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1.3 The Lemma of DuBois-Reymond

We needed extra regularity to integrate by parts and obtain the Euler-
Lagrange equation. The following result shows that, at least sometimes,
the extra regularity in such a situation need not be assumed.

Lemma 3 (cf. Lemma 1.8 in BGH). (The lemma of DuBois-Reymond) If
f e C%a,b) and

b
/ f(x)n (x)dx =0 for everyn € C*(a,b). (1.16)

then f = ¢ (constant).

Proof: Let ¢ € C°(a, b) be arbitrary and take u € C2°(a,b) with [ p = 1.

Consider
o=c—([c)u=c-a

where ¢ = [ (. Note that ¢ € C°(a,b). Also,
o) = [ o) de

has 1/(x) = ¢(z) and (for € > 0 small)

a+e b b
n(a+e) = / ¢(€)d¢ =0 and n(b—e) = / ((—cp)de = c—c/ pdr = 0.

Thus, n € C°(a,b) with ¢ = 1n’. According to (1.16) we have

0=/f¢=/f(<—cu):/fC—c/fuz/fC—(/C)cl
where Cl:/flu.

0= /(f — )¢ for every ¢ € C2°(a,b).

The fundamental lemma implies f = ¢;. O

Therefore,
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e * 7]

Figure 1.5: For the lemma of DuBois-Reymond, we mollify a piecewise
smooth function.

Another proof of the lemma of DuBois-Raymond

Again the authors of BGH give a different argument and a more general
result.

Lemma 4 (Lemma 1.8 in BGH). If f € LL (a,b) and

loc

fn'=0 for everyn € C°(a,b). (1.17)
(a,b)

then f = ¢ (constant), i.e., there is some constant ¢ such that f(x) = ¢ for
almost every x.

Proof: Let x and & be Lebesgue points for f € [fy]. We might as well
assume a < v < T < b. As suggested in BGH, let us also take § > 0 small
and fixed so that

7O = 2u(©) + [14 56 0] wr(©) - |1- 5= 9] v

with [ = (z + 0,2 — 6), T = (z — 6,z + 6) and T = (% — 6, % + 9) gives
the function with graph indicated in Figure 1.5. The reasoning of Exercise 8
shows p. x 7 € C°(a,b) with

v 0, €e(ab)\(z—0—€,T+0+¢€)
Me*n(f)—{z E€lx+d+¢6,T—0—¢

where p. is a standard mollifier with € < 4. Also,

Lpres ) = e/ =0
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on the interiors
(a,b)\[t =6 —€,2+d+¢ and (r+5+¢,T—3—¢€)

with . p .
—_—— < — n) < — f .
5_dx(,ue>|<n)_5 or all z € (a,b)

Let us compute what happens in the portions
(x—0+e€x+0d—¢) and (T—0+€T+0—¢)

of the transition intervals T and T. For € in the first interval

e * 7() = / H(D)(E — 1)

_ /tﬂg(t) {1 bt —x)}
_ 1+%(§_x)—%/ttug(t)
= 7(&) — m(e)

where
1 €
m(e) = = /t,ue(t) = —/ tue(t) dt satisfies |m(e)| < <
0 J dJ_. 4]

Similarly for £ in the interval around & we have p. * 7(£) = 7(§) + m(e).
The hypothesis (1.17) clearly applies to give

/f(/J/E*ﬁ)/:O’
We wish to take a limit and conclude

/fn’ =0. (1.18)

To this end, let us estimate

‘/f(wn)'—/fn'

= ‘/f[(us*n)’—n’]'
< [ 18l =71
:/u_(s_e,ﬂgﬁ) | fll (e % 7) = 7). (1.19)
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In this case, we do not know f € L2, so the Cauchy-Schwarz inequality
does not help us. We do know, howevever, that for ¢ small the interval
J=(r—8—¢€,+0+¢€)CC(a,b) so f € L'(J). Furthermore, we have shown
the function |(p. *7)'(£) — 7'(£)] is bounded on all of (a,b) and satisfies

lim [ (e % 7)'(€) =7 ()] = 0

for every £ € (a,b). It follows that the integrand in (1.19) is bounded inde-
pendent of € in L'(J) and limits pointwise to zero almost everywhere. By
the Lebesgue dominated convergence theorem, the expression in (1.19) tends
to zero, and we have established (1.18).

Since 7/(€) = (1/0)xr (&) + (1/9)x7(€) almost everywhere (i.e., except at
the four corner points), we can rewrite (1.18) as

1 / 1
: f-5[  r=o
4 (z—6,z+9) 0 (z—06,z+9)

Taking the limit as 6 \, 0 and recalling that x and = were Lebesgue points,
we get 2f(z) —2f(Z) = 0. That is, f(z) = f(Z), and it follows that f is
constant, taking a single value on its Lebesgue points. O

Exercises

Exercise 11. Show that if the mollifier j. is chosen to be even, then the
quantity

mie) = [t
t
vanishes. Show why this quantity need not be zero when p. is not even.

Exercise 12. Show that when g has compact support in (a,b), then for e
small enough . * g also has compact support in (a,b) and may therefore be
defined on all of R.

Exercise 13. Show directly that

d
o Hex9) (@) = pexg'(x) forallz € R
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when g € Cl(a,b) is any piecewise C function with compact support. Use
this calculation to give a (new and different) direct proof that

[ =0

where f satisfies the hypothesis (1.17) or (1.16) and 7 is the function defined
in the proof of the DuBois-Reymond lemma from BGH.

1.4 The Euler-Lagrange Equation (revisited)

Theorem 4 (Corollary 1.10 in BGH). (The FEuler-Lagrange Equation for
weak extremals) If
u € C'(a,b)

1s a weak extremal for the functional

with Lagrangian F € C'((a,b) x R x R), then

d

d—Fp(x,u,u/) — F(z,u,u') =0 on (a,b). (1.20)
x

Proof: This result follows, essentially, from integrating by parts in the

condition for weak extremals (1.1) in the reverse direction: By the funda-
mental theorem of calculus

wie) = [ Rt (o) d
is a C! function with derivative F.(z,u(x), v (z)). Thus,

- /abwqb’dx: —/abwqb’dx.

Combining this expression with the other integral from (1.1), we get

b
/ F.(z,u,u")pdr = ¢

b
/ [Fp(z,u,u’) — ] ¢'de =0 for all ¢ € CZ(a,b).
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By the lemma of DuBois-Raymond, there is some constant ¢ such that
Fy(z,u,u') — ¢ =c.
That is,
Fy(z,u,u') = /r F.(t,u(t),u'(t)) dt + c. (1.21)

While it may not be true that F}, has any higher partial derivatives and it
may not be true that v’ has any higher partial derivatives, we have shown
that the composition F,(x,u,u") does have a derivative:

d
%Fp(x, u,u') = F.(z,u,u’). O

It is important to realize that the Euler-Lagrange equation, under these
hypotheses, may not allow expansion of the left side by the chain rule. The
equation (1.21) is called the DuBois- Raymond equation or the Euler-Lagrange
equation in integrated form.

The following example (Example 4 on page 14 of BGH) shows the weaker
regularity allowed by Theorem 4 is sometimes needed. Consider the func-
tional .

Flu] = / uw?(2z —u')? dx
—1
on

A={ueC'~1,1]:u(-1) =0, u(1) = 1}.
Notice that F is non-negative and Flug] = 0 where ug € C*[—1,1]\C?*(—1,1)

is given by
0, —-1<z2<0
uo(x):{xz 0<z<1.

We wish to show ug is the unique minimizer in A. If u € A is any minimizer,
then we must have

1
Flu] = / uw?(2z —u')? dx = 0.
—1
This means that on any interval where u # 0, we must have ' = 2x and
u(z) = 2* + ¢ for some constant c. In particular, integrating from x = 1, we
must have

u(x):1+/x(2§)d§:x2 for0 <z <1.
1
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If we assume there is some xy with —1 < zy < 0 for which u(xg) # 0, then
there is a maximal interval (a,b) with —1 < a < xy < b < 0 such that

u(z) = u(zg) +2* — 23 #0 fora<az<b, but wu(a)=u(b)=0.

Evaluating u(z) at = a and x = b we conclude a® = b* = 23 — u(z). This
contradicts the fact that a < b < 0. Consequently, there is no such point z,
we have u(z) =0 for —1 <z <0, and u = uy.

Exercise 14. (a) Find the Euler-Lagrange equation for

Flu] = /_ 1 W} (22 — )2 d,

1

and show that ug given above is a solution of the equation.

(b) Assume u € C*[—1,1] is a classical extremal for F, and use the chain
rule (product rule etc.) to write the Euler-Lagrange equation as a second
order quasilinear ODE. Is uq also a solution of this equation?

(c) What can you say about C*[—1,1] classical extremals for this functional?

1.5 Examples

We now return to some examples from the introduction and write down
the associated Euler-Lagrange equations. We also make some elementary
observations about those examples and introduce some additional examples.

1.5.1 Dirichlet energy

Recall that D[u] = 0 if u = ¢ (constant), and these are absolute minimizers
in C'[a, b], but they may not be admissible.
For the Dirichlet energy, the Lagrangian is F(p) = p? and the Euler-
Lagrange equation is
W' = 0. (1.22)

Notice the argument of DuBois-Raymond now implies added regularity: Any
C! (weak) extremal must be a C? (classical) extremal. Given the admissible
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class Ay = {u € C'0a,b] : u(a) = u,, u(b) = up}, it is easy to integrate (1.22)
to obtain the unique admissible extremal:
Up — dg
Uplx) = Tr—a)+ Ug.
o(2) = =%z — a)
Let’s try to show ug is the minimizer. Say w is some other admissible com-
petitor. Then

Dl - Plual = [ {4 00—l - i} e
— /ab (W — up)® + 2up(u' — up) b dz
> Q/bu{)(u' — ug) dx

b
= 2u'0/ (v — uy) dx

= 2uglup — up — (U — Uy)]
= 0.

This shows D[u| > Dlug| with equality if and only if u" = wuj, which means
u = ug. That is, ug is the unique minimizer.

This approach suggests the following simple rephrasing of the condition
for minimizers:

Lemma 5 (Lemma 2.1 in Troutman). If the universal set U is a linear space
(e.g., Cta,b] or Tl a,b], etc.) and uy € A satisfies

Fluo + v] — Flug) >0  whenver veld and ug+v € A, (1.23)

then ugy is a minimizer. Conversely, if ug € A is a minimizer, then (1.23)
holds.

Furthermore, if equality holds in (1.23) only for v = 0, then ug is the
unique minimizer (and conversely, if ug is the unique minimzer, then equality
in (1.283) can only hold when v =10.)

1.5.2 Poisson’s functional

Here we consider
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on

Ao = {u € Ca,b] : u(0) = 0 = u(1)}.

Here the function v = 0 is admissible and gives F[u| = 0, but this is not
the minimizer. The Lagrangian is F'(z,p) = z + p* and the Euler-Lagrange
equation is
2u” —1=0.
Again, we have extra regularity for extremals, and the unique extremal is
1
uy = Ex(x —1).

Computing Flug| we get

/1121+1 12d L o111 1
" ——r+—-|z— = rT==-|z—=z+—=+=|=—=.
o |47 47 T4 2 4\3 2 24 24 24
Thus, Flug] < 0. See Exercise 16.

1.5.3 Arclength functional

Here is an instance where C? regularity is not immediate from the Euler-
Lagrange equation. The Lagrangian is /1 + p?, and the Euler-Lagrange
equation is

i<_ﬂ_o_0

dr \/1+ u?

With additional regularity, the differentiation may be carried out so that the
left side is immediately recognizable as the curvature of the graph of u:

u//

(1 + u/2)3/2 ’

Of course, if the curvature vanishes, the graph is a straight line. See Exer-
cise 17.

1.5.4 Potential equation

An ordinary differential equation (ODE) central to the study of many phys-
ical phenomena is the second order linear potential equation

—u" + c(x)u=0
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associated with the variational integral

Flu) = / [u? + c(z)u?] dx.

The function ¢ = ¢(z) is called the potential. See Exercise 19. This is
Example 2 on page 14 of BGH.

1.6 Exercises

Exercise 15. Compute the Dirichlet energy of the sequence of functions
u; € Ag = {u € C'0,1] : w(0) = 0, u(1) = 1} which converge in L*(0,1) to
the constant zero function.

Exercise 16. Show ug = x(x — 1)/4 is the unique minimizer of Poisson’s
functional

Flu] = /Ol(u +u?) da

on

Ao = {u € C'0,0] : u(0) =0 =u(1)}.

Exercise 17. Ezxplicitly integrate the Euler-Lagrange equation for the ar-
clength functional to verify all extremal solutions must be affine, having the
form u(x) = ax + B for some constants o and 3.

Exercise 18. Find the extremals for the total variation functional.

Exercise 19. Show the potential equation is the Euler-Lagrange equation of
the functional

b
Flu] = / [u” + c(z)u?] dx.
What can you say about the reqularity of solutions in C'[a, b]?

Exercise 20 (project exercise). Consider a cylindrical container (modeled

by)
{(z,y,2) : 2> +y* =1, 2> 0} U{(z,y,0) : 2> + y* < 1}.

Assume the container contains a volume V = m of liquid in a gravity field so
that the volume initially occupies the space

{(z,y,2) :2*+9y* < 1,0< z< 1}
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(Ignore surface tension and wetting energy.) Assume, more generally, that
the liquid is bounded by the graph of an even function z = u(r) for —1 <r <1
(in polar coordinates) in the admissible class

1
A= {u € C'0,1] : ¥/(0) = 0, 27?/ ru(r)dr = 7T} :
0
If the container (along with the liquid it contains) is rotating at a constant
angular velocity w, calculate the physical energy of the system two ways:

(a) The physical energy is the kinetic energy of rotation.

(b) With respect to a rotating frame fized to the container, the physical en-
erqy is the potential energy with respect to the apparent field.

Find (and solve) the Euler-Lagrange equation for the interface. What happens
if the container has some other shape (but still rotates with a given volume
of liquid around some axis)?

Solutions

Solution 1 (Exercise 8). Let

f(x) = X(—6,6) (I _5360)

and consider the convolution integral

he §(z) = /ﬁ GG

Show the following:

(@) pex f=fxpe

(b) pex f € CE(R).

() 0 < pex f(x) <1 forallz € R.

(d) Whene<é

0, Jx|>d+e€
Ne*f(x)—{l’ 2| <6 —e.



