF—j cosyds+H,Q*>0 (6.9)
with
1
H,=— vds. 6.10
, Q(&cos; s (6.10)

z

Under this definition, Theorem 6.1 holds as before. We find [307]:

Theorem 6.4. There cannot hold y=0 on any arc of X whose curvature H*
satisfies H*>H.,.

Proof. Suppose there were such an arc, let p be a point on it, and choose
coordinates as indicated in Fig. 6.6. We may then write near p,

2 y:—lz-ax2+...
with a=H?*(p). Choose @, H,<a<H?*(p), and introduce an arc I' defined
by
I y=e+iax?+---.

If £>0 is small enough, I" will cut off an arc 2* on X on which H¥>g,
and on which cosy=1. A calculation yields

31/ a—a 7
OLQ*¥] = (12/;3/2(1 [Hy_a;a-i-O(l)]

which is negative for small enough e, thus yielding a contradiction to
Theorem 6.1.
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Figure 6.6. Construction for Theorem 6.4.

There is a special interest in the case in which the inequality between
H, and H? is not required to be strict [53].

Theorem 6.4(a). Let u(x) be bounded in a neighborhood of an arc X*cZX,
for which HE*ZHYA Then there cannot hold y=0 on X*.

The hypothesis of boundedness for u(x) in this result is necessary, see
Spruck [170]. With regard to both the Theorems 6.4 and 6.4a, we re-
mark that it is not possible to replace the arc in question by an isolated
point. For example, a lower unit hemisphere defines a solution of (6.1)
with H,=(Z/Q)cosy=2 in |x|<1. The inequality H*>H, is satisfied on
the arc X: |x —3|=1. The hemisphere, considered as a solution interior to
Z, defines a continuous y on X, and y=0 at the contact point of X~ with
|x|=1.

More precise and inclusive formulations of Theorems 6.4 and 6.4(a)
appear as Theorem 3 in [30] and as Theorems 1 and 2 in [53].

We have further:

Theorem 6.5. Let an arc X*cX have curvature H* <H,. Then u(x) is
bounded adjacent to X*.

The proof is obtained easily with the aid of the roulade of an ellipse,
see §4.7. If H**<H,, we can position an “outer” circumference of a rou-
lade with mean curvature H=H /2, so as to contact X within Q at a given
peX*. A segment S cut off by a chord I' (see Fig. 6.7) could then be
found so that S< Q. Adding a constant to the roulade function v(x), we
can arrange to have u(x)<v(x) on I Using that v- Tv=1 on the circum-
ference, we obtain from Theorem 5.1 that u<wv throughout S, and thus
u(p) < 0.
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Figure 6.7. Construction for Theorem 6.5.

6.3. Sufficiency Conditions

The basic results that underlie all later work are due to E. Giusti. These
results are based on a variational procedure and require for compactness
purposes an interpretation of (6.7) in terms of “Caccioppoli” sets of finite
perimeter. For discussion of these sets and their properties, see, e.g., [89,
126]. The perimeter in Q of a set E is defined in terms of the characteris-
tic function ¢ of E by the relation

P(E;Q)=§ ID(pE|=sup{§ @pdivgdx} (6.11)
o o

among all vector valued ge C}(Q) with |g|<1. One verifies that if Q* = Q
has smooth boundary I'uX* (see §6.2), then P(Q*;Q)=T. Correspond-
ingly, 2* =, pds, ¢f. being the trace on X of ¢,.. When the context is
clear, we shall omit the superscript T.

Given a function fel!(Q), we define its variation over Q to be

V[f;Q]=LlDfl 6.12)

as above. We introduce the class BV (Q) of functions f, for which

X ]fidx+§ |IDf|< 0. (6.13)
Q Q

Giusti proved, essentially, the following results:
Theorem 6.6 [85]. If y=0, and if (6.7) holds for every Q*==(, Q with

finite perimeter, then there exists a solution of (6.4), (6.2); the solution is
unique up to an additive constant.
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Theorem 6.7 [84]. Suppose y>0 and suppose (6.7) holds for every Q* =0,
Q with finite perimeter. Suppose further that for some p<1/cosy and Y
depending only on Q, an inequality

Lu‘msgymeH)‘Lmdx (6.14)

holds for all feBV(Q). Then there exists a solution of (6.4), (6.2). The
solution is bounded and unique up to an additive constant.

In the above results, it is assumed that Q is sufficiently smooth that an
isoperimetric inequality (relative to Q) of the form

min{E, Q\E} < CI'? (6.15)

holds for any EcQ. Such an estimate is valid, essentially, whenever a
Poincaré inequality holds, see, e.g., [89]. The inequality (6.15) is to be
understood in the sense

min{j (pde,S (l—gf)E)dx}<C(j IDpgl)?
) o )

for some C depending only on Q.

The inequality (6.14) appears first in Emmer [46], who proved it with
p=11+L* for any Lipschitz domain with Lipschitz constant L (see also
[126, p. 203]). Thus the requirement (6.14) is satisfied in particular for
any smooth domain. We will want to consider domains in which corners
with inward opening angle 2o can.appear. Emmer’s inequality applies to
such situations, and from Theorems 6.2 and 6.7 we see that the constant

V/1+I* cannot be improved in general. However, for domains with reen-
trant corners, for which 2a>=, the Emmer result would restrict the
opening angle to a<(m/2)+y. It will turn out however that existence can
hold without such restriction when 2>, and even inward cusps can be
permitted. To this end we establish Emmer’s result under somewhat wea-
ker conditions than appear in the literature.

We consider Q as a metric space with distance function d(p, g)=in-
fimum of Euclidean lengths of paths joining p to g in Q, and we suppose
its closure Q to be covered by a partition of unity with particular proper-
ties. Specifically, we suppose Q covered by a finite number N of open (in
Q) sets Q;, to each of which is associated a function ¢,(x)>0 with
¢:(x)eCy(Q) and ) Yo,(x)=1. With regard to these sets, we assume:

i) there is an at most finite set of points {p,}=P<2, and an as-
sociated N,<N, such that Z\Pc( "%, where X;=XnQ;+0 is
an open connected set in the relative topology of X.
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Figure 6.8. The sets Q; and Q, at p,.

ii) to each p,eP there is a unique Q,3p,, and X, =X NQ, meets exact-
ly two (adjacent) sets X;= X\ P (see Fig. 6.8).

iii) there exists 7>0 such that each X;cX\P can be represented over
some interval a;<x<b; by a Lipschitz function y=1,(x) with Lip-
schitz constant L;, and such that the set {(x,y): a;<x<b;, —1<y

—;(x)<0} lies in Q. Two such sets adjacent to a point p,eP do
not intersect (see Fig. 6.9(a)).

Lemma 6.1. Under the above conditions, let B be a continuous function

defined on X, let B;j=max; |B|. Let o/;=Q be the strip of width 0 adjacent
to 2. Then for any feBV(Q) there holds

tLﬁfdswjmwamz;é)j 111 (6.16)

8

here yzmaxﬂj]/l +L;, taken over all j for which Q;n.s/;supp f+0.

We note that the conditions of the lemma allow a finite number of
reentrant corners without restriction on angle and without affecting the

(a) (b)
Figure 6.9. (a) One “Lipschitz” set. (b) Two “Lipschitz” sets.
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choice of y; even cusps and doubly covered portions of 2 can be admit-
ted, see Fig. 6.9(b). An outward cusp is however excluded by the con-
dition that the sets constructed under (iii) above should not intersect. The
same condition imposes the restriction that P contain no vertex of an
outward corner; each such vertex p; of a corner with opening 2a<m lies
ina X, j<N,, for which L;>cota.

Proof of Lemma6.1. Set f;=f¢;. Choose 6 small enough that the end-
points (y=y;—1) of each of the intervals constructed under (iii) above
lie in Q\ ;. Let n(x)e C*(Q), with 0<n <1, n=1 on X, =0 in Q\ <.
Suppose first j<Np. We have

0
fcojzj (mo;f),dy
-0

so that
0

|f|<o,-sj filody+ 19(9;5>§ \f1dy.
—5 —0

Integrating with respect to x and recalling that suppp;=Q;, we get

1 ~
1/‘1+—szj‘z|f|¢deS§ﬂé|Df|(,Dj+)jj‘ﬂélf| (617)

and thus

ILﬁfcodeISﬂ,-]/HszLlDfltpj+ﬁjV1+L2j)}LIfl- (6.18)

o

If j>N,, we consider separately the integrals corresponding to the in-
tersections with the two adjacent X; (see ii) above). Since the respective
sets constructed under (iii) do not overlap, the evaluations are additive
and we are led to the same result (6.18). Summing over all j for which
Q;nesnsupp f+0, setting Y———Zﬁj]/l—i—sz Y, and noting that if (6.18)
holds for any ¢ it holds for all larger J, we obtain the stated result.

Thus we see that (6.14) can be justified by reasonable geometric con-
siderations. In fact, some condition of the form (6.14) is necessary, as we
see from the following observation:

Lemma 6.2. Suppose there exists a solution u(x) of (6.4), (6.2) in Q, corre-
sponding to y<m/2. Then an inequality (6.14) holds, with p=1/cosy, for
any feBV(Q).

Proof. An integration by parts yields

jfdiletdxzj fv~Tu—j Df-Tu.
o ) o
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Since divTu=(X/Q)cosy, v- Tuly=cosy, |Tu|<1, we obtain the explicit
estimate

([ rasis— | s+ | 111ax (6.19)

cos?y

from which the statement follows.

Thus, subject to clarification of the case in which (6.14) holds with
u=1/cosy, an inequality of that form is seen to be both necessary and
sufficient for existence. The limiting case u=1/cosy is delicate and is not
completely settled; we return to it in §§7.8, 7.9.

6.4. Sufficiency Conditions II

The hypothesis of Theorems 6.6 and 6.7 that (6.7) hold for all Q*+0, Q
is more difficult to interpret geometrically. As Giusti pointed out, it is
not evidently useful in the form given, as in order to apply it one would
have to examine every subdomain of Q. One does obtain, however, from
the theorems the following useful result:

Corollary 6.6, 6.7. If a solution exists for y=y, and if y,<vy,<n/2, then a
solution exists for y=vy,.

Several attempts have been made to obtain sufficiency criteria in terms
of accessible parameters of Q. Giusti and Weinberger [85] showed that if
2 is convex and if the curvature k of X satisfies 0<k<ZX/Q, then a so-
lution exists for y=0 (and hence, by the above corollary, for every 7).
Chen [24] showed that the convexity requirement cannot be discarded;
in that respect Finn and Giusti [70] showed that even the condition
|k|<Z/Q would in general not suffice. Chen [24] showed however that
whenever a disk of radius Q/% can be rolled around X interior to Q, then a
solution exists for every v.

In seeking conditions for existence, Chen introduced the notions of
“neck domain” and “tail domain”. A subdomain Q*=Q cut off by I' is
called a tail domain if I is a circular arc of radius Q/% that meets ¥ with
angle y=0 measured in Q*, and if there is no other such arc interior to
Q* (Fig. 6.10). Chen showed that if Q contains a tail domain, then no
solution exists for y=0.

A neck domain is illustrated in Fig. 6.11. Chen showed that for arbi-
trarily small openings, solutions can exist; thus his sufficiency condition
above is not necessary.

Finn [56] gave the following reformulation of Giusti’s theorems:

A sufficient condition for existence of a solution is that there exist a
vector field w=(w',w?) in Q, with
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Figure 6.10. Tail domain.

Figure 6.11. Neck domain.

z
divw=§ in Q
veow=1 on X (6.20a, b, c)
1 _
[w|<—— in
cosYy

To prove the result, we integrate (6.20a) over Q*<Q and apply the
divergence theorem. The relation (6.14) follows as in Lemma 6.1.

We note that in contrast to the previously cited results, which apply
only to the case y=0, this criterion applies for every y.

For particular domains ©, a field w(x,y) can be constructed explicitly.
For example, for the parallelogram of Fig. 6.12, with coordinate origin at
the point of symmetry, the field w(x,y) with

wl= ! [x—}—(l—l) cot2oc]
" asin2a b a y

1
2:
g bsin2u

(6.21)

y
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20

2b

2a

Figure 6.12. Parallelogram domain: solution exists if « + 7y >n/2.

has the indicated properties whenever o+7y>m/2, and thus a solution ex-
ists in that case. We shall show in Theorems 7.10 and 7.11 that a solution
exists also for a+7y=m/2. Since by Theorem 6.2 there can be no solution
when o+ 7y <m/2, the result is sharp; that is, the identical criterion applies
to a parallelogram as does for a regular polygon.

The result does not generalize to every polygon. Consider the trape-
zoidal configuration of Fig. 6.13. According to the above result, if a=b
(that is, for any rectangle) there is a solution whenever y>mn/4. Let us
choose I, Q* as indicated, with I' bisecting the altitude. After some ma-
nipulation the inequality (6.7) — for that choice of I' — takes the form

2(b+a)? cos2a

COSy<|(b—a)—(b+a)00520c| b—a’

(6.22)

Let a, b be prescribed, a<b. Let y be arbitrary in 0<y<mn/2. From (6.22)
we see immediately that there exists ¢>0 such that whenever |(n/4) —o|<e
there is no solution to the problem. Choosing y in the range n/4<y<mn/2, a
solution will exist in any rectangle, but for o sufficiently close to n/4,
there will hold a+7>n/2 and the solution will nevertheless fail to exist
in the trapezoid. In a sense, the closer the trapezoid is to rectangular
shape, the more solutions are excluded from existence. Thus, the criterion
for a rectangle (or parallelogram) does not apply to a trapezoid; a kind
of unstable dependence on the data occurs, which differs from the angle
discontinuity. An arbitrarily small deviation from the rectangular con-
figuration, throughout which the condition o+ y>n/2 holds uniformly, can
lead from existence to nonexistence of a solution.

Yy

2b 2a

Figure 6.13. Trapezoidal domain: for fixed a,b and any y<m/2, solution fails to
exist when |7/4 — o] <e.
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6.5. A Subsidiary Extremal Problem

In seeking general conditions for existence of a solution, we may try to
minimize @[Q*]. The procedure is facilitated if we observe a striking
analogy with the original variational problem for %, Recalling the defini-
tion H =(X/Q)cosy, the energy expression (1.24) for the original problem
becomes, up to the factor o,

E[S =S —F*cosy+HV (6.23)
where &% is the wetted boundary area. If we compare (6.23) with

Q[Q*]=I —X*cosy+H, Q¥ (6.24)

we see that we are confronted with the same type of variational problem
as the original one. The only differences are i) it is now in one lower
dimension, ii) the multiplier H, is now no longer an unknown but is
prescribed in advance, and iii) the container has now a general, rather
than cylindrical, form, so that the problem must be studied parametri-
cally. As indicated by our choice of notation (see Note 1), we focus atten-
tion on the set Q* enclosed by I and X*, as determined by its character-
istic function @ ..

6.6. Minimizing Sequences

We consider a minimizing sequence {Q¥} for the functional ®[Q*]. For
each member of the sequence there holds QFf =Q, X¥<X. In view of the
minimizing property, ®[Q%¥] is bounded above, hence I} is bounded in
the sequence; that is, the sets {Q7F} have uniformly bounded perimeters in
Q. We conclude (cf. Theorem 1.19 in [89]) that there is a subsequence of
the {gogj} that converges in I'V(Q) to @0, and that

rozj ID(pgolsliminfj Dol
Q Ie) J

Lemma 6.3 (Lower Semicontinuity). Let Q satisfy the conditions of
Lemma 6.1, and suppose that for any ¢>0 a partition can be found such
that max,}/1+ L5 <(1 +e¢)/cosy. Let {Q¥} be a sequence as above, and let
{y;} be a corresponding sequence of boundary angles, such that y;—7. Then

o[Q%y]<liminf®[Q¥F;7,]. (6.25)

J
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Proof (Gerhardt [74]). We may write
21071~ 2195:70<(| 1Doal=| 1Doah+H, | [0m—0ayldx
+eosy | 10m—wugldstat | ool
+et | loglds

where &¥f, ¢5—0. To the term [;|@qo— qom|ds we apply (6.16) with
p=cosy; we obtaln

o[0%11-0[0171=(| 1Dowl~| 1D6w)

£ é
+H},Ll(pgo—<p9§|dx+ Y‘L I(pgo—(pgﬂdx
+(2+8)§ |D(pgol+ss ID(me+8*Q+£§Z

where we have set Q;=Q\ ;. We have already observed that the super-
ior limit of the first three terms on the right is nonpositive. The fourth
term can be made arbitrarily small by suitable choice of o, following
which the fifth term can be made small by choice of ¢, since the {Q%)
have bounded perimeters. Thus, lim sup (®[Q°; y] —P[QF; 7;1) <0, as was
to be shown.

6.7. The Limit Configuration

It can happen that the perimeter I'® of Q° in Q is the null set. If I'°+0,
we apply a theorem of Massari [123], which yields that I'° consists of
analytic arcs in Q. We wish to characterize the geometry of the arcs in
relation to that of Q.

Lemma 6.4. The arcs of T'° are circular, of radius R,=H; 1=Q/¥ cosy,
and Q° lies on the side of I'° opposite to that into whlch the curvature
vector points.

Proof. Since I'° minimizes among all configurations, it must do so among
neighboring curves, so that its first variation must vanish. Given a point
of I'°, we adopt a coordinate system so that I'° is a graph u(x) in some
interval a <x<b, with Q° below the curve, and we make a variation with
support in this interval. Neglecting terms in @ that remain constant, the
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expression to be varied becomes

b b
X ]/1+|l7u|2dx+H},§ udx, (6.26)

the Euler equation for which is

4w _pg (6.27)

dx V1i+uZ ”
and thus the curvature of I'° is identically H,, as was to be shown.

Corresponding to I'°=0 there are two possibilities: either Q°=§ or
Q°=Q. In the former case one has immediately that the corresponding
@°=0. In the latter case, #°=—Z cosy+H,Q=0, since H,=(Z/Q)cosy.
We have proved:

Lemma 6.5. The nonexistence of a minimizing set @, Q for ®[Q*;y] in
Q is equivalent to ®[E;y]>0 for all admissible E+0, Q.

In view of Theorem 6.7, we may rephrase this result as follows when-
ever the regularity condition (6.14) holds:

Theorem 6.8 (Nonexistence-Existence Principle). The nonexistence of a min-
imizing solution +@, Q in Q to the subsidiary variational problem for
®[Q*;y] is equivalent to the existence of a solution of the original varia-
tional problem (6.4), (6.2) for a capillary surface over Q. The surface is
determined, when it exists, as a solution of (6.4), with (6.2) holding in a
generalized sense, see Chapter 7.

We recall that (6.14) is not explicitly needed when y=0. If y>0 and X
is piecewise smooth, it suffices to have a+y>n/2 at every corner of
opening angle 2a<m, while if 2a>m, no condition is needed. If
o+7y<n/2, then according to Theorem 6.2 there is no solution to the cap-
illary problem over Q. The case «+y=mn/2 has a special interest; it will be
shown in the following chapter that a generalized solution then always
exists when (6.7) holds, the associated surface energy may however be
infinite in some cases.

Lemma 6.6. Let Q satisfy the condition (6.14) with p<1/cosy and also the
isoperimetric condition (6.15). Then there exists 0(Q;y)>0 such that
®[Q*;y] and also the “adjoint” functional

Y[Q*;y]=I+2*cosy —H, Q* (6.28)

are both positive whenever Q¥ <.
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Proof. By (6.14) we have
QLQ*;y]=(1 —pcosy) [ — CQ*
for some fixed constant C. If Q*<¢ and ¢ is small enough, then (6.15)
yields
®[Q*;7]=(1 —pcosy— CY/O)I>0

for small enough J. The corresponding result for ¥ requires only the use
of (6.15).

From Lemma 6.6 we obtain

Lemma 6.7. Under the conditions of Lemma 6.6, the number of components
in a minimizing set Q° is finite.

We also have:

Lemma 6.8. Under the conditions of Lemma 6.6, the number of circular
arcs T on the boundary of a minimizing set Q° is finite.

Proof. It suffices to show that there exists >0 such that no arc I” bounds
with £ <X a set @ of diameter <d. By Lemma 6.6, we may assume that
Q contains no component of Q°. Removal of I' thus leads to a change

db=——Xcosy+H,Q
<(—=1+CH YOI

by the isoperimetric inequality (6.15), and thus 0@ <0 if J is small
enough.

Using Lemma 6.4, we find:

Lemma 6.9. If two boundary arcs I' of the minimizing set meet on X so as
to form an angle o within Q°, then w>m.

Proof. Let p be a point of contact, let gq,, g, be points on the respective
arcs equidistant from p. If w<n and the points are close enough to p,
then the new domain Q° obtained by replacing the broken arc ¢,pg, by
the segment g, ¢, will yield a smaller @.

6.8. The First Variation

In view of Theorem 6.8, our principal interest will be to characterize
those configurations for which the minimizing Q°=0, Q. Even when that
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occurs, it can happen that extremal arcs I appear, which satisfy formal
(first) variational conditions but do not minimize. We therefore wish to
examine in further detail the interrelationship between the variational
conditions and the boundary geometry. In the remaining sections of this
chapter, we assume that X is piecewise smooth, in the sense that Xe C'?
in local coordinates, except possibly for a finite number of corner points,
at each of which two uniformly smooth boundary arcs meet at an angle
20 (<27, measured within Q), for which o+ y>mr/2. The condition (6.14)
is then always satisfied. We then obtain from Lemmas 6.4 and 6.7-6.9:

Theorem 6.9. If a+7y>n/2 at each corner point, a minimizing set Q° con-
sists of a finite number of components bounded by a finite number of
circular arcs I'=Q of radius R,=Q/Xcosy, and by a finite number of
subarcs X°cX. The arcs T (and sets X°) are mutually disjoint except
perhaps for contact at corner points with opening angle 20> 1.

Theorem 6.9 is essential in what follows, as it will permit us to in-
troduce general variations of the extremal arcs I' without creating in-
admissible configurations, such as multiple coverings of Q or X.

To express the variational condition on an arc I' of {I'°} it is con-
venient to adopt polar coordinates, with origin at the center of I Then I
and 2* may be represented in the forms (see Fig. 6.14)

r: r=r(®)=R, 0,<0<0, (6.29)

ZE p=p(t);0=0(1), t<t<t,. (6.30)

Figure 6.14. Coordinates for variational condition.
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In the latter representation, we may clearly suppose p'>+¢'2>d>0 in

t,<t<t,, and that t, =0, t,=0,.

Let us embed I' in a one-parameter family of curves I): r=r(0;¢), with

r(0,0)=R,. The intersection points with 2* will be determined by the
relations
n=r(l;e=p;=p(t) (6.31)
Oi=0), i=12 (6.32)

In terms of the notation
or .
fry=yr*+r2, r’z-ale, (6.33)
’7 7 ’ ’ d
gp:ps0)=Vp"¢ +p 7 cosy, p=-L (6.34)

we find, setting @(e)=D[ 1],

&

(p(g):.‘: [f(r;r’)—ﬁ:,ﬂ] d"—r [g(p;p’;y)— !

20" | dt
) TR o]

from which, denoting differentiation in ¢ by (°),

qﬁ(s):j:j (ﬁ.i"—%—fr,)"——RLyf) dO—f-{(f—E%—yrz) ¢— (g——z—;fypzqo’) t}j

(6.35)
From (6.31) and (6.30) we find
;l =(p; —ri/ (p;) t'i (6 ’%6)
QD‘i:@Et‘ia i=1,2.
An integration by parts in (6.35) thus yields
F 02 r d : ’ ’o ’ )
d6)= | (gt gl ) O+ L )t o' =103 (637)
64 y

since r=p at the endpoints.
When ¢=0, then r=R, and the integrand in (6.37) vanishes. We obtain,
using (6.36),

B(0)={[R,¢'—)/ p'*+R2 ¢ cosy]1}3, (6.38)

whenever the points P, P, lie interior to regular boundary arcs on 2. If
cither P, or P, are corner points, then (6.38) still has a meaning, as a one-
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sided derivative along any adjoining arc that makes with I an angle <=
(cf. Figs. 6.15 and 6.16).

It suffices to consider this latter case, as the former is obtained from it
when the two adjacent arcs meet with angle n. Since the choice of varia-
tion is arbitrary, we may clearly assume f=1. Since at a minimum there
must hold &(0)>0, we find first from (6.38) that

@R, <V p"?+(¢'R,)* cosy
at the point P,, and thus (see Fig. 6.15) that
cos ' <cosy

at P;; that is, f'>y. A similar reasoning, applied to the adjacent arc X"
(see Fig. 6.16) yields " >mn—y. Thus, f' + " >=r. The same relations clear-

Figure 6.16. The first variation; case 2.
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ly hold also at P,. If P is a regular point, then f'+ f” == and hence f'=7,
B=n—7.

We consider finally the case y=0. The relation f'>7 now requires no
proof. Suppose f’<m—y=n as indicated in Fig. 6.16. Consider a se-
quence of points on 2\ X2* approaching the contact point and of distance
[ 'to P. If we join these points to points on I" equidistant to P by straight
segments and replace the corresponding part of I by the new segment (of
length d <2I), the change in @ can be shown to be

d—21+0(?).

Thus the change in @ would be negative for small [, contradicting the
assumed minimizing property.
We summarize the result obtained thus far:

Theorem 6.10. Let I' be a component of a minimizing set {I'}, lying in Q.
Then I' is a circular arc of radius R,=Q/Xcosy, meeting X in distinct
points B, B. If y>0, I' is isolated from all other components of {I'}; if
y=0, I can conceivably continue into other components across isolated
points of X, as part of the same circular arc. On the side of I' opposite to
that into which its curvature vector points, it meets X in an angle ' >7y; on
the remaining side, it makes with X an angle B’ >mn—7y. If a contact point
P is interior to a regular arc of X, then f'=v, f'=n—y. No arc I' of a
minimizing set can meet X at a corner point P at which the interior angle
20 is less than w. If y>0 and a+vy>mn/2 at each corner, then {I'} contains
at most finitely many components.

6.9. The Second Variation

To obtain further information, we examine the second variation of @, in
an extremal configuration at the value e=0. For simplicity we restrict
attention to the situation in which neither contact point is a corner
point of X. By Theorem 6.10, the extremal arc I' meets 2 in equal angles
y at B, B. Since, as we have assumed, 0<y</2, it is clear that we can
choose =t in neighborhoods of P, P,. The relation (6.37) then takes the
form

) 02 1 d .
0=, (1= 7+ gl ) O+ T8+ =110 639

We differentiate (6.39) in ¢, and set ¢=0. Using the variational con-
ditions we have already found, and the boundary relations (6.36), we ob-
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tain after some cancellations

6>

$(0)= E ’ [f,,. FfF —Rif—% L+ w_f;_,,.,)] d0

7

01
%) 2 s ) 1 0 640
+{[("O+r)f,—p'O0g,—p"0g, +p"0f, (049

+(p =)W O+ [+ O+F) f0,)]0)2.

Integration by parts in (6.40) leads to further cancellations; using again
the boundary relations (6.36), we are led to the form

$(0)= X: [(ﬁ,—%) P24 2f +j;,r,r"2] d0

. 6.41
(I g) 0+ (=g 0"+ 1) o (641)

+(p' =1, 1073,

On an extremal arc I, we have r=R. Using the explicit forms (6.34) for
f and g, we obtain

2 2
B0)=0+ {[1 —%cosy] Ozp'} (6.42)
pi+p i
with
(o
Q=R—j0 ("2 —1%)do. (6.43)

y

Let k denote the scalar curvature of 2, considered positive in the direc-
tion of the curvature vector. A calculation yields

p2tp'?
P+p”=T(2—kV p>+p?). (6.44)

Placing (6.44) into (6.42), referring to Figs. 6.15 and 6.16 (with §'=f"=y),
and using again the boundary relations (6.36), we find after simplification

.. ) R R
®(0)=Q+~CZ” [(1—k1 : )r'f+(1—k2 y )

rg] (6.45)
COs Y cosy

when y=0. If y=0, we restrict ourselves to variations that vanish at the
endpoints and find

P=0Q. (6.46)
6.10. Solution of the Jacobi Equation

We wish to determine conditions under which (6.45) or (6.46) are nec-
essarily positive for any (nontrivial) choice of 7, and conditions under
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which they can be made negative. We thus consider the problem of min-

imizing (6.45), under a suitable normalization. Under obvious notational
designations, we are led to a minimum problem for the functional

5
f[n]zs ('?=n?d0+A,n?+ A,n3. (6.47)
P

Here we have rotated coordinates so that 0, = —d, 0,=0. We seek to
minimize (6.47) under the constraint

ni+n3<l. (6.48)
If 0,—0,=mn (i.e, 6=m/2), we observe that the choice

2
1/7‘303110, IHISE,
T 2

2 A=
n= COSA.z

1
51/2’ |0|2g, 0<i<l

leads to an estimate

o 1 T
?—p?)d0< ——tanl>
S;é(n n*)do< 7tandz

which — — 0 as A—1. Thus ®(0) can be made negative, and we find

Theorem 6.11. If 0<y<m/2, then on any minimizing arc I' there holds
0,—0,<m.

That is, any minimizing arc is a strict subarc of a semicircle.
In general, we note that the Euler equation for (6.47) is

n' +n=0, (6.49)

and thus any interval exceeding © contains a pair of conjugate points.
Thus, in this case @(0) can be made negative by a variation that leaves
the endpoints fixed. We obtain:

Theorem 6.11 (a). If =0, then on any minimizing arc I there holds
0,—0,<m.

If 6,—0,<m, we have 6 <n/2, and the minimizing condition for (6.45)
leads to a choice

n=acos(f —o), (6.50)
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where o, a satisfy the relations

2sin20

__ ST 4y
cos2d+cos2e 1 2
R (6.51)
=k, — k)2

(ks 1)sin",’

and
1

s
1+cos2dcos2o

(6.52)

For any choice of ¢, a>0, we have

1
a—z,ﬂ[n]= —sin2d cos2o

+coty{cosz(5—~a) [1 -k, R, ]+cosz(5+a)[1—k1 R, ]}

cosy cosy
(6.53)

The desired minimum is provided by one of the two solutions of (6.51),
(6.52).

We note that (6.50) defines a rigid motion of I' in the direction o. In
view of the general nonexistence-existence principle Theorem 6.8, we have
proved:

Theorem 6.12. If y>0 and if for one of the solutions of (6.51), (6.52) there
holds #[n]<O0 for every strict subarc I' of a semicircle of radius R, that

meets X in equal angles y (measured exterior to the semicircle), then there
exists a solution of (6.4), (6.2).

We may also obtain a condition expressed entirely in terms of bound-
ary curvatures at the intersection points:

Corollary. If y>0 and if the curvatures k,, k, at the intersections with X
of every subarc I as above satisfy (k, +k,)R,>2cosy, then there exists a
solution of (6.4), (6.2).

Proof. The minimum of .#[#] cannot exceed its value when ¢=0, which
under the hypothesis is negative.

We remark that the proof of the Corollary yields also an extension to
smooth boundary points of the result of Theorem 6.10 that a minimizing
extremal cannot enter a corner point PeX at which 2a<m.

The following additional consequence of the nonexistence-existence
principle makes only limited use of the second variation; we formulate it
for the general case of piecewise smooth domains (see §6.8).
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Theorem 6.13. Suppose either X is smooth or that o+7y>mn/2 at every cor-
ner, and suppose there is no subarc I'=Q, of a semicircle of radius
Q/% cosy, that contacts X in two distinct points, at each of which there
holds B'>7, B'>n—y (see Theorem 6.10). Then there exists a solution of
(6.4), (6.2).

Proof. For any minimizing set {I'} =, each I'e{I'} must by Theo-
rem 6.11 or 6.11(a) be a subarc of a semicircle, while by Theorem 6.10
there must hold >0, f” == at each of two distinct contact points with
2. Under our hypothesis the minimizing set is empty; by the nonexist-
ence-existence principle Theorem 6.8 a solution of (6.4), (6.2) must exist.

Whenever a solution of (6.4), (6.2) fails to exist, there must be a non-
trivial minimizing configuration {I'} in Q, for which ¢ <0. We have:

Theorem 6.14. If y>0, 0, —60, <= and if #[n], as given by (6.47), is posi-
tive, then the given extremal I' provides a strict strong relative minimum.

Proof. If ¢>0 is sufficiently small, then any pair of points in & neigh-
borhoods of P, P, can be joined by a unique strict subarc of a semicircle
of radius R, with the same orientation as I The usual procedures of the
calculus of variations (cf. the discussion in [2]) show that every such arc
provides a strict strong minimum relative to all neighboring arcs through
the same endpoints. Thus it suffices to restrict attention to these circular
arcs.

We assert that & can be chosen so that, for any arc I’ joining respective
points of the two neighborhoods, there holds @[I']>®[I']. If not, there
would be a sequence ¢—0 and a sequence of corresponding I, for which
¢[IZ]£¢[F]. We can embed these arcs in a continuous family r(6;e),
with 72(0,;0)+7%(0,;0)=1. We have ®(0)=0, while by our hypothesis
and continuity considerations there holds &(g)>0 for ¢ sufficiently small;
thus it would be possible to choose & so that ®[I7]>®[I'], contradicting
the supposed construction.

Theorem 6.15. If y=0, then every extremal I' joining regular points of X
and for which 0,—0, < provides a strict strong relative minimum.

Proof. Since the conjugate points on I' (determined by the integrand of
Q) are separated by intervals of n, I can be embedded locally into a field
of extremals (Fig. 6.17). Considering the variational problem for . as a
problem in parametric form, one easily finds that the corresponding Le-
gendre condition is satisfied (cf. [2, p. 63]). Thus, I" provides a strict strong
minimum for @, relative to all curves lying in a (physical) neighborhood
A4 and having the same endpoints P, B,

Let ¥ < 4} be a curve joining points Q;, O, on 2. We obtain a curve

% <A joining P, P, by adjoining the segments P Q,, B0, (see
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Figure 6.17. Local embedding.

Fig. 6.17). Since Q* is not changed and cosy=1, we find ¢[€"]=D[¥].
But if ¥ =¥, then €% = ¥, hence ®[€]> @[] unless €=1TI.

The diversity of situations that can occur is illustrated by the following
result.

Theorem 6.16. If k,, k,<0 and if 6+y<mn/2, then I' provides a strict
strong relative minimum. If k,+k,>0 and if 0+y>mn/2, then I' cannot
yield a minimum.

Proof. The two situations are illustrated in Figs. 6.18(a), (b).
If ky, k, <0 and 0+7y<m/2, then from (6.53) we have, when y=+0,

1 .
EEJZ —sin2d cos2 o +coty{cos*(f —a)+cos*(f+0)}

> —sin2d cos20 +tand{cos?(6 — )+ cos* (5 + o)}
=2tandsin’¢ >0

and the result then follows from Theorem 6.14. If y=0, then Theo-
rem 6.15 yields the result.

(a) (b)
Figure 6.18. (a) k<0, +7y<mn/2. b) k; +k,>0,0+y>n/2.
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If ky+k,>0 and 0+7y>n/2, we set 6=0 in (6.53) to obtain

1 R
a—zfs —sin28+2cos?§ coty
< —sin2d+2cosdsind=0

so that I' cannot minimize.

6.11. Convex Domains

In a general situation an extremal must be given before (6.53) can be
applied, and in order to obtain information relative to existence it is
necessary to examine all possible extremals. The number of extremals
corresponding to differing configurations can vary from zero to infinity,
as may easily be seen from explicit examples. However, if Q is convex,
the situation becomes much simpler, as then k,;, k,>0 and the angle §
can be estimated in terms of the maximal boundary curvature.

Lemma 6.10. Let y>0 and suppose the curvature k of X satisfies
0<k<k, <oo. (The last equality can occur at a singular boundary point.)
Let I' be an interior extremal arc of a minimizing set, and suppose o
+y<mn/2. Then R ky>1, and

siny

tand>————.
R ky —cosy

(6.54)
Proof. We recall (Theorem 6.10) that I' cannot meet X at a corner point.
Suppose Rk, <1. Construct a circular arc X, of radius Ry, =ky' tan-
gent to 2 at B, as indicated in Fig. 6.19. Let L, be the (semi-infinite) line
segment tangent to X2 at P, let L, be the segment parallel to L, and
meeting I' in the angle y as indicated. Since R k), <1, X, meets L; on or
exterior to I. We adopt a rectangular coordinate system with origin at
the center 0 of I' and with the y-axis directed parallel to L,, L,, as
shown, and denote by ¥, ¥, the inclination angles of X, X, relative to
the positively directed x-axis. The assumed curvature inequality gives, in
the interval [x,,x] between L, and L,,

(Siny), < (siny ),

By our construction,

siny (x ;) =siny(x;)
and thus

siny,, (x) <siny(x)
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Figure 6.19. Construction for Lemma 6.10.

throughout [x,,x}]. Thus, 2 lies above (or on) X,, in that interval, as
shown in the figure. We now observe that P, must lie outside the interval.
For otherwise, because of the assumed convexity of X, the tangent to X
at P, would cross the line L, at a non-zero angle, and thus the angle
between I' and X at P, would exceed y. But if P, lies outside [x,x}],
then 6+ 7y>mn/2, which contradicts our hypothesis.

Thus, R k) >1, and in view of the condition é+y<mn/2, the construc-
tion of X, appears as in Fig. 6.20. A repetition of the above reasoning
now shows that X lies entirely outside the region bounded between X,
and [, and hence 6>6,,.

We now observe that

Rysin(y+9,) =R, sind,,

Figure 6.20. Construction for Lemma 6.10.
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from which follows easily

sin?§,,= sin’y
MU 1—2R ky cosy+(R,ky)?
and finally
. siny
tand, =7 (6.55)

R ky —cosy

from which the lemma follows.
Simple examples show that the result of the lemma cannot be im-
proved.

We may now prove:

Theorem 6.17. Suppose 0<k, <k<k, <oo. Then a solution of (6.4), (6.2)
exists whenever either R),kMsl or

1 2 il
mind— 07 cosyba (R k, —cosy}>0. (6.56)
Rk —cosy !

Proof. We suppose first y>0. Let I' be an interior extremal arc, with
0+ 7y<n/2. Setting ¢ =0 in (6.52) and (6.53) and replacing k,, k, by k,, we
find on I

kR
Jnl< —tan5+{1 ——u} coty.
cos?y

By Lemma 6.10, R k,,>1 and

sin
tanézwy—.
R ky —cosy

Thus, #[5]<0 follows from (6.56) whenever 6+y<m/2, y>0. But if ¢
+7y>m/2, then tand>coty. Further, by Lemma 6.10, if R k, <1, then ¢
+7>mn/2. Thus, the theorem is proved for all y=0.

If y=0 and R k), <1, then clearly 6+y=06>mn/2 for any interior ex-
tremal I By Theorem 6.11(a) no such extremal can minimize, hence a
solution to (6.4), (6.2) exists. The condition (6.56) is vacuous when y=0,
since in that case we find from Theorem 6.10 that R«,kmﬁ 1.

We remark that if y=0 and if for some interior extremal I" in a convex
Q there holds é <m/2, then the configuration becomes a special case of
the “tail domain” introduced by Chen [24], for which he was able to
show that no solution exists. The considerations of Chen do not extend
to the case y>0, cf. the remarks in [61].
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The case considered by Giusti-Weinberger [85] is subsumed under the
conditions y=0, R ky <1 of Theorem 6.17, so that the present discussion
offers as a special case another proof of their result. Also, Theorem 6.13
yields as special case a new proof of the sufficiency (rolling) criterion of
Chen [24]. It should be remarked that all known sufficiency criteria de-
pend ultimately for their success on the general existence results of Giusti
[84, 85, 86], which we outline in the following chapter.

6.12. Continuous and Discontinuous Disappearance

It is apparent from the earlier material of this chapter, cf. Theorems 6.1
and 6.2; Corollaries 6.6 and 6.7, that to every domain Q there corre-
sponds a 7,[€] such that a solution to (6.4), (6.2) exists if y,<y<m/2,

St AR, 4 cns. when. v "
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of sets of bounded perimeter in Q, hence there is a subsequence that
converges to QF, in the sense that the characteristic functions converge in
LNQ).

Suppose Q% =0. We choose f in (6.14) to be the characteristic function
¢; of QF, obtaining

DLQF;y;]=(1—pcosy) [ —CQ*¥

for some fixed constant C. By (6.15) we have, since Q¥—§, that

Q¥<CYQfI' for all large enough j. Since u<1/cosy, there follows
@[Q 3V ]>0 for large enough j, contradicting the construction.
Suppose Q&=0Q. We introduce the “adjoint” functional

Y[Q*;y]=I+2*cosy—H, Q*

and observe that cD[Q*,y] Y[Q\Q*;y] since H,=(2/Q)cosy. Using
(6.15), we thus find

B[Q%;7,]1=(1 - CYQ\QHT>0

for large enough j, again a contradiction.

Thus Q% +0, Q. We now observe that the conditions of Lemma 6.3 are
satisfied, and thus @®[QF;7,]<liminf®[Q%;7,]<0. We conclude from
Theorem 6.1 that no solution can exist at 7y,

6.13. An Example

The case y,=0 is not covered by the above discussion. The varied be-
havior that can occur is illustrated by the example of Fig. 6.21, in which

AB, €D are circular arcs of radius 1 and p, respectively.

One determines easily that there exists p,=1.974... such that for every
h>0 there holds R,=Q/Z<1, Ry=1, or R,>1 according as p<p,,
P=py P>po We then have:

(a) If p<p, and y=0, there is no extremal arc for @ in Q, regardless of
h. According to the nonexistence-existence principle, a solution surface
exists at y=0 and a fortiori, for all y>0. For the given value of p, this
holds for any h. (b) If p=p,, then Q/>=1 regardless of h. An extremal
set Qf, for which @[Q¥;0]=0, is obtained by inscribing a semicircular
arc at any point in the strip, as indicated. Thus, no solution can exist at
y0=0. If y>0, concentric circular arcs of radius /2 cosy provide again
“extremal” domains, however in this case @ >0, so that the domains do
not minimize. Similarly, all other possible extremal arcs lead to &>0.
Thus, regardless of the length of the strip, a solution exists for any y>0.
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Figure 6.21. The “singular” case y,=0.

It is shown in Chapter 7 that the solutions u/(x) corresponding to a
sequence 7;|0 can be normalized by additive constants, so that they con-

verge throughout the domain CEDF to a limit solution u°(x) correspond-
ing to data y=0. The limit solution remains bounded for any approach
to the open arc CFD, but tends to infinity on the arc CED. The solutions
w' tend to infinity throughout the extremal domain Q¥ that is determined

in the strip by CED.

6.14. Another Example

An elaboration of the above ideas yields the example of Fig. 6.22. Here

0=60°, ABC is a semicircle and AF and CG are circular arcs of unit
radius.
If p=1.974, a solution exists if y>13.88°. At 13.88° an “extremal” arc

AC with ®=0 appears, and has radius 1.03. A sequence u of solutions

Figure 6.22. Configuration for which y,=+0 but small change of data yields large
change of solution.
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corresponding to data y;|13.88° can be normalized so that u' tends to a

solution u° to the right of AC, and to infinity to the left of AC.
If p=1.995, a solution exists if y>14.15°. At 14.15° an “extremal” arc

DE with #=0 appears, of radius 1.031. A sequence #’ of solutions corre-
sponding to data y;/14.15° can be normalized so that w tends to a so-

lution u° to the right of l/)-E and to infinity throughout the region to the

left of DE.

Thus, the region in which the solution becomes infinite can be made to
shift, essentially discontinuously, with small changes in the domain and
data.

6.15. Remarks on the Extremals

We showed in §6.10 that whenever 6, —0, <n, the (normalized) second
variation £ [n] of @ is minimized by a rigid translational motion

n=acos(f —a) (6.57)

in a direction ¢, which is one of two translational motions along which
4 1is stationary.

In the original capillary problem, the boundary angle y is prescribed.
The extremal arcs I' for the subsidiary problem must meet the boundary
curve X with the same angle 7. In general it cannot be expected that a
rigid motion (6.57) will leave y unvaried; there are, however, situations in
which that occurs, and these situations have a special interest.

Theorem 6.19 (Concus and Finn [36]). The second variation 5 of @ van-
ishes for any rigid motion of an extremal that leaves y unvaried. Further,
S is stationary (its first variation vanishes) in any such motion.

Proof. The extremal is a circular arc of radius R,=Q/(2 cosy); since y is
unvaried, so is R,. The extremal meets X in two points, denoted as 1 and
2 in Fig. 6.23, with intersection angle y as indicated.

We may characterize the motion as a composition of a rigid trans-
lation (6.57) of the center O in direction o, and a rotation about 0. Since
the rotation leaves everything invariant, it can be neglected.

We focus attention first on the point 1, and adopt as parameter to
describe the motion the arc length s on X. Referring to Fig. 6.23, we find

y+E+1+0=m/2 (6.58)

P = —cos¢+sinécoto (6.59)
i 0

P:m}R (6.60)

sing 4
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Figure 6.23. Configuration for Theorem 6.19.

and thus

R, .
cosé —sinécoto= i L{(t+0),cos(6+1+9)+ 7y tanysin(o +1+0)}
o

so that
sin(¢ —0) =R, {(t+0),cos(g+149)+7,tanysin(c+1+0)}.  (6.61)

For the curvature k, of 2 at 1 we find from (6.58)
ky= =&+ +0), (6:62)
We thus obtain from (6.61) and (6.58)

cos(c+y+1+9)
k=

“Rcosto e L0 o). 63
RYCOS(O.+T+5)+/S[1 anytan(c+1t+0)] (6.63)

An analogous discussion now yields

_cos(c—y+1—9)

“Rocosori_p) s Ttany -9)]. 64
RYCOS(HT,(S)HS[ +tanytan(c+1—9)] (6.64)

2

These relations hold for any translation in the direction . In the spe-
cial case that y, vanishes at both contact points, we obtain simplified
expressions for k; and k,, depending only on R, and on the angles o, 7,
T, 0.

We now normalize (as in §6.10) by a rotation of coordinates so that
=0, and we place the resulting expressions for k, and k, into (6.53). A
tedious but formal calculation then yields .#[n]=0, which was to be
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proved. Placing the indicated ¢ into (6.51), we verify directly that it pro-
vides one of the two solutions of that relation, and hence is an extremal
direction for .#.

6.16. Example 1

The question remains, whether .# is minimized by the above choice. We
examine the question first in the particular case, for which X is a unit
circle and I' an interior circular arc (Fig. 6.24; we note that I' always
contains the center of X). The rigid motion for which the center of I
moves on an arc concentric to X then yields y,=0, # =0 (trivially).

Since k,=k,=1, we find for a motion of the form (6.57), under the
normalization ni+n3=1,

R

S =coty (1— ‘ )
cosy

sin2d cos2o
l4+cos2dcos2a’

(6.65)

which follows by formal calculation from (6.53). In the configuration in-
dicated, (6.51) has the roots =0 and /2, the root 7/2 being the one that
leaves y invariant. For the roots 0 and n/2 we obtain for the correspond-
ing Sy, S,

2

A
M2 707 6in24

which is positive if 20<m, so that the “y-invariant” direction fails to
minimize. If 26> r, then .# is in fact minimized by that direction among

Figure 6.24. Example 1.
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rigid motions, and thus .# >0 for any rigid motion. Nevertheless, I" con-
tains a semicircle in this case and hence — as shown in §6.10 — there
exist other variations for which .# <0.

We remark that in the indicated configuration there holds 2y+d=m,
hence for all situations that occur, we have d+7y>m/2 (cf. Theorem 6.16
and Lemma 6.10). Geometrically, this means that on the line L joining
the centers of the two circles, the center of I' lies between the intersection
of L with I, and the intersection point of L with the line tangent to X at
the intersection of X with I

In all configurations considered, there holds @[I']>0. In fact,
®[I']1>0 is a necessary condition for existence of a solution, and in this
case a solution can be obtained explicitly for any y, as a lower spherical
cap.

6.17. Example 2

In the configuration of Fig. 6.25, with the smaller circular arc on X of
radius 1, there is a unique radius 1.974... for the larger arc so that Q/X
=1, independent of h,. Corresponding to the arc I indicated, we have R,
=Q/X cosy and

¢

—29)(2 —1
_(m=29)( czosv )_ncosy+tany+ﬁ, (6.66)
2cos*y 2

which is independent of h. A horizontal translation of I' thus yields
# =0. Again we have k, =k, (=0), so (6.51) yields once more the two
roots 0 and n/2. However, in this case the roles of ., and .7, , are inter-
changed, and thus it is now the “y-invariant” motion that minimizes .#.

One verifies easily that in 0<y<mn/2 the value @ determined by (6.66)
is positive. The only other extremal arcs are the reflections of the in-
dicated ones, and for these @ is still more positive; we thus conclude
from the nonexistence-existence principle that for any ye(0,7/2] a corre-

. |

Figure 6.25. Example 2.
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sponding capillary surface exists. (We note that @ vanishes when =0, so
that —regardless of h —no surface exists in that case.)
In the configuration indicated, one has 6 +7y=m/2.

6.18. Example 3

We consider finally the case of an ellipse. Computer calculations were
made for the configuration for which the ratio of minor to major axis is
0.3 (see Fig. 6.26). It was found that for y~25.2°, there is an extremal I,
such that y,=0 for horizontal displacement. Again we have k,=k,, we
obtain the same two roots of (6.51), and we find that the y-invariant
motion minimizes .#. We again have ®[I,]>0; we verify easily that all
extremals are symmetric with respect to reflection in an axis of the el-
lipse, and that for the given y the only other possibility is a shifted arc I
(as indicated in the figure) for which again @>0. Thus, a solution of the
capillary problem at this value of y exists.

Corresponding to I, we have d+vy<m/2; however, for I there holds
o+y>mn/2.

The calculations for the ellipse have an independent interest extending
beyond the above considerations. For each point p of the ellipse, those
values of y were sought, for which an arc I' through p (not exceeding a
semicircle), of radius R,=Q/X cosy, will meet the ellipse in two points
with angle y. The results are illustrated, qualitatively in Fig. 6.26 and
quantitatively in Fig. 6.27, for an ellipse of semi-major axis a=1 and
semi-minor axis b=0.3. For each p, a unique y was found. A unique
point p, yielded y=0, corresponding to an inscribed circle of radius
R,=Q/%. From each side of this circle emanates a family of extremals
with varying y: on the left, y increases from zero until n/2 is attained on
the minor axis; on the right, y increases to a maximum 7y,, &~ 25.2° at a corre-
sponding extremal I, and then decreases back to zero (which is not at-
tained) at the right vertex. The entire configuration is repeated by re-
flection in the minor axis.

Figure 6.26. Example 3: I, and I, are extremal arcs for which 7, =0.
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Figure 6.27. Analysis of the ellipse.

At I, we have dy/ds=0, hence also dR /ds=0. The analysis of §6.15
thus applies at this point, and forms the basis for the discussion of this
section.

Figure 6.27 shows .# and @ as functions of 7y; the corresponding x-
coordinates on the major axis are indicated on the curves.

6.19. The Trapezoid

Many of the considerations of this chapter are illustrated by the case in
which @ is a symmetric trapezoid; we already encountered that configu-
ration in §6.4, where we pointed out a seemingly anomalous behavior of
the associated solution set. We now wish to clarify that behavior, by
examining the structure of the minimizing set {I'} of the subsidiary prob-
lem for @[I'].

a) We consider a trapezoidal section 7, of which a half (Q) adjacent to
the line of symmetry is illustrated in Fig. 6.28. It will be preferable to
denote the smaller angle with o, rather than 2« as before. We ask for
possible ways in which an extremal arc can appear.

i) The configuration of Fig. 6.29 can occur. Here t=(n/2)—(a* +7),
with o*=0/2 and we find
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)

\

\

Figure 6.29. Extremal configuration; case i).

1 sint sin2t sin®*t
— @[ =1—-2— cosy + e
R Lr] sino* Y 2 tano*

1 . . 1
(tsina* —sint cosy)=

f(@.

" sino* sino*
We have f(0)=0, and

f'(t)= —sinycos(a* +7) <0
since o* +y<m/2. Thus @[I']<0, so that no solution of the capil-

lary problem can exist in T. (This result is local, depending only on
the geometry at the corner; it was established another way in §6.2.)

i1) We consider the configuration of Fig. 6.30, in which Q* is the com-
plement of the domain surrounding the corner. We find

)
Q[I]=T— (2* —59*) cosy

z
=T+ (Z\Z* _EQ\Q*> cos?y,
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Figure 6.30. Extremal configuration; case ii).

thus reducing the problem to the previous one, but with two of the
signs reversed. We calculate, with ©=(r/2)+ (o —7),

1 sint cosy
—®[IM=1+——"
R [rl== sino*

so that in this case the existence of an extremal does not exclude
the existence of a solution to the original problem.

iii) The identical considerations apply at the larger angle m—o. How-

iv)

vi)

ever, we note that whenever existence is excluded by the larger
angle it is also excluded by the smaller one; thus, no new infor-
mation is provided.

An extremal might conceivably occur as indicated in Fig. 6.31. We
now observe that @[I'] is unchanged by rigid translation of I' in
the direction of the parallel sides of T; thus, I' can be moved until
it contacts (tangentially) one of the nonparallel sides. At this point
the problem is reduced to two of those of the type already consid-
ered. Either the one at the smaller corner excludes a solution or
neither of them does. (A more careful analysis shows that this case
is in fact vacuous; it cannot occur.)

One verifies easily that if I' passes through a vertex, then ®[I']>0.
This is in agreement with Theorem 6.10.

We have shown till now that, if 2y <z —o, the existence of a so-
lution is excluded by the corner condition; if 29>m—a, then exis-
tence is not excluded by any extremal that joins two adjacent sides
or passes through a vertex, or by any extremal that joins the paral-
lel sides. There remains the possibility of an extremal joining the
nonparallel sides, and that can happen in two ways. We consider
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Figure 6.31. Extremal configuration; case iv).

Figure 6.32. Extremal configuration; case vi).

first the configuration of Fig. 6.32 for which we find, with t=7n—(«
+7),

&[I'1=Rt+ {R?sintcosy—2aR(l —cosa)cosy+a*sina}.

Rcosa

The discriminant of the quadratic expression in brackets is

1a2
. sin?a
cos?ysin’o [1 —4_7]>0
(1 +cosa)

and thus ®[I]>0, so that existence is in no case excluded.

b) The only remaining possibility is the configuration of Fig. 6.28. For
any y<o and corresponding R=R,=Q/Xcosy, an extremal I" of the form
indicated always exists (uniquely) in the figure obtained by extending the
nonparallel sides. It follows from Theorem 6.16 that if I' lies in T, it
yields a strict minimum relative to all (piecewise smooth) neighboring
curves.

If 2y<m—o, then existence is excluded by the corner condition. If
o>m/3, then the interval .#: n—a/2<y<a is nonnull. We seek to de-
termine conditions on the geometry and on y,e.#, under which the
choice R=R, will yield an arc I interior to T, for which @[I;]=0. If
such an arc can be found, then a solution to the original problem will
exist whenever y,<7<m/2, and existence will fail when y <7,

We compute easily

Q=a+b

[sino Z=a+b+l1 (6.67)
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1 (a+b)lsino 1 .
=— I'=R (a—
"2 a+b+1 cosy =)
l:b—a Z*:R"Sin(a—y)_(l+a
cosa cosa
. R, sin(o—y .
Q*=[R, sin(x—7y)—a] tanaﬁ%—)iﬁ (6.67 bis)
1, 1, :
—3 R;(x ——y)+§R}, cos(a—y)sin(a —7y).
For fixed y, a, b, we find
b+a
lim R, = . 6.
a_{rnr/lz 7 2cosy (668)
We also have
0=[R sin(e—7)—a]tano—R [1 —cos(x—7)] (6.69)
so that, using (6.46),
b—a 1
“2cosa 2 (6.70)
for fixed y, a, b, as a— /2. (The symbol ~ denotes “asymptotic to”.)
We have
z
@[F]EF—Z*cosy+Q*§cosy
(6.71)
1 cosy . 1 —cosa a?
=-R |[(a—y)—— - ) ———tana.
5 ,[(,4 ) COSO(sm(oz y)]+a o5 cos) IR, tan o
If 6~211, then from (6.68)
1 (b—a)? cosy
O[T~ —- — — 0. 6.72
L] 4 b+a cosa * (672)
The choice
b 2a (b 2
cosy= +acosoH— ¢ ( +a> cos?u (6.73)
b—a b—a\b—a

yields 6 ~0. For this choice, we find after some manipulation

1 —b
P[] ~a+2a* bta (——cosy+3a cosa)—a (b+a

(>0 (6.74
(b—a)* \ 2 b—a >COSO{> (674)
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for |(/2) —a| sufficiently small. From (6.72)-(6.74) we conclude there is a
value y~m/2 for which ®[I']=0. It remains to characterize y, and also
the associated value of 0.

A disagreable calculation yields, from (6.71),

b+a 1(b+a) 1 cosa
d)[r]NT—Z(b—; cosa—z(b+a)cosy
[ 2 2
l(b—{-a) cos O(—a cosy (6.75)

4 b—a cosy

1 (b—a)* cosy
4 b+a cosa

1
+Z(b+a)(cosy—cos<x).
Setting b+a=x, b—a=y, cosa=¢, cosy=#, we are led to the equation
2 2 2
(2y—-x—y—) 112—}-(2x—e§-—sx)n+(£2x——ex)=0 (6.76)
£X y y

for # as function of ¢. Equation (6.76) has the asymptotic solution

n~Ae+Be? (6.77)
with
A=t(1 +1Y/1=t72), (6.78a)
A1 =20+t
—2t(1—At‘2)(1_t)’ (6.78b)

and t=x/y. Placing this result into (6.69) and using the formula for R, in
(6.67), we find the desired estimate for 6. (We note that the choice of a

negative sign before the root in (6.78a) would lead to a negative d.)

We collect —in terms of the original variables —the principal features
of our result.

Theorem 6.20. For fixed a, b>a, there exists ¢>0 such that whenever
[(n/2)—a|<e there is a y, in the interval n—o/2<7y,<o and unique cir-
cular arc I interior to , with radius R, , meeting the nonparallel sides in
equal angles y,, and such that ®[I;]1=0. A solution of the capillary prob-
lem (6.4), (6.2) exists for all y in the range y,<y<m/2; if y<7y, no solution
exists. As a—m/2, there hold

b—a\*\ (b+a\?
SN 1
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5~1/a_b—a_ﬁb+a

cos o b—a
1/7) ) (6.80)
ab —a +a
= l—«l/
b—a abb—a
1 a+b a+b b—a\?
~— ~ — — . .8
7 2cosy, 2cosu (1 : <b+a>) (81

Thus, asymptotically, ¢ is proportional to [. From the inequality

Vab<j(a+b) we see that, asymptotically, <35I The proportionality
constant approaches 5 as b\.a. However, if b=a the solution once more
exists for all y>n/4.

Theorem 6.21. The value v, is uniquely determined.

Proof. 1f there were two such values y,>75, then by Theorem 6.20 the
solution would exist for all y>y{ and would fail to exist for all y<y,,.

c) We also wish to consider the trapezoid from another pcint of view,
in which o is kept fixed and b allowed to increase.
We set

: cosy .
f()=(e—y)——sin(x—7)
cosa.
and observe f(«)=0 and
f'(y)cosa= —cosa+cos(ox—27),

thus f'(y)>0 in 0<y<ua, and it follows that f(y)<O0 in that range. Since

[ sina 2a 1
= 6.82
4 21+cos<x[Cosa+2a+l(1+coso¢)]cosy (6.82)

we have

limR, = oo.

-

We thus conclude from (6.71) that if [ is large and if ®[I']=0 on an
extremal I, then (¢ —7y) must be correspondingly small. Conversely, given
[ sufficiently large, we can arrange to have @[I']=0 by choosing y close
enough to .

To make these estimates precise and to establish that the correspond-
ing I lies in Q, we may write, for y close to o,

COS

ysin(oc—y): —(a—7)* tana+ o —7y)?; (6.83)
cosu

(x—7)—
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thus, from (6.71), (6.82), and (6.83) we find that as [—oc there holds, for
the extremals I, with ®[I)]=0 and corresponding angles 7y,,

(ot —7yo)* I>4acoso. (6.84)

Similarly, from the relation

. COSy —Cos
0=R “'""%  tana, (6.85)
! COSo.
we obtain
1 sin*a a
Z 52 . 6.86
1% "cosa (14cosa)? (6.86)

Thus, the distance of Ij from the smaller base now increases as the
square root of the side length, instead of as the side length itself, as oc-
curred in the previous construction.

We have proved:

Theorem 6.22. For fixed a, a>m/3, there exists ¢>0 such that whenever
I>¢~! there is a ), in the interval n—o/2<y,<o and unique circular arc
I, interior to Q, with radius R, , meeting the nonparallel sides in equal
angles vy,, and such that ®[I,]=0. A solution of the capillary problem
(6.4), (6.2) exists for all y in the range y,<y<m/2; if y<7y, no solution
exists. As l—oo, y, and d, are determined asymptotically by (6.84) and
(6.86).

d) For purposes of reference, we mention without explicit proof the
following additional properties, which can be established within the con-
text of the discussion above.

i) If 6,>0, then I lies interior to Q.
i) For an arc I' of radius R, meeting the nonparallel sides in equal
angles y as in Fig. 6.28 there holds 6> 0 if and only if both inequal-

ities
[(2a+Icosa)
6.87
COSy>(l—2a)lcosoc—4az cosx (6.87)
(I—2a)lcosa—4a*>0 (6.88)

are satisfied.
iii) The angle y, is uniquely determined.
iv) For fixed «, both y, and J, increase monotonically with [.
e) The existence of the curves I, is the key to clarification of the ap-

parently singular properties of the trapezoid. Consider a fixed configu-
ration in which a curve Ij exists in @, corresponding to the angle y, in
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the interval m—o/2<y,<o. Let y; be a sequence of values, with 7;\7,.
For each y; a solution u; exists, unique up to an additive constant. The
solutions are conveniently normalized by requiring that all u;=0 at some
fixed point in Q\ Q*.

Since ¢(I;)=0, there must hold

lim j v-Tu;ds=—1,, (6.89)
Io

j—®

from which we conclude that |l7uj|—>oo a.e. on Iy; further Vu; is directed,
asymptotically, normal to I into Q° a.e. on I (in this respect, cf. Royt-
burd [159]). Thus, the solutions u; cannot be bounded in compacta, as
the general gradient estimate [16, 113] would then imply a gradient
bound over I,

More precisely, we may apply at this point the material of §§7.8-7.10,
which in conjunction with the present considerations shows that the so-
lutions u; tend to infinity throughout the minimizing domain Q° and
that the u; tend to a strict solution u°(x,y) in the interior of the com-
plementary domain, corresponding to data y, on 2\ 2% and to data y=0
on I

We summarize:

Theorem 6.23. Let y,, I be such that I, Q, ¢(I;)=0, as described above.
Let u; be a sequence of solutions corresponding to data v;, with y;\ny,, and
suppose u;(p)=0 for a fixed peQ\Q°. Then there is a subsequence that
converges throughout Q\Q° to a solution U(x,y) of (6.4), (6.2) correspond-
ing to data y, on Z\Z¥ and which converges to infinity throughout Q°.

Geometrically, U(x,y) is a surface of constant mean curvature
(Z/Q)cosy, in Q\Q° corresponding to boundary angle y, on X\ X% and
angle zero on I,. As I is approached from within Q\Q° the surface
tends asymptotically to the vertical cylinder (with the same constant
mean curvature) that lies over Iy,

Alternatively, the solutions u; could be normalized to converge to a

J
solution in Q° and to —oo in Q\Q°.

f) We examine the singular behavior in the trapezoid from the point of
view of deformation of a rectangle, which is the context in which it was
first encountered. For a rectangle of side lengths 2a and I, we find

Q@  2al 1 - a
7" ¥cosy 2(2a+1) cosy cosy’

But a circular arc meeting the sides of length [ in equal angles y has
radius R=a/cosy. We conclude that (except for the trivial case y=m/2) in
a rectangle there is no extremal arc meeting opposite sides in equal angles
v, for any 7.
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Figure 6.33. Entering extremal.

Let us now pick a, I, yo, o4, such that an extremal for the correspond-
ing trapezoid exists with ®[I;]=0, as described in Theorem 6.20. We
examine what happens when a rectangle with the side lengths 2a and [ is
deformed continuously into the trapezoid with smaller base 2a and ad-
jacent side I, by decreasing the opposite angles from 7/2 to .

According to a) ii, initially the situation will remain unchanged, and
no extremal arcs meeting opposite sides at angle y, will appear. But as «
decreases, eventually (6.88) will hold, and with still further decrease of o
the right side of (6.87) decreases to 1. At this point, an extremal I" corre-
sponding to y=0 just appears in the trapezoid at the smaller base
(Fig. 6.33).

We verify that on this initial extremal I, there holds ®[I']<0. In fact,
we have from (6.71)

.1 1— 2
CD[F]=—R(oc—tanoc)+a(cia)—g_tana, (6.90)
2 cosa 2R

while the condition that I" contact three sides of T yields
Rtan>
=Rtan—.
¢ 2
We thus find after some manipulation that

1 L1 o e 50
— =—0 — —_— —— —d
R@[F] 2oc tan2 25 tan 7 0 <0,

0

as we have stated.

If we continue to decrease o, I' moves into T and new extremals ap-
pear at the smaller base. The range of boundary angles that appear is
determined by (6.87), the right side of which will achieve a minimum
equal to

2 2121
_cz_—&—l‘-_}—__a (6.91)

b :2
cosy,,=2a (—2a7

at a value

2a+y2la 1’21‘1. (6.92)

Ly =2
cosa,=2a i-2a)
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Yo

Figure 6.34. Behavior with decreasing o.

For each y<y,, there is, for some a>a,, a corresponding arc I in T that
meets the nonparallel sides in equal angles y; for y>+,, there is no such
arc (Fig. 6.34). Thus the value 7y, initially chosen, for which @¢[I;]=0 and
whose (unique) existence is assured by Theorem 6.22, satisfies y,<7,,, and
7o Will be found at an angle o, satisfying cosa,<cosa,,.

Denoting again by I the extremal corresponding to y=0, we show now
that ®[I'] continues to be negative.

Lemma 6.11. If [ is sufficiently large, then on an extremal I for which y
=0 there holds 0 ®/0R <.

Proof. From (6.90) we find

00 1 :
ﬁ=§(oc —tan oc)+;R—2tan o, (6.93)

and thus in the initial configuration, for which a= Rtan(«/2),

4z_§cOszg=a(1+cosa)—25i“°‘5f(°‘)'
We have
n n TE
ro=0. s (5)=5-2<0
f'(#)=1—cosa—asina,
and thus

70)=0, f (g)=1—-’23<0

while f"(¢)= —oacosa<0 in O<a<m/2. Hence f'(x)<0, and finally
Sf(2)<0. We have shown

0P

o0 - (6.94)
0R ]R=a/tan(a/2)

From (6.82) we now calculate, for y=0,

J0R . .
ia—=4a2 coso+2la(2cos? o+ cosa —sin? o+ sin )
o

+1?(cos® o+ cos? o —sin? ),
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where /4 is a positive factor. We may assume that o>mn/3 as otherwise
there are no extremals of the type considered. Thus the coefficient of I? is
negative, and it follows that R is decreasing in « when [ is large enough.
With such a choice for I, the R corresponding to I’ increases with de-
creasing «, thus by (6.93), 0®/¢R will decrease. Since in the initial con-
figuration 0®/6R <0 by (6.94), there must hold 0®/0R <0 on I, as was to
be proved.

To prove the assertion just preceding the lemma, we note that for any
o, when R=a/tana is inserted into (6.90) the corresponding @ will be
negative, as we have shown. But decreasing o increases R, and by the
lemma 0®/0R <0. Hence the value of & corresponding to I is again
negative, qg.e.d.

The extremal I is thus seen to be embedded in a family of extremals
I'(y), each meeting opposite sides in equal angles y, with I, =I(y,,) con-
tacting the smaller base, and such that @(I)<0, @(I,)>0.

If I 1s sufficiently large, this entire process can be made to occur with
an arbitrarily small change of «; in that sense, the solutions necessarily
become unstable relative to boundary perturbations. We note that
lim,, , cosy,,=0, as is necessary for consistency with Theorem 6.21.

g) We examine the above discussion in the context of Lemma 6.5 and
Theorem 6.8. In accordance with those results, a solution to (6.4), (6.2)
exists if and only if there is no extremal I' for which @[I"]<0. The case
o+7y<mn/2 does not occur, as the solution has already ceased to exist at
larger values of y. Therefore, in agreement with Theorem 6.18, the so-
lution disappears continuously as y decreases through y, (i.e., no solution
exists at y,). In that respect the behavior is quite different from what can
happen when there is a corner for which o+vy,=mr/2.

This latter case can, however, be retrieved by a limiting transition from
the one we have just considered. Consider a general domain Q with a

Figure 6.35. Trapezoidal approximation of corner.
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corner as shown in Fig. 6.35. By adjoining two vertical lines as indicated,
we obtain (essentially) a trapezoidal figure. We keep the left-hand line
fixed and vary the right one toward the corner; a similarity transfor-
mation converts the figure into one in which the shorter base has fixed
length 2a and the larger base moves to infinity, with fixed angle a.

An examination of the proof of (6.86) shows that the larger base has
asymptotically no effect on the determination of ¢, (note that b appears
in (6.86) only as a common factor), and thus the same asymptotic re-
lation holds. Transforming back to the original coordinates, we find

do~AYa
for a fixed 2>0, as a—0. We therefore also find

i
)’o“’z‘am

where o, is the half-angle at the vertex. We thus obtain a sequence of
extremals ; moving toward the vertex, with ¢[I;]1=0, and in the limit
one finds an “extremal” passing through the vertex, for which @=0 and
for which o, +7y,=m/2. This extremal is not in €, hence it does not serve
to exclude a solution; however, there is no solution for y<y,, since an
extremal near the vertex could then be found, for which @ <0.

If corresponding to 7, there is an extremal ;< Q such that #[,]=0,
then no solution can exist at y,. If there is no such extremal (as happens,
e.g., for a regular polygon) then the situation is dependent on the local
geometry near the vertex. This question will be discussed further in
Chapter 7. We mention here only that in the special case for which the
corner is formed by two straight segments meeting at the vertex, a
bounded solution continues to exist at y=y,, but disappears discon-
tinuously as y, is crossed (§7.9). In that sense, the theory of behavior at a
corner appears as a special (limiting) case of the behavior in a trapezoid.

6.20. Tail Domains; A Counterexample

From the point of view of general existence criteria, the domain Q* of
Fig. 6.28 provides a formal analogue, for y>0, of the tail domain of Chen
(see §6.4). However, we have seen in the preceding section that (unique)
such extremal configurations can be found for which ¢ >0, and in these
cases a solution will exist. We thus see that the result of Chen does not
extend to the case y=+0.
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6.21. Convexity

The following result, for a zero-gravity capillary surface, is analogous to
Korevaar’s theorem (§5.5) for surfaces in a gravity field, and was found
independently.

Theorem 6.24 (Chen and Huang [25]). Let u(x) satisfy (6.4) in a convex €,
and suppose v- Tu=1 on X=20Q. Then u(x) determines a surface S of posi-
tive Gaussian curvature over Q.

The proof is similar to a procedure used by Finn in [51] and by Finn
and Giusti in [69]. We observe first from the boundary condition that
the minimum u, of u is attained at an interior point x, of €2, and that the
Gaussian curvature K must be nonnegative at (x,,u,). Thus K cannot be
everywhere negative on S, and it suffices to exclude the possibility of a
point at which K=0.

If there were such a point, we could construct a comparison surface v(x)
as a lower half cylinder Z (cut along two generators) of the same mean
curvature H, tangent to S at the point and oriented so that the generator
at the point of contact has the zero-curvature principal direction on S.
The other principal curvatures must then be equal, so that S and Z will
have, at the point, a contact of (at least) second order. The projection '
of Z onto the plane of Q is an infinite strip of width 2H~!, and in view
of the convexity of @, the common domain QN Q" is bounded by (at
most) two straight segments of Q' =2X" and by arcs of 0Q=2, as in
Fig. 6.36.

Since u—v=w satisfies an elliptic equation without zero-order term,
there is a finite number >6 of domains emanating from the contact
point, in which w<0 (for a proof see, e.g., [51] or [25]). Thus, either
there is a domain 2% in which w>0, whose boundary contains no points
of Z\(ZnZX"), or there is a domain £~ in which w<0, whose boundary

z

Figure 6.36. Proof of Theorem 6.24; one of the (—) regions leads to a
contradiction.
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contains no points of Z'\(2£n2"). In either case, we obtain a contradic-
tion by using Theorem 5.1.

6.22. A Counterexample

The behavior of solutions in a trapezoid as y;\y, (§6.19) provides an
example to show that Theorem 6.24 is in general false if y+0. In fact,
consider the subsequence u; of §6.19¢; let pe2\Q° and qeQ°. Let L,,
denote a segment joining (p,u;(p)) to (¢,u;(q)). By the indicated conver-
gence properties, p and g lie in disks interior to which |[Vu;|<M <o,
independent of j. This for j sufficiently large, there will be points near p
at which L,, lies above the surface, and points near g at which L, lies
below the surface. Hence L,, must meet the surface at least three times,
so that the surface cannot be convex.

6.23. Transition to Zero Gravity

In view of the qualitatively different kind of behavior that can occur,
depending on whether or not a gravitational field is present, it is impor-
tant to examine the transition that occurs as gravity tends to zero. The
first to do so was D. Siegel, who considered the fluid in a capillary tube of
general section closed at the bottom. Writing the equation nondimen-
sionally, as in §1.10, and taking account of the volume constraint, we
obtain for the height u in the presence of a gravity field directed verti-
cally downwards

divTu=2H + Bu, H =const.,, B>0, (6.95a)
in Q, with
v-Tu=cosy (6.95b)

on X =0Q. Here u is considered to be normalized by an additive constant
so that

S udx=0; (6.96)
(o}

this condition serves to determine 2 H =(X/Q)cos7.
For the corresponding height v in the absence of gravity, we have

divTv=2H (6.97a)
in Q, and

v-Tv=cosy (6.97b)

on 2. The normalization (6.96) will be assumed also for v.
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In the following chapter it is shown that under quite general con-
ditions (6.95) admits a unique solution. In the present chapter, we have
seen that solutions of (6.97) may or may not exist, depending on the
geometry of Q.

Theorem 6.25 (Siegel [165]). Let X be (sufficiently) smooth, 0<y<m/2,
and suppose (6.97) admits a bounded solution. Then there exists a constant
C(Q;vy) such that

lu—v|< CB (6.98)
throughout Q.

With regard to the existence of a bounded solution to (6.97), see Theo-
rem 7.1.

We indicate the initial (underlying) steps in Siegel’s proof. We first ob-
serve that u is bounded, independent of B. In fact, letting v, =inf,v, we
have

divTu—B=H

divT(v—v,)—Bv—uv,)<H
in Q, with
v-T(—v,)=v To=v-Tu
on X, and thus
u<v—uo,
by Theorem 5.1. Similarly, setting v,,=sup,v, we have

US>V —Uy,.

The next observation is that |Du| is bounded in @, independent of B.
This step follows from general gradient estimates in [16, 113]. From this
bound we conclude (cf. the discussion in §5.1)

(Du—Dv) (Tu—Tuv)>C|Du—Dv|>.
We have, however,

S Du—Dv) (Tu—To)dx= —B§ u(u—v)dx.
Q o

Combining these relations and using the bound on u, we find

s |D(u—v)|2dx<CB§ lu—v|dx.
Q Q
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Using Poincaré’s Inequality, we thus obtain
S lu—v|?dx< C§ lD(u—v)]zdx<ClBS lu—v|dx
Q Q Q

<ClB|Qi“2(§ |u—v]*dx)'?
Q
from which

(g lu—v|*dx)V?> < CB
Q

for some constant C independent of B, thus providing a basic global
estimate. For the remaining details, we refer the reader to [165] or [174].
The following further results were obtained by Tam [174]:

1) Theorem 6.25 continues to hold if Q has a finite number of corners
of opening 2o, at each of which a+7y>n/2.

2) Let Q be smooth; suppose y=0 and (6.97) has a solution, which
may be unbounded (no normalization is imposed). If ve L1(£2), then
there is a constant C such that limgz,, u(x)=v(x)+C in Q. If
ve L1(Q), then limy,_ ,u(x)= —oo at each xe Q. Nevertheless, there
exist C(B) such that limg_,, [u(x)+ C(B)]=v(x) in Q.

3) In a configuration for which there is a unique minimizing set Q° for
which & =0, there exist constants C,(B), C,(B) such that

lim[u(x)+ C,(B)]=

B-0

oo in Q°
solution in Q\ Q°

solution in Q°

b Lu(x)+ €, (B)] :{ —w in Q\Q°.

The considerations of 3) apply to the trapezoid (§6.19).

Notes to Chapter 6

1. §6.2ff. Initially it is advantageous to consider @ as functional of the
set Q*, and thus we write ®[Q*] (or ®[Q*;7]). Once the boundary sets
{I'} of extremal domains have been characterized, local variations are
most naturally interpreted in terms of their effect on I'; thus in later
sections the notation @[I'] (or @[I';y]) is adopted. Both expressions re-
fer to the identical object.

2. Theorem 6.7. The result does not appear in this form in Giusti’s
papers, nor is it strictly contained in his published work. It can be ob-
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tained however by pursuing the line of reasoning he initiated. An outline
of the procedure is given in Chapter 7.

3. Theorem 6.7. Ultimately the existence proof can be based on a hy-
pothesis of the form

[ pgds .
inf su =u(xy)<
REchlgg(xo)“DQDEl o “cosy

Q

for all x,€Q. An inequality of this form is implied by (6.14) or, alter-
natively, by the conditions of Lemma 6.1; see Giusti [84], Anzellotti and
Giaquinta [3]. In the latter reference conditions for existence of a trace
with the requisite properties are given.

4. §6.7. In the two-dimensional case considered here, the sophisticated
theorem of Massari is not strictly necessary; the result can be obtained
alternatively from the classical “parametric” theory of Calculus of Varia-
tions, cf. [2, Chapter 4].

5. Theorem 6.24. Korevaar later improved the result of §5.5, so as to
include the case of zero gravity. For the particular case considered the
hypotheses of Chen and Huang are significantly weaker; their method
however does not seem to extend easily to the case of nonconstant curva-
ture, nor does it extend to higher dimensions.

The statement of the boundary hypothesis in Theorem 6.24 is inten-
tionally vague. It suffices that the boundary data be achieved in the sense
of the variational condition, see §7.7.



Chapter 7

Existence Theorems

7.1. Choice of Venue

A considerable part of modern literature on capillary surfaces has been
devoted to establishing the existence of solutions of (6.4), (6.2) under
varying conditions. We have already cited some of the references in §1.9.
Some authors make considerable demands on boundary regularity; such
an approach has the advantage that the solution appears in a class that
possesses an a priori smoothness up to the boundary, so that the pre-
scribed data are achieved strictly. There is however a disadvantage, in
that only those solutions are found whose behavior emulates that of so-
lutions to a (linear) Neumann problem. Thus the kind of discontinuous
behavior discussed in the two preceding chapters, which is characteristic
for the nonlinearity in the problem, is not seen in the results.

Three authors — Emmer [46], Giusti [84-86] and Tam [172, 174]
— have studied the problem variationally in the context of Lipschitzian
base domains Q. Their methods, and the conditions they have had to
impose, contact closely with the earlier material of this text; we outline
some of their results in this chapter. Finn and Gerhardt [68] developed
the relationship further, while Gerhardt [74-77] developed the variation-
al approach from other points of view.

The variational approach uses ideas that can be traced at least to Hil-
bert. They were developed by Tonelli, Evans, Morrey, Caccioppoli, and
others; in the generality needed for this problem, the underlying theory
was created by De Giorgi and his pupils. The structure of the theory is
measure-theoretic; the solution is sought in a class of competing func-
tions sufficiently broad that compactness of a minimizing sequence can
be guaranteed; the variational condition then leads, by “bootstrap” rea-
soning, to the uniqueness and regularity of the limit function. Such an
approach might seem at first glance to be hazardous for the present
problems, since the boundary condition (6.2) involves derivatives on the
boundary, where differentiability of weak solutions is usually difficult to
prove. In fact, the minimizing function produced by the variational pro-
cedure is known initially only to have a (generalized) L' trace on the
boundary, so that (6.2) can be defined only in a very weak sense. Nev-
ertheless, the minimizing property suffices for showing the uniqueness of
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the limit function, and for identifying it with the smooth solution when-
ever a smooth solution exists. In fact, the local smoothness to the bound-
ary can be shown wherever the boundary is locally smooth by using
results of other authors [76, 77, 163, 167, 181], however from the point of
view of the variational calculus these steps in the theory cannot yet be
said to be on a satisfactory footing. We shall however be able to obtain
boundedness in some cases.

A natural further development of the theory is the notion of general-
ized solution as introduced by Miranda [140]. Such solutions can con-
ceivably be infinite on sets of significant size, although as it turns out the
nature of these sets is severely restricted by the geometry of the domain.
Giusti [86] and later Tam [172-174] applied the method with striking
success to the capillary problem, and we adopt that approach in what
follows with a view toward completing in certain directions the program
initiated by Giusti. We wish to present so far as possible a unified dis-
cussion covering either the presence or absence of a gravity field, and we
shall allow boundary data that vary on X~. We therefore study the varia-
tional problem for a functional

éa[u]:L) 1—HDuIZ-{—ygi(u)dx—(ﬁﬁ(s)uds, (7.1)

for which the Euler equation takes the form
divTu=2H(u) (7.2)
in Q, with 2H (u)=/'(u), and
v-Tu=f(s) (7.3)
on 2=0Q. Thus, A'(u) is twice the mean curvature of a solution surface,
and f(s)=cosy(s) on X, y(s)=contact angle. We assume H'(u)>0, thus

A"(u)=0. Hence there exist H_=lim, H(t)<oco, H__=lim, __H(t)>
— 0.

— o oo

t— —

Let us replace the general (zero-gravity) necessary condition (6.7) with
the two relations

<I>[Q*]EF—§ Bds+2H _Q*>0 (7.4)

2*

W[Q*]zr+j Bds—2H__ Q*>0, (1.5)
2*

which are clearly necessary, for any Q*<Q, Q*=+0, Q. If H_ = H __ (that
is, if H=const.), then both inequalities are strict also for Q*=Q, when-
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ever a nontrivial solution of (7.2), (7.3) exists. If H=const., then (7.4), (7.5)
imply ®#[Q]=¥[Q]=0, 2HQ={,pds, from which one finds easily (on
replacing Q* by Q\Q¥) that (7.4) and (7.5) are equivalent. As with (6.7),
we observe that the equation for u does not appear in (7.4) or (7.5), the
inequalities express a property of the geometry of Q.

We intend to prove:

Theorem 7.1. Suppose there is a decomposition {X;} as in Lemma 6.1, such
that ]/1+L2jmax2j/3(s)<u<l, all j (¢f. Note3, Chapter 6). Suppose fur-
ther that (7.4), (7.5) hold for every Caccioppoli set Q*+0, Q if H=const.,
otherwise that they hold for every Q* (. Then there is a minimizing func-
tion u(x)eBV(Q) for &[u]. The surface u(x) is regular and bounded in Q,
has finite area, satisfies (7.2) in Q, and also the variational condition

X (Wp‘_é'i+)f(u)17)dx—§ fnds=0 (7.6)
Q b

for any neH“!(Q), {;=n.; here W=1)/1+p? p=(p;,p,) pi=u,. If
H #const. on the surface u(x), then u(x) is uniquely determined; otherwise,
u(x) is determined up to an additive constant. In either case, u(x) is a strict
solution of (7.2), (7.3) whenever such a solution exists.

We note that the physical cases, with or without gravity, are encom-
passed in a single statement. When gravity is present, H__ = —oo,

0

H_ = o, so that the relations (7.4), (7.5) are satisfied ipso facto for any Q.

7.2. Variational Solutions

The conditions of Theorem 7.1 exclude the data y=0. In this case it can
occur that (unique) solutions of (7.2), (7.3) appear for which individual
energy terms in (7.1) are infinite. We will study this and other particular
cases separately, although still within the same framework of ideas. In
order to do so, we introduce a more general notion of variational so-
lution than has been common in the literature.

Definition 7.1. A function u(x) will be called a variational solution for & in
Q if i) u(x) is twice differentiable and satisfies (7.2) in ©, and ii) the re-
lation (7.6) holds for any ye H!1(Q).

This extension of the minimizing requirement first appears in a more
limited context in [68]. A function u(x) can be a variational solution
even though & [u] may not be defined. No requirement of differentiability
up to 2 is made, however any solution of (7.2) in Q that is differentiable
up to X and satisfies (7.3) on X will be a variational solution for &. We
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shall show (Theorem 7.9) that under general conditions a variational so-
lution can be constructed, that it is the unique such solution, and that it
equals the smooth solution of (7.2), (7.3) whenever such a solution exists.
For a class of problems including the zero-gravity solutions, we obtain
this result as a necessary and sufficient condition (Theorem 7.10).

Our procedure will be to construct a generalized solution under very
weak conditions, and then to show that under the hypotheses the so-
lution must be the one that is sought.

7.3. Generalized Solutions

The underlying observation [140] is that a function ue BV(Q) minimizes
& in Q if and only if its subgraph

U={(x,NeQxR:t<u(x)}

minimizes the functional

f[U]=§ |D¢U|+2§ quudxdt—§ Poyds (7.7)
Q Q 8Q

with Q=0 xIR. Minimization is here to be understood in the following
sense: for T >0 set

Qr=Qx[-TT]

00;=0Qx[-TT],
and for Uc=Q we write

%[U]=§ [Dgoul+2§ H(pdedt——s Boyds. (7.8)
Qr Qr

QT

We say that U minimizes (or U is a solution of) % in Qi if
Fr U< #[S] for any Sc Q. We say that U minimizes (or U is a local
solution of) # in Q if U minimizes % in Q for every T >0.

Definition 7.2 (Miranda [140]). A function u(x): Q—[ —o0, +c0] is a gen-
eralized solution for the functional & if its subgraph U is a local solution
for &

We note that a generalized solution can assume the values +co on
sets of positive measure. However, if a generalized solution u(x) can be
modified on a set of zero measure to be locally bounded, then u(x) is a
classical solution of (7.2) in Q. Generalized solutions have the basic com-
pactness property that, if {u,} is any sequence of such solutions in Q,
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then a subsequence of the corresponding subgraphs U, will converge in
Li..(0) to a set U={(x,y)eQ:y<u(x)} and u(x) will be a generalized so-
lution for & (see Lemma 7.1).

We introduce the sets P={xeQ:u(x)=+oc}; N={xeQ: u(x)= —oo}
and G=Q\(PuUN). Then u(x) can be modified on a null set so that for
any ball B(x;p) of radius p centered at x, there holds |PnB(x; p)|+0 for
all xeP, INnB(x;p)|+0 for all xeN.

7.4. Construction of a Generalized Solution

We begin by solving the obstacle problem: for given j>0, to minimize &
in the class

V,= {ueBV(Q): lu| <j}. (7.9)

Clearly & is bounded from below in V;, and every minimizing sequence
{uj} is bounded in BV(Q). From the general compactness theorem for
BV functions (cf. [89, p. 17]) we may extract a subsequence converging in
L}(Q) to u/(x)eBV(Q). By a theorem of Miranda [136], u/(x) has an L'
trace on X, and thus &[w'] is defined. To show that u/ minimizes, it
suffices to prove lower semicontinuity; with later purposes in mind, we
show this property in more generality than is needed at this point. The
following result is an extended form of Lemma 6.3.

Lemma 7.1. Let v,€BV(Q), [o)/1+|Dv,|* <M < o0, and suppose v, con-
verges in L}(Q) to v(x)eBV (). Suppose that for given £¢>0 there is a
covering {X;}>X as in Lemma6.l, with u<l+e Then &[v]<
lim inf, & [v,].

Proof. a) We consider first [,A(u)dx. Set

MDY+ A (T)(u—T), u=>T
Ap(u)=14 A(u), —T<u<T
AM=T)+A(=T)u+T), us—T

Since A”(u)=>0 by hypothesis, we have always Ap(u)<A(u) if T is large
enough. Now

S )LT(v)dx—j )LT(vk)dng.‘ [v—v,|dx
Q Q Q
where M =max, |4 (t)], and thus

X }tT(U)dxsliminfj Ap(v,)dx
Q kK Je
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because of the L' convergence of v, to v. Hence
j ).T(v)dxéliminfsupj Ap(v,)dx
Q k T Q

=lim infs Alv)dx
k Q2
and finally

S A(v)dxzsupg /lT(v)dxgliminfS Alv,)dx,
Q T Q Q

which was to be shown.

b) We consider the area integral QI[L{]—*—[Q]/I—I—!DuIzdx. We write

As[u]=[,,1/1+|Dul’dx over a subdomain Q,=Q, to be chosen. We
have by definition

2 2
A [v]— Qlé[vk]=sup§ {go—i-vZD,.g,}dx—sups {h0+kaDihi}dx
1 1

Qs Q5

among vector functions g, he CJ (2;), with |g|, || <1. Thus

2 2
W;s[v] —Ws[v,] SSUPS {go—l-vZDig,}dx——supj {go+UkZng.}dx
Qs 1 Qs 1

2
=sup§ {(u—uk)ZDig,}dx=0
Qs 1

because of the L' convergence of v, to v.
¢) We consider the expression Q[u]=U[u]—[,fudx. We set Q,

=\, o;={xeQ: d(x,2)<d} being a boundary strip of width ¢ in Q.
Using Lemma 6.1, we find

Q[v]—0[v,] <(U,;[v] —U,[v,]) +(2+8)S |/1+|Dvlzdx
+£S |/1+|ka|2+Y(Q;5)§ lv—u,|dx.
s 2

Given >0, we first choose ¢ so that

j V1+|Dv|*dx<é;
A

we next observe from b) that for the given § we have

sup(U;[v] —U,;[v, 1) <0;

k—
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finally, we obtain

lim g lv—v,|dx=0
o)

k— o

because of the L' convergence of the {v,}. Thus, sup,_ . (Q[v]—0Q[v,])
<(2+¢)é+eM. Since é, ¢ are arbitrary, the lemma is proved.

The above lemma assures us of the existence of a minimizing u’ for &
in V,. Since ueBV(Q), its subgraph U’ is a solution for # in Q, for any
T<j.

Lemma 7.2. There exists C(T) such that if A is a solution for & in Qrp,
then

L} Do | < C(T). (7.10)

Proof. We have, by the minimizing property,

9’}[%1]:5 ID(/)A!+§ H(pAdxdt—kj P dsdt
Qr Qr sQr

IDp 4 o, 1=21€]

T

<Zr[A\Q1]
#sg
so that
S ‘D¢A|S2IQ|+§ |H|dxdt+2|0Q|T=C(T).
Qor Qr
We are now free to let j—oo. For any fixed T we have
| puaxic+| ayi<amion ey
Or or

applying again the general compactness theorem for BV functions, we
find U'>U in L'(Q,) for any T, and

j qudxdt+§ IDoy|<2T|Q|+ C(T).
Qr Qr

The set U, as a limit of subgraphs, is again a subgraph, for a function
u(x) over Q that may assume the values +oo. The lower semicontinuity
of the functional & is obtained as in Lemma 7.1, thus Z . [U]<E.[V] for
any Caccioppoli set V. We have proved:
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Theorem 7.2. Under the hypotheses of Theorem 7.1, but without any re-
quirement of the form (7.4), (7.5), there exists a generalized solution u(x)
for the functional &.

7.5. Proof of Boundedness

Under the hypotheses that have been used thus far, it must be expected
that the sets P or N can be of significant size; Theorem 7.2 applies, for
example, to the trapezoid of §6.19. The extent to which (7.4), (7.5) restrict
the behavior of the solution can be seen from the following results.

Lemma 7.3. Suppose U’ is a solution for
ﬁrj[/‘l]zy ID(pA|+2S Hj(pAdxdt—S Bo,dsdt
Qr Qr 60T

Suppose H'—H uniformly in Q, B'—B uniformly on 6Q,. Then U is a
minimizing sequence for F[A].

Proof. If not, there would exist a subsequence Uj and a subgraph
UeBV(Q,) with

F[Ul<infZ,[U7]
=inf{ZF[ U] +jQ (H—Hj)(pﬁjdxdt—l-LQ (B—PB)gidsdt}
=infZH [0 <infZF [ U]
since U’ is minimizing for Z. Letting j— 0, we o‘btain a contradiction.

Lemma 7.4. The set P minimizes the functional ®[A]; the set N minimizes
Y[LA].

Proof. For a sequence j— oo, let
Ui={(x,)eQ:t<u(x)—j}.
Then U; is a solution for

ﬁj[A]zSQID(,DAI—+—SQH(M—i—j)(pAdxdt—LQﬁq)Adsdt.

We have U/ U/=U=P xR. According to Lemma 7.3, U’ is a min-
imizing sequence, hence by semicontinuity P xIR minimizes % [A]=
JTr@[A]dt. Since P xR and @[ A4] do not contain ¢, the result for P fol-
lows directly. The corresponding result for N is proved analogously.
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Lemma 7.5. Let u be a generalized solution for &, and suppose (7.4) holds
for every Q*+@. Then P=@. If (7.5) holds for every Q* =0, then N=0.

Proof. By Lemma 7.4, P minimizes @, N minimizes ¥.

The conditions of Lemma 7.5 exclude the case H=const., for which
(7.4) and (7.5) fail when Q*=Q. To study this case, set H,=H+¢; tan~lu,
for some sequence ¢;—0, and let u; be the corresponding generalized so-
lution for & Choose 4; such that

meas{xeQ: u;(x)—1;>0} >3|Q] (7.11)
meas {xeQ:u;(x)—1,<0} >5]Q|,
and set
U={(x,0)eQ: t<u,(x)—1;}.

Then U; is a solution for
gﬁ[A]:S |D(pA|+j Hj(t+/lj)(pAdxdt—j B dsdt.
Q Q 8Q

By Lemma 7.2, jQTlD(pUj| < C(T), hence there is a subsequence U,»U in
L'(Q,). Since H;—H uniformly in Q, U; is a minimizing sequence for
F1[A], and, by semicontinuity, U is a solution for #.[A] for any T >0,
hence U is a local solution for &# [A] and the corresponding u(x) a gen-
eralized solution for & By Lemma 7.4, P minimizes &, N minimizes ¥. If
the relations (7.4), (7.5) hold, then P=0 or Q, N=0 or Q. But (7.11) holds
in the limit as j— oo, hence neither P nor N can be Q. We have proved:

Theorem 7.3. Suppose the hypotheses of Theorem 7.1 hold except that the
only requirement on y is that for any ¢>0 a covering {2} as in Lemma 6.1
can be found, with u<1+e¢. Then there exists a generalized solution u(x)
of & in Q that is locally finite in Q.

We may now state:

Theorem 7.4. The solution u(x) is locally real analytic and satisfies (7.2) in
Q.

For the proof of Theorem 7.4 we refer the reader to an extensive litera-
ture, see, e.g., [80, 81, 83, 123, 135, 137]; see also the expositions in [89,
126]. Much of the cited material was developed specifically for minimal
surfaces, but applies as well to the case considered here.

Under the conditions given, it can still happen that u will have infinite
limits with approach to some boundary sets. That eventuality is however
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excluded when the constant u of Lemma 6.1 satisfies u<1. It suffices to
make that assumption with respect to those sets X; (see Lemma 6.1) such
that a given point peX lies in the support of the corresponding ¢;. The
point p will then have a distance > ¢ to the remaining points of X, in the
sense that any ball B_(p) of radius ¢ >0 about p (in the metric indicated
in Lemma 6.1) will meet Q in a component for which all boundary points
on X lie in the indicated X ;. This hypothesis permits, for example, inward
cusps and even boundary segments that may physically coincide but are
adjacent to differing parts of Q (see Fig. 6.9).

Lemma 7.6 (cf. de Giorgi [201]; see also [123, 86]). Let pe X. We suppose

max|ﬁj|max]/1+L3<1 in the indicated {X;}. Let u(x) be a generalized
solution for & in Q with subgraph U. Let Z.(p,t) denote the cylinder
|x—pl<r, |t—1|<r, and let U =UnNZ,. There exist constants C>0 and
ro>0 such that if the measure |U|>0 for all r>0, then |U,|>Cr? for all
r<r,.

Proof. Since U minimizes & in any Q,, we may compare U with U\Z,
to obtain

jl |D(PU|+S H@dedt—§ ﬂ(pudsdtgj oy
QnZ, onZ,

8QnZ, oz,

so that for almost all »>0

S |D‘PUJ"‘§ HqDU,dth_S ﬁ(pUr§2§ Qy- (7.12)
Q [0) 60 oz,

Using (6.16) and summing over the appropriate j, we find

S ¢y, dsdt<max}/1 +L2j§ Doy, |+ ClU,|
" ¢ (7.13)

<max}]/1 +L2j§ Doy |+ C|Z,.|”3§ Doy |
Q R?

for some constants C; here we have used the isoperimetric inequality
(6.15).
We have

[ 1poui={ oy 1+ ayasar
R? Q 5Q

for r<o small enough that C|Z,|'* <1 we obtain from (7.13)

(7.14)

max)/1+12+C|Z,|'?
LQ%,< j jwam

= 1-Cl|Z,|'
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maxl/1+12
[ ooy <2V TE

- |Deo
Gz oo

<2(1+max}/1 +L§)SQID¢U”|'

(7.15)

We have next

T+

XH(pUrdxdtzs dt,‘ Heoy dx
0 —r  JB.(p) "

T+r
Z—S {§ |H|2gourdxj @y dx}'2de  (7.16)
B.-(p) By (p)

T—r

T+
> i1y

where H, =min{0, H(t —r)} and U,(s)=U.n{(x,t): t=s}. Using again the
isoperimetric inequality, we obtain
S H(pUrdxdtz—C|Hg|rj Doy, |. (7.17)
Q R3
Combining (7.14), (7.15), and (7.17) we find now, for a suitable constant
C,
j Hgourdxdt—y Boy dsdt
Q 2Q

2_{—2C(1+mjaxm)lHolr (7.18)
max)/1+ 2+ C|Z,|'3

+(1“I1;:Xﬁj) : 1—C|Z,.I1/3

|D(pUr|7
Q

where the maxima are taken among the X; under consideration.

The expression in brackets tends to (max;f;)max;)/1+L%<1 by hy-
pothesis, as ¥—0. Therefore, for all sufficiently small » we will have by
(7.12), (7.15), and (7.18)

d
—I[Jr|:j ¢L’280§ Doy,
dr oz, Q

for some ¢,>0. Using once more the isoperimetric inequality, we find

d /
AT AR (7.19)
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for some &, >0, for almost all r in an interval 0<r<r,. If |U,|>0 for all
r>0, we may integrate (7.19) to obtain the stated result.

The values of H enter into (7.19) only through the factor |H | in (7.16),
and affect (7.19) only in the size of the interval [0,r,]. For given t,, |H, |
is uniformly bounded for all t>1,, thus the estimate (7.19) holds with
fixed ¢, and r, for all t>1t,,.

Suppose there would exist a point p,eX and a sequence x;eQ, with
x;—p, and u(x;)— 4+ co. Then for all ¢t there would hold |U,(p,,)|>0 for
all ¥>0, hence by Lemma 7.6, for any fixed t, there exist C, R>0 such
that |Ug(po,t)|> CR? for all t>1. We conclude immediately that P =+,
thus contradicting Lemma 7.5.

To discuss the set N, we make the transformation u= —v, H(v)=
—H(—u), p= —p. Then

9[U]Eﬁ[mz§ |D(pV|+S I?I(dexdr—S Bo,dsdt
Q Q 6Q

and U is a local solution for & if and only if V is a local solution for %
The above reasoning shows P, +0, which is equivalent to N, #0. In view
of the freedom in the way the partition of unity used in Lemma 6.1 can
be constructed, we obtain

Theorem 7.5. Let peX be in a neighborhood on X that can be covered by
intervals X, of X as in Lemma 6.1, each of which can be represented lo-
cally by Lipschitz functions with Lipschitz constants L, such that

max f, max}/ 1+ L. <1. Then any generalized solution u(x) of & for which
P=N=0 is (essentially) bounded for any approach to p. If the above
condition holds for all peX, then u(x) is bounded in Q, describes a surface
with finite area, minimizes & in BV(Q), and is a variational solution for &
in Q.

We have proved all but the last statement. If u were (essentially) un-
bounded, there would be a sequence of sets Q;=Q of positive measure, in
which u>j—oco. A limit point p, on X would satisfy the conditions of
Lemma 7.6, and we would obtain a contradiction as above. Since u is
bounded and its subgraph U is a local solution for &, Lemma 7.2 yields
that [,|Doyl=[o)/1+|Dul*dx<co. Thus u(x)eBV(Q), and since U
minimizes % for all sufficiently large T, we conclude that u minimizes &
Theorem 7.4 then implies that u is a strict solution of (7.2) in Q.

Let ne H"(Q). Since u(x) minimizes, we have

08 =6[u+en]—&[u]=0 (7.20)

for any real ¢. Set {;=n,, p=Du=(p,,p,), and W(p)=1/1+p*. We have

M:L(A,.(g) ci+/1(8)n)dx—8§‘,5’lds
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with
Ai=j£ W, (p+t0)dr, A:Y}J(u-qu)dr.
0 0
There holds
limW, (p+t0)=W,.(p)

=0

for almost all xeQ, while |W, (p+t{)|<! for all . Thus, the bounded
convergence theorem implies the existence of

6_@@ =§ (Wp_Ci-f-/l’n)dx—g Bnds
68 £=0 (9] ! z
. Bluten]—&[u] (7.21)
=lim
e—0 &
=0

since the numerator is nonnegative for both positive and negative e.

7.6. Uniqueness

Theorem 7.6. Let u, il be variational solutions for &, in the sense of
Definition 7.1, corresponding to B<p. Then either u<u in Q, or else
A(wy=24'({@), =P, and u=v+C in Q.

Proof. Analogously to (7.21), we obtain for any real ¢ and ne H!(Q)

0
a—g:S [Wpi(p+SC)Ci+A’(u+an)]dx—X pnds. (7.22)
Q P
Suppose there were to exist two variational solutions u(x), and i(x),
with u(x)>1(x) on some open set Q<= Q. We choose M sufficiently large
that the set Q,,: 0<u—ii<M is nonnull, and we set

0, u—1<0
n(x)=4u—1i, O<u—ii<M
M, M<u-—1.

Then neH'!(Q), and since u, i are variational solutions, we have

j [Wp,(p) Ci+i'(u)11]dx—§ ﬁ;f]ds:()
@ b

j [W,, () i+ X ()] dx—j fnds=0
2 5
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and hence, setting f=u—1, {;=1,,

s de:S (B—P)ynds (7.23)
Q z
with

1
Q=§ (W, (40804 26+ <y Alde. (7.24)
0

By assumption, A”>0. Further, the discriminant of the form
W, ()G i (14 p) 72> 0.

On Q,, we have n=#, and hence Q>0, the equality holding only if
u=ii or else =0 and u=i+c. On the set Qf;: u—i>M, we have {;=0
wherever it is defined, and n#> M?, hence the same conclusion holds. On
the set u—1<0 we find Q=0 wherever it is defined (up to a set of mea-
sure zero). Since f<f, we obtain a contradiction from (7.23) unless either
u<ii in Q or else A'(u)=4'() and p=p. The stronger statement u<i
follows as in the proof of Theorem 5.1.

From the above theorem we find immediately:

Corollary 7.6. The result just proved implies the uniqueness statement in
Theorem 7.1.

For later reference, we point out the following extension of Theo-
rem 7.6, which can be obtained without essential change in the proof.

Theorem 7.7. Let u, i1 satisfy Nu>Nu in the sense of the variational
relation

| om0 w e vrw-za@nnax-| ¢-prds<o, 7.9

all neH"'(Q). Suppose £=2,03,0%,, with u<iion X, B<p on X, and
such that X, has one-dimensional Hausdorff measure zero (cf. Theorem 5.1;
here no differentiability hypothesis need be introduced on X;). Then either

i) u<ii in Q, equality holding at any point if and only if equality
holds throughout Q; or else
il) A'(u)=2'(d), p=p, equality holds in (7.25), and u=i+c in Q.

Theorem 7.8. Let Qe C'V), and let u(x) be a minimizing function for & in
Q in the sense of Theorem7.1. Let v(x)e C"(Q)n C®(Q) be a solution
of (1.2) in Q, with (7.3) holding on X. Then either u=v in Q, or else
A(u)y=2X(v) and u=v+c in Q.

Proof. The relations (7.2), (7.3) are the Euler equations for & [u]; because
the smoothness of v(x) up to X and since u(x), Du(x)e!"(Q), we may set
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n=u—v and find that

06 [v+en]
de e=0

=0.

The remainder of the proof follows as in Theorem 7.6.

Thus, the solution we have constructed is identical to the smooth so-
lution of (7.2), (7.3) whenever such a solution exists.

7.7. The Variational Condition; Limiting Case

We suppose as before that to any >0 there is a covering {2} for which
u<1l+¢; however we now permit configurations for which the improved
estimate u<1 cannot be attained at all points of X. This situation arises,
for example, if 2 is smooth but y=0 on all or part of X, also if a corner
appears at which a+7y=mn/2. We are assured by Theorem 7.3 of the exis-
tence of a generalized solution for which P=N=0. However, we have
not determined whether the solution is variational.

Theorem 7.9. Under the above conditions, there exists a variational solution
for & in Q. If u(x), v(x) are any two such solutions, then either u(x)=uv(x)
in Q, or else A'(u)=7'(v) and u=v+-c.

Proof. We approximate 8 by functions f8, for each of which the condition
u<1 is satisfied. By Theorem 7.1, each of the corresponding u/ will be a
bounded variational solution for & We perform the approximation in
two steps: having chosen p° with |B°| <|p|, we take a sequence B° such
that f%=p° on the set f<0, %/B on the set f>0. The corresponding
sequence u% will then be nondecreasing (Theorem 7.6). Following the
proof of Theorem 7.3, we may obtain convergence to a generalized so-
lution u™ corresponding to the data

L (B B0
5‘{&1 B <0,

and for which P, N=0. For each j, we have the variational condition
| omoneiwenm = pomds (7.26)
Q X

for any ne H'(Q).

At this point, we need
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Lemma 7.7. For any compact K< Q, there is a constant C(K) such that
[u%| < C(K).

Proof. If not, there would exist points x,—x,€K such that u%/(x,)— +o0;
we may suppose 1% — +oo. Then for any ¢ and any r>0 the set (U%),
={U%NZ,(x,;1)} would be nonnull for all sufficiently large j, hence fol-
lowing the proof of Lemma 7.6 we would find |U%|> Cr?® for all r<r,
for some constant C, for all large enough j. We conclude |U°|> Cr?,
independent of t, which would imply P =0, a contradiction.

Lemma 7.8. There exists C(M;p) such that if u(x) is a solution of (7.2) in
a disk B, of radius p and center x,, and |u(x)|<M in B,, then |Du(x,)|
+|D*u(x,)| < C(M; p).

The bound for the first derivative follows from [16, 113]. For the sec-
ond derivative the result follows from the general theory of uniformly
elliptic equations in the plane, see, e.g., [38].

We return to the proof of Theorem 7.9. In any compact K < Q we have
|[u% <M(K), |Du®|<M(K), |D?>u®|<M(K). Hence there is a sub-
sequence for which u®/—u*, Du®—=Du=p*. Since |W, | <1, {;eL'(Q), we
conclude from the bounded convergence theorem

[ mooncax=] woua
Setting n=1 in (7.6), we find
S i’(u°*")dx=§ p%ids. (7.27)
Q z

Letting % 7 B+, we obtain u® 7 u* (Theorem 7.6). Since 2’ =0 by hy-
pothesis, there follows A'(u°),” A'(u*). Since the right side of (7.27) con-
verges to ,f*ds, we conclude there exists

§ /1’(u+)dx=1im§~ A'(u%)dx
(9] Q

j— o

’

and there follows immediately, since A’ is bounded below,

S (Wpi(p+)C[+)«I(Ll+);7):§ ﬁ+1’]ds
? z

for any ne H*}(Q).
‘We now keep B fixed in the set f>0 and replace f* by a sequence
B\ B. Observing that now u/N\u, A'(#)\ A'(u), we conclude finally that
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u(x) satisfies the variational condition (7.6). The second part of the state-
ment of the theorem now follows from Theorem 7.6.

7.8. A Necessary and Sufficient Condition

When —ow<H__<H_<oo, it is unnecessary to use Lemma 6.1 to
obtain Theorem 7.9. We consider any domain @ having the properties
that each feBV(Q) admits a trace on X permitting partial integration (cf.
Anzellotti and Giaquinta [3]), and that an inequality of the form (6.15)
holds for Q. We then find

Lemma 7.9. If (7.4), (7.5) hold for any Q* = Q with Q*+0, Q, then for any
£>0 an inequality (6.16) holds for every feBV(Q), with u<1+e.

Proof. We suppose first that an annulus &/, of width 6 adjacent to X
contains suppf. Set F,={xeQ:f(x)>t}. We have by (7.4)

j ﬁ%,dsz—s Doy | —H., |F|
P (o]
z—j D@ | —H,, |12 |12
(o]

since F,<.oZ;; thus, using (6.15) we find

f Bopds=> —(1+a)§ Doy |
X (o]

if 0 is sufficiently small. Integrating in ¢, we obtain

Lﬁfdsz —(1+8)L)]Df|.

Replacing (7.4) by (7.5), we are led to

| prassa=al s

thus the stated result holds under the indicated restriction suppfc 2.

Let n(x)eC*(Q), n=1 on X2, 0<n<l1, suppyc.oZ;. If feBV(Q), then
nfeBV(Q) and suppyfc=./;. The lemma follows by applying to #nf the
result already proved.

Returning to the proof of Theorem 7.9 and using Lemma 7.9, we ob-
tain immediately
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Theorem 7.10. If —oo<H__ <H_ <o, a variational solution exists in Q
if and only if (7.4), (7.5) hold for every Q* = Q with Q*+Q, 0.

7.9. A Limiting Configuration

The question arises, under what circumstances will the solution u(x) be
bounded? We have already considered this question for the case
2H=)'=const. in §6.2, where we showed that there is no solution u(x) with
y=0 adjacent to an arc of X~ with curvature k>2H, and also that if y=0
and k=2H, then u(x) is unbounded, while if k<2H, then u(x) is bounded
at the arc. A related question occurs for configurations for which a
boundary angle appears, of interior opening 2¢. If in a neighborhood of
the vertex V there holds a+7<m/2, then no solution can exist (Theo-
rem 6.2). If a+7>m/2, then locally the conditions of Theorem 7.5 are ful-
filled, and any generalized solution will be bounded at V. If the value y at
V satisfies a4+ y=mn/2, then differing kinds of behavior may be possible.
The following hypothesis is a slightly weakened version of one that was
introduced in [65].

Hypothesis «(y). It is possible to place a lower hemisphere v(x;7y) of ra-
dius (2H)‘1=R},, with equatorial circle Q passing through V, in such a
way that at each point of 2 interior to Q and to some neighborhood .4},
of V there holds v- Tv>cosy.

Theorem 7.11 (Finn [65]; Tam [172]). Suppose the hypotheses of
Theorem 7.5 hold except at the single point V, at which they are replaced
by Hypothesis o(y). Then the conclusion of Theorem 1.5 holds throughout Q.

The proofs of this result in [65] and in [172] can be considerably
shortened with the aid of the material above. By Theorem 7.9 there exists
a unique variational solution u(x), and by Theorem 7.5 the solution is
bounded except perhaps at V. We introduce an arc I' within Qn .4},
joining points P, and P, on X on opposite sides of V and cutting off the
domain .#, at V, and we place the hemisphere v(x) as in Hypothesis «(y),
with v(x)=>u(x) on I Since u(x), v(x) are both variational solutions ef the
same equation in .#,, we may apply Theorem 7.7 to obtain u(x)<v(x) in
My, hence u(x) is bounded above in Q. Next we place the hemisphere
with center at ¥, and observe that then v- Tv<cosy at points of X close
enough to V. If we move the hemisphere vertically downwards so that
v(x)<u(x) on I, the same procedure yields v(x) <u(x) in .#,. Thus, |u(x)|
is bounded in Q. as was to be shown.
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7.10. The Case u>pu,>1

If there are portions of ¥ on which for every covering {2;} there will
hold pi>py>1, then if 2'(u) is bounded, there will in general be no varia-
tional solution. Such a situation occurs, for example, at a corner at which
o+7y<m/2 (cf. §6.2). If A'(u) is unbounded, then solutions may exist. In the
(gravitational) case A=ku, k>0, we have already given estimates (Theo-
rem 5.5) on the behavior of a solution under the assumption that a so-
lution exists. We now proceed to show that in the configuration studied
in Theorem 5.5 a variational solution of the Euler equation (7.2) under
the boundary condition (7.3) does in fact exist (cf. Finn and Gerhardt
[68]). For simplicity, we assume an angle 2o formed by two straight
segments, and constant data y,, 0<y,<mn/2, with a+7y,<n/2. It will be
clear that more general configurations and data are amenable to the
method. The single hypothesis we shall need on A(u), besides /" (u)>0, is
that lim,_,  A'(u)= co.

We begin by completing the segments in any way to form a smooth
domain; we then smooth the corner with an inscribed circular arc I of
radius J, obtaining a domain @, without corners, bounded by I} and by
Xs;=X. By Theorem 7.9, there is a unique variational solution u° in Qj,
corresponding to boundary data v,

Let us fix § and consider the solution u®, 8’ <4, in the disk B; obtained
by completing I to a full circle. We set

A(t)y=sup{u: ' (u)<t}.

The procedure (essentially) of §5.2 yields

<A (§)+5<oo
in B, all ¢'<9, according to the hypothesis lim,  A'(u)=occ. A similar
estimate holds throughout Q;. Further comparison of u® with the so-
lution u=0 of (7.2) yields u’>0 in Q;. Thus, the {u’} are bounded above
and below in any fixed Q,, and the general a priori derivative bounds (cf.
[16, 113]) imply the convergence of a subsequence to a solution u(x) of
(7.2) in the wedge domain Q.

As in the proof of Theorem 7.9, we may now obtain the absolute in-
tegrability of A'(u°), independent of §, and the proof that the limit func-
tion u(x) is variational follows as in the proof of that theorem. As in
Theorem 7.9, we obtain also the uniqueness of the solution u(x).
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7.11. Application: A General Gradient Bound

Consider a “moon domain™ Q° as indicated in Fig. 7.1; here r,=1/2, R,
is the unique positive root of

RY1—R(n)/T—R—)/1+R)—(2R*~2R+1)sin"'R=0.  (7.28)

The choice R, expresses the necessary condition (corresponding to
Q*=Q° in (7.4), (7.5)) that a surface u(x,y) of mean curvature H=1 can
be defined in Q°, with boundary data y=0 (f=1) on X° y==n (= —1) on
I'°. The choice (7.28) is equivalent to the relation 2Q°=3°—I"°, obtained
by integration of the equation

divTu=2 (7.29)

over Q° under the given boundary conditions.
We have

R,=0.5654062332.... (7.30)

A solution with the indicated properties does in fact exist in Q°. We
may see that by observing that the extremal curves (cf. Chapter 6) for the
functionals @ and ¥ of (7.4) and (7.5) are circular arcs of radius 1/2, that
must meet I'° in an angle ©, or X° in an angle zero (measured on the
side of I'® opposite to that into which the curvature vector points) or else
terminate in one or both of the points I'°X° Clearly there is no such
arc interior to Q° hence (7.4) and (7.5) are satisfied, hence by Theo-
rem 7.9 there is a variational solution v(x,y) in Q° unique up to an ad-
ditive constant. Using the variational condition (7.6), we obtain easily
that if the normals to I'® and X° are extended slightly into Q° so as to

Figure 7.1. Moon domain.
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permit definition of v-Twv, then v-Tv—1 ae. on 2° v-Tv— —1 ae. on
re.

Let u(x,y) be a solution of (7.29) in a disk Bg(0) of radius R=R,
+2e>R,, and center at the origin. Let M=min|Vv| in a disk B,(P). If
there were a point peB,(0) at which |Fu(p)|>M,. we could then position
the surface wv(x,y) so that v(p)=u(p), Vv(p)=Vu(p), and so that
Q° = Bg(0). The reasoning we have already described in the proof of Theo-
rem 6.24 shows that at least four components QjcQO emanate from p,
with u—v>0in Q,;,,, u—v<0 in Q,;. We conclude that either there is
a region with u —v<0 whose boundary does not meet X°, or else there is
a region with u —v>0 whose boundary does not meet I'°. In either case,
Theorem 5.1 leads to a contradiction. We have proved (Finn and Giusti

L69]):

Theorem 7.12. Let u(x,y) define a surface of constant mean curvature
H=1 (solution of (7.29)) in a disk Bg(0). If R>R,, then there exists
C(R—R,) such that |Vu(0)|< C.

Thus the gradient at the center is bounded, depending only on the
radius of the circle of definition and in no other way on the solution.

In Theorem 7.12, the value R, cannot be improved; the radius R=R,
cannot be achieved. It suffices to show that solutions exist in a disk
Bg,(0), for which the gradient becomes unbounded at points in a neigh-
borhood of the origin. To do so we construct, essentially, the solution
v(x,y) of (7.29) in Q° as a limit of solutions defined throughout By,

Let us extend the arc X° to a full circle X, and write £=3\2°. It is
clear that, regardless of the data on X, there is no solution of (7.29) in
Bg, with data f=1 on X° For in such a case one verifies #[Q°]=0, in
conflict with the necessary condition (7.4).

We may, however, choose f=1—¢ on 2° O<e<1. A simple calcu-
lation then shows there is a unique f, —1<f <0, such that the data

1—¢ on2X°
=

B on %

yield H=1. Corresponding to this choice, any minimizing arc I" for @
will be a subarc of a semicircle of radius 1/2 which, if it meets X°, must
do so with angle y,=cos™*(1 —e¢). There is clearly no such arc, and we
see that the only candidate for a minimizing configuration is the arc I'°
of Fig. 6.36, which yields & >0 when &> 0. It follows that (7.4), (7.5) hold
for any Q*<B, and hence, by Theorem 7.9, there exists a variational
solution in By, corresponding to the given data, for any ¢>0.

Now let ¢—0. We cannot have |Fu| bounded in ¢ on any subarc of T,
as that would imply @#[Q°]<0 for small enough & Thus we see that if
R=R,, no gradient bound of the form indicated is possible.
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It is shown in [69] that if R>(1+R,)/2, then all solutions of (7.29) are
(after a normalization) uniformly bounded above in By and below in Bg.,
with lim,_ ,R*=1. As R—1, any family v(x,y;R) of corresponding so-
lutions tends to a lower hemisphere which in turn is the only solution
(up to an additive constant) in the unit disk.

Notes to Chapter 7

1. With regard to the recurring use of Lemma 6.1 in the results of
this chapter, cf. Note 3 of Chapter 6.

2. Theorem 7.7. Under the hypotheses of Theorem 5.1 it is not difficult
to show that the functions u, v satisfy a variational relation of the form
(7.25). Thus, Theorem 5.1 is subsumed by Theorem 7.7.

3. Theorem 7.12. It was shown by Bernstein [10] that there is no sur-
face z(x,y) of mean curvature H=1 over a domain Q that strictly con-
tains the unit disk B,(0). Finn [52] later showed that if Q=B,, then
z(x, y) describes a lower hemisphere of unit radius. Finn then conjectured
a bound on gradient at the origin if Q2B; with R>1/2. The result of
[69] shows that the conjecture was false in detail but correct in sub-
stance.

4. Theorem 7.12. The result has been extended by Giusti [85] to n
dimensions, however an explicit estimate for R, is not known for n>2.

5. In all results of this chapter, the question of local boundary regular-
ity has been left open. By adjoining work of Siegel [163] to that of
Ural’'tseva [181] and of Gerhardt [76, 77], it can be shown that in those
cases for which a (local) bound on |u| up to X can be obtained, there
follows ue C2** up to X locally in any neighborhood in which e C**=

6. Chapters 6 and 7 dealt with the nonparametric problem, for a fluid
in a cylindrical container with simple projection of the surface interface
onto the base. In that case the solution surface, when it exists, is uniquely
determined up to an additive constant. The corresponding parametric
problem, for a fluid of prescribed volume in a general closed container,
was studied by Massari and Pepe [127] and by Taylor [177]. The meth-
ods of the former paper fall within the purview of those we have dis-
cusséd. The result of Taylor is remarkable in that she shows an energy
minimizing surface to consist of a finite number of components, with
finite smooth intersection set on the boundary (which is assumed smooth).
There is a conceptual analogy with the subsidiary variational problem of
Chapter 6; however, in that latter problem the Lagrange parameter, rath-
er than the volume, is prescribed. For the parametric case uniqueness
fails in general.
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7. Theorem 7.10 (added in proof). In view of the remark following
Theorem 7.1, a variational solution exists under the hypotheses preceding
Lemma 7.9 whenever H_ = —o0, H_ = 0.

8. Theorem 7.12 (added in proof). Fei-Tsen Liang has characterized,
for a solution of (7.29) in a disk of radius R>R,, the supremum of radii
of disks about the origin in which |Vu| is a priori bounded.



Chapter 8

The Capillary Contact Angle

8.1. Everyday Experience

It was recognized by the initiators of capillarity theory that the underly-
ing hypotheses leading to the notion of contact angle are satisfied only
under very particular circumstances, usually related to purity and cleanli-
ness of the materials and smoothness of the bounding surfaces. Even so,
reproducible experimental determinations of contact angle are notorious-
ly difficult to obtain. There remains considerable disagreement as to the
root causes of the difficulty, but a body of literature has arisen describing
a resistance to motion of the contact line (or “hysteresis”) as evidenced
by a discrepancy between “advancing” and “receding” contact angles.
Even on this point there remains disagreement. For an expository survey,
see [42]; experiments with discordant, seemingly conflicting, results are
reported in [1, 45, 104, 121, 188]. We remark also the comments in [4,
p. 6097].

In some sense, the presence of resistance forces in capillarity is a
matter of everyday experience. A drop of water on a horizontal glass
plate can be distended by a thin rod into a variety of equilibrium shapes,
while according to the theorem of Wente [186] the only such surface
with constant contact angle is rotationally symmetric. It might be said
that there are impurities on the supporting surface; if so, they would
have to be distributed uniformly, as the same distension (from the sym-
metric configuration) can be attained in any direction. Thus the impure
surface, even though it may not be glass, must be considered as a homo-
geneous surface to which the theory developed in Chapter 1 does not
apply.

Similar comments apply to raindrops on a windowpane ([132]) or to
water drops on vertical tiles in a bathroom. We show in §8.9 that in a
gravity field there can be no equilibrium configuration for a drop on an
inclined plane, with a constant contact angle.
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8.2. The Hypothesis

It is apparent that, to obtain a theory in good agreement with reality
under general conditions, some way must be found to account for resis-
tance forces. Although several attempts have been made to provide
theoretical descriptions for liquids in motion, the only such studies ap-
propriate to equilibrium configurations seem to be those of Dussan V
and Chow [44] and of Finn and Shinbrot [71, 72] with regard to drops
on planar surfaces. We report here on the latter work, which is based on
a phenomenological approach.

Hypothesis. Associated with any equilibrium configuration, there is an
energy ¢ per unit area of wetted surface, from which the areal density F
of the resistance force is determined from the relation

F=—Vo. (8.1)

The motivation for the hypothesis is twofold. First, the introduction of
the potential ¢ allows the problem to be studied by means of the
principle of virtual work, that is, within the context of the variational
procedures of Chapter 1. Second, and more specifically, ¢ admits a dual
interpretation as a line distribution of normal force density on the
contact line. We see this heuristically by integrating (8.1) over the wetted
area Q; we then find for the net resistive force

j Fdx= —(f @vds, (8.2)
o >

where v is unit exterior normal on X.

The relation (8.2) displays the indicated identification in an average
sense; we obtain the result precisely and rigorously by making use of the
first observation, and introducing ¢ as an energy density in addition to
those already described in §1.4. The principle of virtual work then yields,
in place of (1.46), the modified relation

1
Cosy=ﬁ—;q) (8.3)

which can be viewed as a local (normal) force balance on X (see [71] for
further discussion and interpretation).

We proceed to test the hypothesis in two configurations of general
interest.
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8.3. The Horizontal Plane; Preliminary Remarks

Consider a symmetric drop in equilibrium on a horizontal plane, as in
Chapter 3. We imagine the volume ¥~ of the drop to be increased by the
very slow addition of liquid through a small hole in the plane under the
drop. If resistance to motion is present, we must expect that initially the
wetted area Q does not change. We prove below (§8.5) that in order to
maintain equilibrium the contact angle y must increase.

In accordance with (8.3), this increase can be accounted for by a
potential ¢, which is a function only of the radial distance r. Many
choices are possible (presumably depending on the materials), as y is
determined entirely by the values of f and of ¢ on Z.

8.4. Necessity for ¢

It might be argued that there is formally no need to introduce ¢, as the
same effect could be obtained by a change in the adhesion coefficient f.
We assumed initially (§1.4) that § is a constant depending only on the
materials; however, since the pressure in the fluid changes with changing
¥, it is conceivable that § would change with pressure. If so, f would
have to be a function only of the pressure, as for a slow volume change
the temperature would be constant, and no other parameter could affect
the local adhesion between fluid and solid surface II.

Consider a configuration in the absence of gravity, for which the fluid
surface & is necessarily a spherical cap that meets IT in an angle y, and
suppose initially y<m/2. With increasing volume, the pressure increases
until y=7/2 and then decreases, since the pressure change across & is
proportional to the curvature of % But y increases monotonically, hence
cosy decreases monotonically, with volume. Thus we see that the phe-
nomenon cannot be described within the context of the classical theory.

8.5. Proof that y i1s Monotone

Consider a liquid drop of volume ¥~ that wets a disk of radius a on a
horizontal homogeneous plane surface II. We introduce the dimension-
less volume ¥;="7"/a® and the Bond number B=ka? k=capillarity con-
stant (§1.9).

Theorem 8.1. There is at most one symmetric sessile drop with given B and
Yy for which 0<y<mn. For any fixed B>O0, there is an interval
0< ;< ¥,<oo, in which a drop exists and in which 7y increases monotoni-
cally, as a function of g, from 0% to m. As B varies from 0 to oo, so does

¥y To each sessile drop there corresponds exactly one pair of values
(B, 7).
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Proof. We use the result of §3.1 that each symmetric sessile drop u(r) can
be transformed by a uniquely determined rigid motion into a symmetric
“capillary” surface v(r), and that these surfaces can be parametrized in
terms of the height v, on the axis of symmetry. The set of all vertical
sections of such surfaces (taken through the symmetry axis) is a family of
curves having the general appearance indicated in Fig. 8.1. The inclina-
tion angle Y increases monotonically in arc on each curve and varies
from 0 to = It is clear that there is a biunique correspondence between
(a,7") and (B, ¥;). The set of all symmetric sessile drops whose wetted
surfaces have given radius a is obtained by cutting the curves of the

figure with a vertical through ]/E, as indicated. The drop then appears
— inverted — as the shaded area. The case shown is for O0<y<m/2. If
y>m/2, one continues the vertical until it cuts the appropriate curve of
the figure at the second (higher) point.

By Theorem 3.1, each curve in Fig. 8.1 can be parametrized in its
entirety by its inclination angle i, in the interval 0 <y <=m. Notice that,

when r=aq, then ;cr:]/E and =1y, the contact angle. In terms of y,
the curves in Fig. 8.1 are determined by the differential equations

dr rcosy dv _ rsiny

dy xro—siny’  dy kro—siny 84

Vo

\\\\\\\\\\\\\\\ S

VB Var

Figure 8.1. Proof of Theorem 8.1; the case 0 <y <n/2.
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under the initial conditions
r(0)=0, v(0)=,. (8.5)

According to Theorem 3.2, there is exactly one symmetric sessile drop
with given ¥ and 7.
Except at the vertical points, the equation

(rsiny),=xkrv (8.6)

holds on each trajectory.
We consider first the case 0<y<n/2. We have from (8.6), in the inter-
val O0<y <y,

r

rsint//=;<§ pvdp, (8.7)
0

and for any two solutions v, v® corresponding to initial values
(1) £ 4,(2)
o) <o

.

r(sintp‘z)—sinlp(”)=r<§ 0 —vM)pdp. (8.8)
(0]

We conclude from (8.8) that for sufficiently small r there holds ¥/? >V
and thus v® —o) is, initially, increasing. Continuing the integration, we
thus find Y2 >yW), v —p!) increasing in r (and hence positive) until the
vertical point y®=7/2 is reached. The particular case v'"'=0, =0
yields that v is also increasing in r, for any initial value v,>0.

Let us now move upwards from v=0 along the line r=a as indicated
in Fig. 8.1. From Theorem 2.7, we see that for small v, the trajectories
extend beyond r=a and that on r=a their inclinations tend to zero with
v. Using the above remarks, we thus find that on r=a, =y increases
continuously from zero with v.

Since on any trajectory v increases with r, (8.7) yields 2siny>xrv,,.
Thus, if v,>2/ka, the trajectory does not extend to r=a. From the
relation (2.45b) we obtain that in the interval 0 <y <7/2 on any trajecto-

ry there holds
4
< |/~ 2
v . + vy

It follows that as we move upward on r=a the value y=m/2 must be
attained at a height

Dy < 1+B; (8.9)

Ve
we have thus shown that the entire interval 0 <y <n/2 is covered mono-
tonically as v moves from 0 to v,,.
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To prove the monotonicity of ¥, we consider again v®, v*). Since
v'® —p'Y) is increasing in r, the function g(r)=v'"(r)+ v —v\" satisfies

2

q(0)=0v

(8.10)
q(r)<v?(r)

whenever vV, v'? are defined in 0<r<a. Thus, the upper curve defines
the greater volume, as was to be shown.

It remains to study the interval n/2<y<m. To do so, we come down-
wards on r=a from v,,, focusing attention now on the upper intersection
point with each curve of the family, until ¥ =7n at the point of intersec-
tion. From the relations (2.45a) and (3.82) we see that the entire vertical
segment must lie above the height v, >2/ka.

We now have recourse to the inequalities

. A
o, Doy (8.11)
0v, 0v,

for any fixed ¥ in 0<y <=, proved in §3.3.
Consider again two curves

v=09(;vh); i=1,2; P <o

at the value Y=y, n/2<y<m, see Fig. 8.2. By (8.11) we have r'>r?, also
¥4t > ¥,%. Choosing r! =a, we see that if the curve v® is continued on its

]/EUM

(2

o

Figure 8.2. Proof of Theorem 8.1; the case n/2<y <.
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upper branch only back to the value a, we will have y?<y=y",
12 (W) <152 (7)< ¥4 (7) as above. The proof is complete.

8.6. Geometrically Imposed Stability Bounds

An examination of the above proof shows that in every situation the
addition of sufficient volume of liquid will increase y beyond m. This is
however physically not possible, as the fluid would then have to pene-
trate the supporting plane. When y exceeds 7, a continued equilibrium
configuration with the same Q becomes impossible. Regardless of the
resistive force, any further addition of fluid must result in an increase in
the wetted area. We present here explicit estimates for the critical vol-
ume. The considerations are entirely geometrical and require only a
knowledge of the dependence of y on B and on 7.
We observe first, from the formula (3.9) for the volume of a drop,

| 1 2 .
;v//o(y)zau(y)~§smy (8.12)

in our notation. Also, denoting by (R,vg) the coordinates of the vertical
point on a solution curve, the relation (3.57¢c) yields

1 2 1 yis
v(lp)<K—R+1/;(l—cos¢)+W, ESWSn. (8.13)

On the other hand, we have from (3.23b)
R 3
37,<4n (—) (8.14)
a

and hence, from (8.13)

; 47 \1/3 273
33@2<( 7) + (47> +4B
a 37, 37,

so that (8.12) now gives

$BR:<1+7/1+4BR2 (8.15)

where R, is defined by 37,=4nRj}.
We have also from (8.12), when ¢ =7,
2/3

4R3—1 () >~ vg>
307" RTBR,
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by (3.24). Hence, $BR}>1 and we obtain from (8.15)

3 3
B (142, 8.16
<2R3( +2R§,) (8.16)

which gives a bound for the Bond number in terms of volume. When
(8.16) is violated, y>m and the drop cannot exist without penetrating the
plane II. Thus, the wetted surface expands.

The interpretation of (8.16) is facilitated by introducing the dimension-
less measure of volume #=x%#*> with # defined by 37 =4n%°. Equa-
tion (8.16) then takes the form

B*—3HBB-2B2<0 (8.17)

which displays an absolute upper bound for the volume in terms of the
wetted area.

The estimate (8.17) is asymptotically exact both for large and small B:
we may obtain however an improved version for larger B by noting in
(8.13) that R>a. We then obtain

232 <31/B(1+1/1+4B). (8.18)

Both (8.17) and (8.18) are correct in all cases. If B=15/4, then (8.17) and
(8.18) both yield the same #=15/4; if B<15/4, then (8.17) yields the
better estimate, otherwise (8.18) is preferable. Still more precise estimates,
and also lower bounds for the critical 4, can be obtained by analogous
reasoning using the appropriate estimates of Chapter 3.

8.7. A Further Kind of Instability

We consider the case of a drop of small volume, wetting a small disk on
Q. In this case, resistive forces can be expected to be small relative to
surface tension and adhesion terms, so that the geometry should, essen-
tially, be determined by the classical Young-Gauss theory (Chapter 1).
We recall the asymptotic relation (3.79b)

B~3%? (8.19)

in the limit as #—0, when y=7. This shows that the radius of the wetted
disk vanishes as the square of the radius of the ball of equivalent volume.
Thus, for small configurations when 7y is close to n the drop rests, essential-
ly, on a point, about which small disturbances could cause it to pivot and to
move with a kind of rolling motion.



220 8. The Capillary Contact Angle

Figure 8.3. Nonuniformity of wetted area.

If y<m, then the estimate (3.79a) governs the geometry. The two radii
are then proportional, and a more stable configuration can be expected.

The indicated behavior is illustrated in Fig. 8.3. See also §3.6, Fig. 3.9
for quantitative relations.

8.8. The Inclined Plane; Preliminary Remarks

If the plane IT of the preceding sections is slowly tilted relative to the
gravity field, then a rotationally symmetric drop can no longer be expect-
ed, although we may expect that resistive forces will, at least initially,
suffice to maintain the drop in equilibrium with the wetted area a disk.
In the following section we show that there can be no equilibrium drop
for which the contact angle y is constant on the triple interface X; that is
in fact the case regardless of the shape of the wetted disk. Thus, accord-
ing to (8.3), ¢ cannot be constant on X, and our underlying hypothesis
will be subjected to a different kind of test than was imposed in the
above sections.

It will be most convenient for us to carry out the procedure somewhat
differently than was just indicated: we assume a drop initially on an
inclined plane in the absence of gravity and in spherical configuration,
and we then allow gravity to increase. We attempt (§8.11) to characterize
a form for ¢ that will be asymptotically correct for small gravity, and we
will verify the result by a formal asymptotic solution of the governing
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equation. This latter step will for simplicity be carried out here only in
the special case of a vertical plane; the case of general inclination is
treated in [72].

8.9. Integral Relations, and Impossibility of
Constant Contact Angle

We consider a drop with free surface & resting on a plane II whose
normal is inclined at angle ¥ to the vertical. Let Q denote the wetted
area on II, 2=0Q the triple interface (contact line). We introduce a
coordinate system such that IT is the x y-plane and the x-axis is horizon-
tal. We may choose the origin of coordinates so that

j ydx=0. (8.20)
Q2
The potential Y of §1.4 can be written
Y=g(zcosy + ysiny), (8.21)
and thus the underlying equation (1.44) takes the form
2H=x(zcosy + ysiny)— A (8.22)

Let x denote the position vector of &% N the unit normal, as in
Chapter 1. If we integrate the relation (1.34)

Ax=2HN (8.23)
over .%, we obtain
j Hd¥ =10 nds; (8.24)
& z
here H is the mean curvature vector, n a unit vector directed out of &
on X and orthogonal to N and to ZX.

The relation (8.22) gives the value of the (scalar) mean curvature H on
& Let us extend H by the formula (8.22) to a function defined through-
out IR3. Letting (i,j,k) be unit vectors in the coordinate directions, we
may write

§ Hd&”-——s HNd&”zj HNdY —31Qk (8.25)
' ¥ FuQ

¥

by (8.20) and (8.22), since z=0 on II. By the divergence theorem we ob-
tain

S HNdy=§ VHd“/fng(isim//+kcos¢). (8.26)
FuR L2
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Now let v denote unit exterior normal to X in IT; we have

n=(n-v)v+m-k)k=vcosy —ksiny
and thus

§) nds=§ vcosycis—k<§ sinyds. (8.27)

We may thus equate the i, j, k components in (8.24) to obtain

Theorem 8.2. For a drop resting on a plane inclined at angle y to a
gravitational field as above, there holds for the contact angle distribution 7y

§ (v-i)cosyds=0

&S(V'])COS}’dSZKV’ siny/ (8282, b, ¢)

<§> sinyds= —x¥ cosy + Q.
P

Suppose the contact angle y were constant. Combining (8.28a,b), we
obtain

(cosy)<§> vds=(x7 sin)j=0

since

(§ vds:i V(1)dQ=0,
P Q
and thus siny =0. We have proved:

Theorem 8.3. If a drop makes constant contact angle y with a plane II
inclined at angle  to a uniform gravity field, then Yy =0 or 7.

That is, the drop must either be a sessile drop as in Chapter3 or a
pendent drop as in Chapter 4. We observe that Theorem 8.3 holds re-
gardless of the shape of the wetted area Q.

8.10. The Zero-Gravity Solution

We introduce dimensionless variables, replacing x, y, z by ax, ay, az, a
being the radius of wetted disk. Let D, be the wetted area in the new
coordinates, and ¥,=7/a> the dimensionless volume. We introduce the
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Bond number
B=xka>. (8.29)

Then (8.22) becomes, with u=a/,
2Hy=2aH=B(zcosy+ ysiny) — . (8.30)

When B=0, a particular solution is a spherical cap wetting a unit disk,
and according to Wente’s theorem [186] that is the only solution. We
calculate

(24 cosyy)(1 —cosy,)?

V, -
© 3sindy,

, (8.31)

which determines y, and thus the corresponding ¢, from (8.3). We may
assume that this initial solution is the “classical” one, so that ¢,=0,
f=cosy,. Thus, if we allow B to increase, we will have

1
COSY=COSYy—— (. (8.32)
I
8.11. Postulated Form for ¢
Symmetry considerations suggest that we seek ¢ as a function only of

y=siny sin#, where 0 =azimuthal angle (see Fig. 8.4). The first three terms
of a formal Taylor expansion thus yield

1 . . .
0 =&(B;yo:¥)+a(B;y,)siny sinf+0,(B;7,)sin®y cos26. (8.33)

0

Direction of gravity

F gure 8.4. The coordinate system.
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The second term in this representation can be determined a priori by
inserting (8.33) into (8.32) and (8.32) into (8.28b). We obtain

1
a=—BY, (8.34)
Vs

and hence, using (8.32),

1
cosy=cosy,+&(B;y,:¥)+—BY, sinx/zsin@
Y Yo Yos¥ n 0 (8.35)

+3,(B;7y,)sin?y cos20.

This is our projected form for the boundary angle distribution. Although
the constants ¢ and J, are still undetermined, they can be found for any
particular configuration from two particular calculations (or laboratory
measurements). In general, ¢ and J, can be expected to be small relative
to a,; the correction is however significant for the determination of
geometrically imposed instability (§§8.14, 8.15), as this can occur at (rela-
tively) large values of B.

We introduce at this point a heuristic observation on the structure of
¢(B;74;¥). Expanding in powers of B, we find

e=¢0(Vos¥)+&,(7os W) B+e,(y0s ) B>+ ---. (8.36)

We note by (8.32) that ¢,=0. Further, if  =m/2 there is no component of
gravitational force orthogonal to I, and thus one expects that to first
order in B the mean value of cosy on X will remain cosy,. Thus, it seems
reasonable to expect a representation in the form

e=Be; (7o) Cosw+3252()’0§'//)- (8.37)

In [72] the equation (8.22) is solved by formal asymptotic expansion in
B, to order B2 The results verify (8.35) with ¢ in the form (8.37). In the
following section we outline the procedure in the particular case of the
vertical plane, y =m/2.

8.12. Formal Analytical Solution

We suppose 0<y<m/2 and seek a solution of (8.22) as a graph u(x,y)
over II for small B, with  =7/2. The relation (8.22) then takes the form

diy—"" B (8.38)
IV——==By—L .
V1+Vul?

We seek a solution of (8.38) in the unit disk D, under the condition

u=0 on éD, (8.39)
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and the constraint
s udx="V,. (8.40)
Do

When B=0, the explicit solution is

—cosy,+7/ 1 —r?sin’y, (8.41)

siny,

Ug=

with :
Ho=2sin7, (8.42)

and y, the (unique) solution of (8.31). We choose u, as starting point to
construct a perturbation for small B.

8.13. The Expansion; Leading Terms

We write u=uq+Bu,+B*u,, p=p,+Bpu,+B*p, in (8.38) and neglect
all higher order terms. Setting

Vo Vug-Vo

Tv= - v 8.43
U+ P uo DT 1+ Vw2 (843)
20Wug Vu)Vu,+\Vugl? Vug 3(Vug Vu,)? Vuo]

R,=V: - 8.44

2 [ 2(1+“7u012)3/2 2(1+|l7u0|2)5/2 ( )
we obtain the two problems
V-Touy=y—p, in D,
u, =0 on 0D, (8.45a, b, ¢)
j u,dx=0
Do
V-Tou,=R,—p, in D,
u,=0 on 0D, (8.464a, b, ¢)
s u,dx=0
Do

fOI’ (ul’ lul)’ (u27.“2)-

To solve (8.45) we observe that the right side of (8.45a) has the form
rsinf—u,, and we seek a solution in the form of a Fourier series u,(r, )
=2 [vy(r) coskO+w,(r)sink@]. Substituting into (8.45), we find that v,
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satisfies
d rv’
(14 2) — | =k%u <1, 8.47
r( +“0)dr [(1+u’02)3“'2] v, O<r< ( )
limsup |v(r)| < o, r(1)=0
r—0

if k=1, and

: d[ v ] 0<r<l1
_—— | = — 5 I
rdrl(rugy?]” 1

limsup|v(r)| < oo, v(1)=0  (8.48a, b, ¢)

r=0

1
S ro(r)dr=0
0

when k=0.

The relations (8.47) admit only the trivial solution when k>0. In fact,
since (8.47a) has a regular singular point at r=0, any solution can be
represented near r=0 in the form v=y ¢ a,r"** and the indicial equation
yields o= +k. The root —k is excluded by (8.47b), and thus v=0(r*) at
r=0.

We now multiply (8.47a) by v/r)/1+u; and integrate, obtaining

1 ru'? 1 2
_§ 2 3/zdr:k2§ 01212‘1",
o (14+uy) o r(1+ug)t

from which we conclude v=0 on (0, 1].

The relations (8.48) can be solved explicitly, yielding again v=0.

In an analogous way, we find w,=0 when k=1, while setting t=rsiny,
we obtain

i :6sin3yo
(8.49)
2= 1 t (l—cosyo_HO 1+]/1—t2>
t)/1—12 t 1/1—¢* \I+cosyg l+cosyy /§°

Finally, (8.46) can be solved, again by the same procedure; the calcula-
tions are elementary but lengthy, see [72]. They lead to a formal expres-
sion for u(r;0) to order B? from which the contact angle 7 can be
obtained, again to order B?, from the relation tany(0)= —u'(1;0). We
state here only the result (for y =m/2):

V.
COSy=cosy,+ (—Osin 0) B+(lcos20 —m)B? (8.50)
n
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in formal agreement with the postulated form (8.35). Here

3cos?y,—2
I=cos?7y, [c siny, +w/2(1)ﬁ47'9‘——] (8.51)
with
1 sinvo C (1) [ 2 , ]
C=—— > —2+t%) | dt
€08~y (1 —cosyy) (24 cosy,) jo toLy/1—¢? ( |
(8.52)
and

) 3.diP(1—13)? , .
C(t)=sin®y, {_t Fr [-m— wi(t)—(1—1t?) w;(t)] —wf([)}; (8.53)

m=cos’y, [—asiny0+w’2(1)3—c—os%——gcosyo] (8.54)
with
sinyo N
= 6052;0(1 —— jo LA(r) [%%4] dt  (8.55)
and ,
A(t)= —%sin3yoc—id—t [tz—s(llﬁ;—;;ﬁ W2(E) 4 —3’ wf(z)] . (8.56)

8.14. Computer Calculations

The above section completes the formal analysis: the postulated repre-
sentation for the resistance forces led to the representation (8.35) for the
contact angle distribution, to order B®. A formal asymptotic integration
of the strict equations for the surface interface led independently to the
same representation, and additionally to the determination of the coeffi-
cients that appear. Presumably the results should be asymptotically cor-
rect for small B, however that has not yet been proved. Nevertheless, a
strict solution of the basic equations (8.38)-(8.40) does exist for small B,
as follows from a result of Wente [185]. In order to obtain direct
comparison with such a solution, the equations were integrated numeri-
cally by Milinazzo [131]. In Figs. 8.5(a)-(c) are shown comparisons be-
tween the computer calculations (shown as individual points) and the
predictions from (8.50) (shown as curves) for the cases y,=30°, 75° 105°,
with  =n/2, for varying values of B.
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Figure 8.5(a). Contact angle distributions. y,=30°.

8.15. Discussion

We note that when y,=30° some of the (large B) curves yield values
cosy>1 for values of 6 near m/2. Thus, the representation (8.50) is not
valid in this range, and the validity of these curves in the remaining 0
interval must also be held in some question. The value B, =
max {B: max,|cosy|<1} can be taken as an upper stability bound for
the given y,, since for B>B, the formal solution would presumably
penetrate the supporting plane, see the following section.

Note that in the figures for y,=75° and 105° the range of B shown for
the computer curves is not sufficient to achieve the value |cosy|=1. That
is because the computer calculations ceased to converge for values of B
significantly larger than those shown. Two possibilities suggest them-
selves to account for the difficulty. One is that the chosen coordinate
system — spherical coordinates based at the center of the wetted disk —
is not suited to the configurations that appear. If the drop profile deve-



8.16. Further Discussion 229

) (o) B=0.0000

(0) B=0.4000
-\m\\, (a) B=0.8000

. (+) B=1.2000

=05 (x) B=1.4500

— B=211
—-10kL

Figure 8.5(b). Contact angle distributions. y,="75°

lops an overhang, the representation could fail at points of the surface
interface. Computer calculations of the drop profile show however no
evidence of such overhang.

It is conceivable that a bifurcation is encountered. This possibility is
suggested by the existence of multiple pendent drop.solutions with identi-
cal volumes and contact angles; these solutions nevertheless do not
themselves bifurcate. In this connection see Note 7 to Chapter 4.

8.16. Further Discussion

It is natural —especially in view of the stability bound introduced above
—to look for extrema of cosy on the contact circumference. From the
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—B=0.72

Figure 8.5(c). Contact angle distributions. y,=105°.

relation (8.50) we find that if B<|n/4l|, then there is a single maximum
at m/2 and a single minimum at —mn/2; however, if B>|n/4l|, then n/2
becomes a minimum, —7/2 a maximum, and new extrema appear where
Isinf|=|n/41B|. Let B, and B_, be the values of B for which respectively
cosy(n/2)=1, cosy(—mn/2)= —1. We have from (8.50)

_n—y/n?—4(I+m)(1 —cosy,)
N 2(l+m)

Bl
(8.57)

—n+1/n*+4(l+m)(1+cosy,)

B..= 2(+m)

Table 8.1 shows the calculated values of B,, B_, for varying 7,, and also
the corresponding values of |n/41|. It is seen that in every case the value
|cosy|=1 is attained at +m/2, for a value B<|n/4l|. It thus appears that
in the range of physical interest (Jcosy|<1) the only maxima and minima
for cosy occur at 6= +n/2.

Figure 8.6 shows the stability bound B,,=min{B,,B_,} as function
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Table 8.1. Stability Bounds for B

Yo B, B_, |n/41|
15 0.955 6.87 1.012
30 1.684 5.65 1.826
45 2.131 4.405 2.308
60 2.271 3.233 2.423
75 2.116 2.201 2.237
90 1.725 1.360 1.886
105 1.206 0.736 1.540
120 0.690 0.3284 1.564
135 0.295 0.1068 0.971
150 0.0760 0.0191 0.0407
165 0.0060 0.0008 0.0010

of y,, with Y =mn/2. The result is compared with that of the computer
calculations, to the extent comparison is possible, see the remarks in
§8.14. The dotted portion of the computer curve represents the upper
limit of attainable B, when the value |cosy|=1 could not be achieved.
We note that for y, below a critical value (slightly over 75°) the drop
becomes parallel to the support plane (y=0) at the top (0=m/2) before

Figure 8.6. Stability bounds.
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that occurs (with y=m) at the bottom (0= —n/2). For larger y, the
stability bound is achieved first at the bottom. The reason B, tends to
zero with increasing y, derives from the chosen normalization: the Bond
number B is based on the radius of the wetted disk, and thus the drop
volume for given B becomes infinite as y,— 7.

Notes to Chapter 8

1. §8.2. If the support surface IT is curved, then the identity giving rise
to (8.2) must be changed to

S V(de+2§ q)HHdQ=(§> @ vds.
o Q b

In this case we observe that a constant areal distribution ¢, which yields
a vanishing gradient in IT, can nevertheless provide a non-null net force
on the drop. This is analogous to the ability of a surface tension, which
acts within a curved surface, to account for pressure changes across the
surface.

2. §8.11. It should be noted at this point that the same formal results
could have been obtained by assuming ¢ to be a function only of hydro-
static pressure, which in turn depends only on y. However, it was shown
in §8.4 that ¢ cannot in general be determined by pressure alone. In this
respect an interesting further example might be a drop in a wedge
formed by a horizontal and a vertical wall. In such a case, the pressure
would be constant on the horizontal contact line; the distribution of con-
tact angle on that line could shed some light as to the factors determin-
ing ¢.

The expression (8.35) could also have been written without introducing
¢, simply by expanding f=cosy in a formal Fourier series, subject to
symmetry considerations. The interpretation that has been made is how-
ever suggestive, particularly in view of the formal relation (8.2). Its
scientific correctness and (or) usefulness will have to be determined by
further study.

3. §8.13. A calculation of equilibrium configurations for a drop on an
inclined plane appears also in Brown, Orr, and Scriven [20]. This paper
suffers from a number of errors and ambiguities.

4. The actual behavior of fluid along a triple interface can be much
more complicated than is envisaged in any of the current theories. Hardy
[95] observed that for drops of liquids with large vapor pressure on a
steel plate, a microscopically thin film of the liquid surrounds the drop.
Later investigators [7, 79, 153] have confirmed this “precursor film” in
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varying situations. Hardy wrote “There can be no manner of doubt that
primary spreading on solid surfaces occurs through the intervention of
the vapor.” However, Ghiradella, Radigan, and Frisch [79] in an inge-
nious experiment found that for a contact line advancing with speed v,
the film width increased with v, thus suggesting that other factors must
be taken into account.

Although these authors were able to determine a nonzero limiting film
width as v—0, the corresponding measurements for v=0 were inconclu-
sive (H.L. Frisch, oral communication).



Chapter 9

Identities and Isoperimetric Relations

A number of integral identities for capillary surfaces have already been
employed in the text, e.g., the Laplace volume formula in §1.9, and the
relations of §8.9. Further integral relations involving mean curvature on
surfaces can be found, e.g., in Minkowski [133] and Hsiung [102]. The
following result of [30] seems not to be generally known. Let V denote a
domain in 3-space (or its volume), let V=S have mean curvature HS. If
S is star with respect to the origin, we may extend H® to be constant on
radial segments to the origin, to obtain a function continuous in V—{0}
with a bounded singularity at {0}. We define

ﬁS:]v sVHS(x)dx. ©9.1)

Theorem 9.1. There holds
—. S
3HS=—. 2
. ©:2)
Proof. In a spherical coordinate system (r,) we may describe S by an

equation r=f(w). We set F(r,w)=r/f(w); we then have on S that F=1
and

1 VF
HS=—div——r . (9.3)
2 VFl|poy
Since F is defined for all r, @ we may integrate over V to obtain
VF VF
div—dx=§ -vdo=S 9.4
X v |VF] s|VF] 4
since V'F is orthogonal to S on that surface.
Interior to V—{0} we have 0<r < f(w) and
1. VF
~d1v—-——i s (9.5)
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This last result is evident geometrically, since the left side of (9.4) is the
mean curvature of the similar surface obtained by contracting S with
respect to the origin in the ratio r/f.

Placing (9.5) into (9.4) and integrating with respect to r, we obtain

(\g Hsr3dw=§§ HS%dx=S (9.6)
s v
which completes the proof.

We have also

Corollary 9.1(a). If V lies interior to a ball By of radius R, then
H>—. 9.7

Proof. Let By be a ball with volume V. By the general isoperimetric
inequality
3

= 9.8)

0Bg,
R,

Bg,

s
72
Clearly R, <R, and the result thus follows from (9.2).

The above results can be applied to the symmetric capillary tube, or to
the sessile drop as considered in Chapter 3. The surface is no longer
closed, but if the point of projection is taken as the center of the wetted
disk Q in the support plane, then (VF/|VF|)-v= —cosy on Q. Repeating
the proof of Theorem 9.1, we obtain

Corollary 9.1(b). For a symmetric drop (or capillary surface) with center of
projection as above, there holds

S—Qcosy
7 .

3HS= 9.9)

Various other applications and generalizations are clearly possible.

We consider various questions relating to possible isoperimetrical re-
lations for the capillary tube of general section without volume con-
straint (cf. Chapter 2). In all questions, it is assumed that y is a given
constant, 0 <y<m/2, and that x>0.

i) For given boundary length |Z|, which tube raises the maximum
(or minimum) volume of fluid?
Answer: According to the formula (1.55) of Laplace, every tube of
given | 2| raises the same volume above reference level.
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ii)

iii)

iv)

v)

vi)

vii)

viii)

9. Identities and Isoperimetric Relations

For given sectional area |Q|, which tube raises the maximum
volume of fluid?

Answer: Since |X| can be arbitrarily large, the result of i) shows
that the problem has no solution.

For given |Q|, which tube raises the minimum volume?
Answer: We have

1 2
|V[:~|Z|cosyz—l/ilm“zcosy
K K

by the isoperimetric inequality, with equality holding if and only
if Q is a disk. Thus, the circular section raises the smallest
volume.

For given |X| (or |Q]|) which tube achieves a maximum fluid
height?

Answer: Since by Theorem 5.5 an infinite height can be achieved,
the problem has no solution.

For given |X| (or |Q2]) which tube section achieves a minimum
fluid height?
Conjecture: The disk.

For given |Z| (or |Q]) for which tube section is the minimum
height a maximum?

Answer: The examples of appropriately chosen rectangular sec-
tions show that the problem has no solution.

For given |Z| (or |Q]) for which tube section is the maximum
height a minimum?
Conjecture: The disk.

Is the maximum height always achieved at points of maximum
curvature of X?

Answer: By Theorem 5.4, at a corner for which a+7y>n/2 the
height is bounded although the curvature at the vertex is infinite.
But if a+7y<m/2, the height is unbounded. An approximation by
smooth arcs thus leads to a negative answer (cf. §7.10).
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