
Chapter 4

The brachistochrone

This is example 3 on page 44 of BGH and example (b) on page 66 of Trout-
man.

We seek the shape of a “frictionless wire” starting at the origin and ending
at some point (1,−d) with d < 0. If a “bead” (i.e., mass fixed along the wire
but able to freely slide under the influence of gravity) is released at rest at
the origin, then under certain circumstances the bead will slide down the
wire to the ending point determining a certain time of transit. A straight
line is one possible shape for the wire for which this will happen. See below.
The conditions under which this kind of event naturally occurs is a question
of interest for this problem. We may mention also that Galileo suggested an
arc of a circle as the path leading to the shortest time of descent. Let us, as
usual, start with the nominal admissible class

A = {u ∈ C1[a, b] : u(0) = 0, u(1) = −d < 0}.

As observed earlier, for motion in the field of gravity, one has a conserved
quantity

m

2

(

ds

dt

)2

+mgu = 0 (4.1)

where s is the arclength along the path given as a function of time. Alter-
natively, as pointed out by Troutman, one can appeal directly to Newton’s
second law to conclude

d2s

dt2
= g sinψ and

dy

dt
= −ds

dt
sinψ
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Figure 4.1: a bead sliding down a wire

where ψ is the inclination angle measured with respect to the positive x axis
and defined by

cosψ =
dx

ds
, sinψ =

dy

ds
.

Therefore,
1

2

d

dt

(

ds

dt

)2

=
ds

dt

d2s

dt2
= −gdy

dt
,

and (4.1) follows from integration with respect to t.
It is natural to assume ds/dt > 0 and u ≤ 0. Under these assumptions

we then have
ds

dt
=
√

−2gu.

We may then compute the total time under the assumption that x is strictly
increasing with respect to time as well:

T [u] =

∫

1

0

1
dx
dt

dx =

∫

1

0

1
dx
ds

√−2gu
dx.

Since the arclength, under these assumptions satisfies

s =

∫ x

0

√

1 + [u′(ξ)]2 dξ =⇒ dx

ds
=

1
√

1 + [u′(x)]2
,

we can write

T [u] =

∫

1

0

√

1 + u′2

−2gu
dx.
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Noting this is an autonomous integrand, we have recourse to the first integral
equation

u′Fp − F = u′
u′

√

−2gu(1 + u′2)
−
√

1 + u′2

−2gu
= c (constant)

This expression simplifies to

− 1
√

−2gu(1 + u′2)
= c.

Squaring we obtain

−2gc2u(1 + u′2) = 1. (4.2)

Recalling our assumption u ≤ 0, we assume also a bound below so that for
r > 0 large enough,

−2 ≤ u

r
≤ 0.

Thus,

−1 ≤ 1 +
u

r
≤ 1,

and we may define an angle θ on [0, π] by

cos θ = 1 +
u

r
.

It follows that

u = −r(1 − cos θ) and u′ = r sin θ
dθ

dx
.

Substituting in (4.2) we find

2gc2r(1 − cos θ)

[

1 + r2 sin2 θ

(

dθ

dx

)2
]

= 1.

This can be written as

r2 sin2 θ

(

dθ

dx

)2

=
1

2gc2r(1 − cos θ)
− 1 =

1 − 2gc2r(1 − cos θ)

2gc2r(1 − cos θ)
.
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Figure 4.2: cycloid curve parameterized by the rolling angle

Choosing

r =
1

4gc2
so that 1 − 2gc2r(1 − cos θ) = (1 + cos θ)/2,

the equation becomes

1

r2

(

dθ

dx

)2

=
1

(1 − cos θ)2
.

Finally, assuming
dθ

dx
> 0,

we can solve for x as a function of θ and obtain a parametric curve

x(θ) = r(θ − sin θ)

y(θ) = −r(1 − cos θ).

What we have defined here is the path taken by a point starting at the
origin and fixed to a circle of radius r and rolling along the x axis in the posi-
tive direction with point of contact above the circle. It remains to determine
what these curves provide with regard to the original problem. Let us first
observe some of their properties.
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Figure 4.3: a family of cycloids

4.1 Cycloids: curves of quickest descent (?)

Let us consider the family of all single periods of cycloids as obtained above
and parameterized by

{

x(θ) = r(θ − sin θ)
y(θ) = −r(1 − cos θ)

for 0 ≤ θ ≤ 2π. (4.3)

Theorem 12. For each point (1,−d) with d > 0, there is a unique r = r1 > 0
and a unique θ1 < 2π with

{

r1(θ1 − sin θ1) = 1
−r1(1 − cos θ1) = −d. (4.4)

Proof: We need to establish the uniqueness of a solution θ1 of the equation

f(θ) =
1 − cos θ

θ − sin θ
= d. (4.5)

Notice d is the ratio of the distance the bead must travel down compared
to the horizontal travel. This determines the shape of the portion of the
cycloid as indicated in Figure 4.3, as each cycloid in the family is obtained as
a similarity transformation (i.e., homothety/scaling) from each of the others.
The function f is defined for 0 < θ ≤ 2π with

lim
θց0

f(θ) = lim
θց0

sin θ

1 − cos θ
= lim

θց0

cos θ

sin θ
= +∞ and f(2π) = 0.
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Figure 4.4: graph of the function f = f(θ)

Thus, we have at least one solution to the equation on the period interval
0 < θ ≤ 2π. In order to establish uniqueness it is enough to show f ′(θ) < 0.
In fact,

f ′(θ) =
(θ − sin θ) sin θ − (1 − cos θ)2

(θ − sin θ)2
=
θ sin θ − 2(1 − cos θ)

(θ − sin θ)2
.

Setting g(θ) = θ sin θ − 2(1 − cos θ), we find

g′(θ) = θ cos θ − sin θ.

This function has a unique zero θ∗ with 0 < θ∗ < 2π satisfying θ∗ = tan θ∗.
One finds π < θ∗ < 3π/2 so that sin θ∗ < 0 and g(θ∗) = θ∗ sin θ∗ − 2(1 −
cos θ∗) < 0. Since g(0) = 0 = g(2π), this means g(θ) < 0 for 0 < θ < 2π.
This, in turn, means f ′(θ) < 0 on the same interval with f ′(2π) = 0.

We have established the existence and uniqueness of a solution to equation
(4.5). Indeed the function f is invertible with domain [0,∞), and we may
set

θ1 = f−1(d) and r1 =
1

θ1 − sin θ1
=

d

1 − cos θ1
. (4.6)

As a practical matter, if one wishes to find a particular cycloid passing
through the point (1,−d), the value of θ1 will usually be found via a route
finding algorithm for which a simple approximation is convenient if not nec-
essary. Data points are, of course, easy to compute using the formula

f(θ) =
1 − cos θ

θ − sin θ
=

θ2

2
− θ4

4!
+ θ6

6!
− · · ·

θ3

3!
− θ5

5!
+ θ7

7!
− · · ·

.

This formula also gives asymptotic information. For example, since f(θ) ∼
3/θ as θ tends to 0, we have

θ1 ∼
3

d
as d→ ∞.
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Figure 4.5: graph of the function θ1 = f−1(d) (data points) with asymptotic
approximations

As d tends to 0 on the other hand, we have recourse to the expansion of f
at θ = 2π:

f(θ) =
1

4π
(θ − 2π)2 + ◦(θ − 2π)2

since

f ′′(θ) =
(θ − sin θ)2(θ cos θ − sin θ) − [θ sin θ − 2(1 − cos θ)]2(θ − sin θ)(1 − cos θ)

(θ − sin θ)4

and

f ′′(θ) =
1

2π
.

It follows that
θ1 ∼ 2π − 2

√
πd as d→ 0.

Various fitting constants may be chosen to obtain a single simple approxi-
mation. For example, one may consider

α(d)
(

2π − 2
√
πd
)

+ β(d)

(

3

d

)

where the functions α and β satisfy

α(0) = 1, lim
d→∞

α(d) = 0, β(0) = 0, lim
d→∞

β(d) = 1, and α′(0) = 0 = β ′(0).

The use of functions of the form aj/(d− bj) for various nonzero constants aj

and bj > 0 can be useful. Notice these functions tend to zero at ∞ but have
finite values and finite derivatives at d = 0.
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Setting the computation aside, the x-interval [0, 1] appears to be a natural
interval on which to define solutions, but the endpoint irregularity of the
solutions we find suggests the consideration of some alternative. An initial
suggestion might be to assume u′ < 0. This approach is taken by Troutman
and a change of variables to an integral functional on the interval [−d, 0] has
some advantages. On the other hand, the cycloid extremals we have found
do not all satisfy this condition.

If we try to use arclength s or time t to parameterize paths, we immedi-
ately have a problem specifying a single interval. Here is a suggestion: Given
d > 0, we have a specific interval [0, θ1] corresponding to the cycloid extremal
(see below), and we could consider graphs over the cycloid parameterized on
[0, θ1]. These would be given parametrically by

{

X(θ) = r1(θ − sin θ) + ξ(θ) sin θ/
√

2(1 − cos θ)

Y (θ) = −r1(1 − cos θ) + η(θ)
√

(1 − cos θ)/2

where ξ = ξ(θ) and η = η(θ) are the unknown functions sought to minimize

T [ξ, η] =

∫ θ1

0

√

X ′2 + Y ′2

−2gY
dθ.

If this observation is correct, it appears we now have a non-autonomous in-
tegrand. Nevertheless, the two point boundary problem for the resulting
system of ODEs for ξ and η has presumably the unique solution (and mini-
mizer) ξ = η ≡ 0.

It is also pointed out in BGH that, introducing the admissible class,

A1 = {u ∈ C0[0, 1] ∩ C1(a, b] : u(0) = 0, u(1) = −d}

(perhaps with an additional integrability condition) and setting v =
√−2gu,

the functional

T [v] =
1

g

∫

1

0

√

g2

v2
+ v′2 dx

represents the time of transit and is strictly convex. See the section on
convex minimization.
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4.2 cycloids as extremals

Given d > 0, take θ1 = f−1(d) where

d =
1 − cos θ1
θ1 − sin θ1

and r1 =
d

1 − cos θ1
=

1

θ1 − sin θ1
. (4.7)

Then
{

x(θ) = r(θ − sin θ)
y(θ) = −r(1 − cos θ)

for 0 ≤ θ ≤ θ1 (4.8)

traces out the graph of a function u ∈ C0[0, 1] ∩ C∞(0, 1] with

lim
xց0

u′(x) = −∞.

The Euler-Lagrange equation associated to the time of transit functional

T [u] =

∫

1

0

√

1 + u′2

−2gu
dx

is

d

dx

(

u′
√

−2gu(1 + u′2)

)

=

√

1 + u′2

2g

1

2(−u)3/2
.

Carrying out the differentiation, this becomes

− uu′′

(1 + u′2)3/2
+

u′2

2
√

1 + u′2
=

√
1 + u′2

2

or

− 2uu′′

(1 + u′2)
+ u′2 = 1 + u′2 or simply − 2uu′′ = 1 + u′2.

We have a graph satisfying

u(x(θ)) = y(θ) = −r(1 − cos θ) with x = r(θ − sin θ).

Therefore,

u′(x)
dx

dθ
= −r sin θ and

dx

dθ
= r(1 − cos θ).
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It follows that

u′ = − sin θ

1 − cos θ
and 1 + u′2 =

2

1 − cos θ
.

u′′(x)
dx

dθ
=

1

1 − cos θ
so u′′(x) =

1

r(1 − cos θ)2
.

Substituting these expressions we see

−2uu′′ =
2r(1 − cos θ)

r(1 − cos θ)2
=

2

1 − cos θ
= 1 + u′2,

that is, the Euler-Lagrange equation is satisfied on the interval (0, 1] by the
functions u whose graphs are the cycloids.

Reversing the construction, the equations in (4.8) define for each r > 0 a
classical extremal u ∈ C0[0, 2πr] ∩ C∞(0, 2πr) for the Lagrangian

F (u, u′) =

√

1 + u′2

−2gu
.

These extremals may also be used to “embed” a given cycloid extremal u0 ∈
C0[0, 1] in a family of extremals. We must, however, expand the universal
set containing the admissible class from C1[0, 1] to at least C0[0, 1]∩C1(0, 1].
If we desire the transit time T to be finite, then the admissible class

A1 =

{

u ∈ C0[0, 1] ∩ C1(0, 1] : u ≤ 0, u(0) = 0, u(1) = −d,
∫

1

0

1√
−u dx <∞

}

may be considered.

Exercise 28. Show the transit time functional T given above is well-defined
and finite valued on A1.

At this point it is perhaps interesting to pause and list the assumptions
made in the initial derivation of the functional T and the analysis that fol-
lowed.

1. The assumptions

ds

dt
> 0 or

ds

dt
≥ 0 and y = u ≤ 0
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seem not so serious. The conservation law should hold for any kind
of frictionless wire shape. For any nontrivial motion, the wire should
slope downward initially, and thus, y will become negative. One may
consider paths for which there is a first positive time for which

ds

dt
= 0.

This may be considered the case, for example, for a full period of a
cycloid or a lower portion of a circle or any similar curve. It is natural
to assume that the problem may start again with essentially the same
initial conditions but a shorter (or longer) horizontal interval. It would
be interesting to compare the time of transit along the unique single
cycloid C1 to a point (1,−d) lying on the second period of another
cycloid C2 with the time of transit to the same point along C2. Gener-
alizing this, if one restricts to paths resulting in a finite time arrival at
(0,−d), then one may consider the last point (x∗, 0) along that path
after which one has y < 0. What is the least time path from (0, 0) to
(x∗, 0)? Taking the shortest time path from (x∗, 0) to (0,−d), how does
the concatenation compare to a “direct descent”?

2. The assumption
dx

dt
> 0

seems rather serious, as there are many paths (circular arcs for ex-
ample) with center below the x-axis) providing reasonable shapes for
wires leading to finite time arrivals at (0,−d), which seem worthy of
consideration. A general approach using parametric paths is the “cor-
rect” way to remedy this situation. As mentioned above, one then has
a problem identifying a single domain interval of integration.

3. It is assumed that a constant of integration c for the first integral
equation is nonzero and such that

r =
1

4gc2

is large enough that

−2 ≤ u

r
≤ 0 for all intermediate heights u.
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Figure 4.6: circular path along which a bead may slide (excluded from the
derivation of the cycloid extremals)

The constant c is, in some sense, problematic by itself because the
existence of such a finite constant requires

lim
xց0

|u′(x)| = ∞. (4.9)

Thus, not only must we include extremals outside C1[0, 1], but our
solution excludes all extremals in C1[0, 1].

Another possible option, similar to the suggestion of considering graphs
over the cycloid would be to consider graphs over some circular arc
connecting the origin to the terminal point. Either of these options
might lead to a justification for the condition (4.9) or other stronger
conditions implying it.

4. Finally, given the that rolling angle θ is well-defined, we have the as-
sumption

dθ

dx
> 0

so that θ may be taken as a parameter. Naturally, if θ were chosen as a
paraemeter from the outset, this would be completely justified within
that class of admissible paths.

Exercise 29. Compute the transit time for straight line paths.
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Figure 4.7: a point reached by two different cycloid paths (Which path has
the shorter transit time?)

Exercise 30. Compute the transit time for cycloids. In particular, how long
does it take for a bead to traverse a full period of a cycloid? If one reaches a
point (1,−d) along a certain full number of periods of a cycloid (and a portion
of another), does that take longer than the motion along a single cycloid?

Exercise 31. The straight line path is a limit of circular arcs. Compute the
time of transit for all possible circular arcs. How do all explicitly computed
(or numerically computed) transit times compare? Are there other paths of
interest?

Exercise 32. Can you prove that all shortest time paths must start with a
vertically downward direction or that the cycloid takes a shorter time than
any path not starting with a vertically downward direction?

Exercise 33. Can you characterize paths in terms of their horizontal and
vertical points? All paths with more than one horizontal point are non-
minimizers?

Exercise 34. Are there any “reasonable” paths, say with u ≤ 0, for which
the bead gets “stuck,” i.e., takes infinitely long to reach the destination point?

Exercise 35. Derive the time of transit integral for a parametric path param-
eterized by arclength and/or time. Can you say anything about this problem?
One could fix a specific time interval with length greater than the length of
the cycloid extremal.


