
28 CHAPTER 1. INDIRECT METHODS

1.3 The Lemma of DuBois-Reymond

We needed extra regularity to integrate by parts and obtain the Euler-
Lagrange equation. The following result shows that, at least sometimes,
the extra regularity in such a situation need not be assumed.

Lemma 3 (cf. Lemma 1.8 in BGH). (The lemma of DuBois-Reymond) If
f ∈ C0(a, b) and

∫ b

a

f(x)η′(x) dx = 0 for every η ∈ C∞

c (a, b). (1.16)

then f ≡ c (constant).

Proof: Let ζ ∈ C∞

c (a, b) be arbitrary and take µ ∈ C∞

c (a, b) with
∫

µ = 1.
Consider

φ = ζ −
(

∫

ζ

)

µ = ζ − cµ

where c =
∫

ζ . Note that φ ∈ C∞

c (a, b). Also,

η(x) =

∫ x

a

φ(ξ) dξ

has η′(x) = φ(x) and (for ǫ > 0 small)

η(a+ǫ) =

∫ a+ǫ

a

φ(ξ) dξ = 0 and η(b−ǫ) =

∫ b

a

(ζ−cµ) dx = c−c
∫ b

a

µ dx = 0.

Thus, η ∈ C∞

c (a, b) with φ = η′. According to (1.16) we have

0 =

∫

fφ =

∫

f(ζ − cµ) =

∫

fζ − c

∫

fµ =

∫

fζ −
(

∫

ζ

)

c1

where

c1 =

∫

fµ.

Therefore,

0 =

∫

(f − c1)ζ for every ζ ∈ C∞

c (a, b).

The fundamental lemma implies f ≡ c1. 2
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Figure 1.5: For the lemma of DuBois-Reymond, we mollify a piecewise
smooth function.

Another proof of the lemma of DuBois-Raymond

Again the authors of BGH give a different argument and a more general
result.

Lemma 4 (Lemma 1.8 in BGH). If f ∈ L1
loc(a, b) and

∫

(a,b)

fη′ = 0 for every η ∈ C∞

c (a, b). (1.17)

then f ≡ c (constant), i.e., there is some constant c such that f(x) = c for
almost every x.

Proof: Let x and x̃ be Lebesgue points for f ∈ [f0]. We might as well
assume a < x < x̃ < b. As suggested in BGH, let us also take δ > 0 small
and fixed so that

η̄(ξ) = 2χI(ξ) +

[

1 +
1

δ
(ξ − x)

]

χT (ξ) −
[

1 − 1

δ
(ξ − x̃)

]

χT̃ (ξ)

with I = (x + δ, x̃ − δ), T = (x − δ, x + δ) and T̃ = (x̃ − δ, x̃ + δ) gives
the function with graph indicated in Figure 1.5. The reasoning of Exercise 8
shows µǫ ∗ η̄ ∈ C∞

c (a, b) with

µǫ ∗ η̄(ξ) =

{

0, ξ ∈ (a, b)\(x− δ − ǫ, x̃+ δ + ǫ)
2, ξ ∈ [x+ δ + ǫ, x̃− δ − ǫ]

where µǫ is a standard mollifier with ǫ < δ. Also,

d

dx
(µǫ ∗ η̄) = µǫ ∗ η̄′ = 0
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on the interiors

(a, b)\[x− δ − ǫ, x̃+ δ + ǫ] and (x+ δ + ǫ, x̃− δ − ǫ)

with

−1

δ
≤ d

dx
(µǫ ∗ η̄) ≤

1

δ
for all x ∈ (a, b).

Let us compute what happens in the portions

(x− δ + ǫ, x+ δ − ǫ) and (x̃− δ + ǫ, x̃+ δ − ǫ)

of the transition intervals T and T̃ . For ξ in the first interval

µǫ ∗ η̄(ξ) =

∫

t

µǫ(t)η̄(ξ − t)

=

∫

t

µǫ(t)

[

1 +
1

δ
(ξ − t− x)

]

= 1 +
1

δ
(ξ − x) − 1

δ

∫

t

tµǫ(t)

= η̄(ξ) −m(ǫ)

where

m(ǫ) =
1

δ

∫

t

tµǫ(t) =
1

δ

∫ ǫ

−ǫ

tµǫ(t) dt satisfies |m(ǫ)| < ǫ

δ
.

Similarly for ξ in the interval around x̃ we have µǫ ∗ η̄(ξ) = η̄(ξ) +m(ǫ).
The hypothesis (1.17) clearly applies to give

∫

f(µǫ ∗ η̄)′ = 0.

We wish to take a limit and conclude
∫

f η̄′ = 0. (1.18)

To this end, let us estimate
∣

∣

∣

∣

∫

f(µǫ ∗ η̄)′ −
∫

f η̄′
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

f [(µǫ ∗ η̄)′ − η̄′]

∣

∣

∣

∣

≤
∫

|f ||(µǫ ∗ η̄)′ − η̄′|

=

∫

(x−δ−ǫ,x̃+δ+ǫ)

|f ||(µǫ ∗ η̄)′ − η̄′|. (1.19)
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In this case, we do not know f ∈ L2, so the Cauchy-Schwarz inequality
does not help us. We do know, howevever, that for ǫ small the interval
J = (x−δ−ǫ, x̃+δ+ǫ)⊂⊂ (a, b) so f ∈ L1(J). Furthermore, we have shown
the function |(µǫ ∗ η̄)′(ξ) − η̄′(ξ)| is bounded on all of (a, b) and satisfies

lim
ǫ→0

|(µǫ ∗ η̄)′(ξ) − η̄′(ξ)| = 0

for every ξ ∈ (a, b). It follows that the integrand in (1.19) is bounded inde-
pendent of ǫ in L1(J) and limits pointwise to zero almost everywhere. By
the Lebesgue dominated convergence theorem, the expression in (1.19) tends
to zero, and we have established (1.18).

Since η̄′(ξ) = (1/δ)χT (ξ) + (1/δ)χT̃ (ξ) almost everywhere (i.e., except at
the four corner points), we can rewrite (1.18) as

1

δ

∫

(x−δ,x+δ)

f − 1

δ

∫

(x−δ,x+δ)

f = 0.

Taking the limit as δ ց 0 and recalling that x and x̃ were Lebesgue points,
we get 2f(x) − 2f(x̃) = 0. That is, f(x) = f(x̃), and it follows that f is
constant, taking a single value on its Lebesgue points. 2

Exercises

Exercise 11. Show that if the mollifier µǫ is chosen to be even, then the
quantity

m(ǫ) =

∫

t

tµǫ(t)

vanishes. Show why this quantity need not be zero when µǫ is not even.

Exercise 12. Show that when g has compact support in (a, b), then for ǫ
small enough µǫ ∗ g also has compact support in (a, b) and may therefore be
defined on all of R.

Exercise 13. Show directly that

d

dx
(µǫ ∗ g)(x) = µǫ ∗ g′(x) for all x ∈ R
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when g ∈ <
1
c(a, b) is any piecewise C1 function with compact support. Use

this calculation to give a (new and different) direct proof that

∫

f η̄′ = 0

where f satisfies the hypothesis (1.17) or (1.16) and η̄ is the function defined
in the proof of the DuBois-Reymond lemma from BGH.

1.4 The Euler-Lagrange Equation (revisited)

Theorem 4 (Corollary 1.10 in BGH). (The Euler-Lagrange Equation for
weak extremals) If

u ∈ C1(a, b)

is a weak extremal for the functional

F [u] =

∫ b

a

F (x, u(x), u′(x)) dx

with Lagrangian F ∈ C1((a, b) × R × R), then

d

dx
Fp(x, u, u

′) − Fz(x, u, u
′) = 0 on (a, b). (1.20)

Proof: This result follows, essentially, from integrating by parts in the
condition for weak extremals (1.1) in the reverse direction: By the funda-
mental theorem of calculus

ψ(x) =

∫ x

a

Fz(t, u(t), u
′(t)) dt

is a C1 function with derivative Fz(x, u(x), u
′(x)). Thus,

∫ b

a

Fz(x, u, u
′)φ dx = ψφ∣

∣

b

a

−
∫ b

a

ψφ′ dx = −
∫ b

a

ψφ′ dx.

Combining this expression with the other integral from (1.1), we get

∫ b

a

[Fp(x, u, u
′) − ψ]φ′ dx = 0 for all φ ∈ C∞

c (a, b).
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By the lemma of DuBois-Raymond, there is some constant c such that

Fp(x, u, u
′) − ψ = c.

That is,

Fp(x, u, u
′) =

∫ x

a

Fz(t, u(t), u
′(t)) dt+ c. (1.21)

While it may not be true that Fp has any higher partial derivatives and it
may not be true that u′ has any higher partial derivatives, we have shown
that the composition Fp(x, u, u

′) does have a derivative:

d

dx
Fp(x, u, u

′) = Fz(x, u, u
′). 2

It is important to realize that the Euler-Lagrange equation, under these
hypotheses, may not allow expansion of the left side by the chain rule. The
equation (1.21) is called the DuBois-Raymond equation or the Euler-Lagrange
equation in integrated form.

The following example (Example 4 on page 14 of BGH) shows the weaker
regularity allowed by Theorem 4 is sometimes needed. Consider the func-
tional

F [u] =

∫ 1

−1

u2(2x− u′)2 dx

on
A = {u ∈ C1[−1, 1] : u(−1) = 0, u(1) = 1}.

Notice that F is non-negative and F [u0] = 0 where u0 ∈ C1[−1, 1]\C2(−1, 1)
is given by

u0(x) =

{

0, −1 ≤ x ≤ 0
x2, 0 ≤ x ≤ 1.

We wish to show u0 is the unique minimizer in A. If u ∈ A is any minimizer,
then we must have

F [u] =

∫ 1

−1

u2(2x− u′)2 dx = 0.

This means that on any interval where u 6= 0, we must have u′ = 2x and
u(x) = x2 + c for some constant c. In particular, integrating from x = 1, we
must have

u(x) = 1 +

∫ x

1

(2ξ) dξ = x2 for 0 ≤ x ≤ 1.
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If we assume there is some x0 with −1 < x0 < 0 for which u(x0) 6= 0, then
there is a maximal interval (a, b) with −1 ≤ a < x0 < b ≤ 0 such that

u(x) = u(x0) + x2 − x2
0 6= 0 for a < x < b, but u(a) = u(b) = 0.

Evaluating u(x) at x = a and x = b we conclude a2 = b2 = x2
0 − u(x0). This

contradicts the fact that a < b ≤ 0. Consequently, there is no such point x0,
we have u(x) ≡ 0 for −1 ≤ x ≤ 0, and u ≡ u0.

Exercise 14. (a) Find the Euler-Lagrange equation for

F [u] =

∫ 1

−1

u2(2x− u′)2 dx,

and show that u0 given above is a solution of the equation.

(b) Assume u ∈ C2[−1, 1] is a classical extremal for F , and use the chain
rule (product rule etc.) to write the Euler-Lagrange equation as a second
order quasilinear ODE. Is u0 also a solution of this equation?

(c) What can you say about C2[−1, 1] classical extremals for this functional?

1.5 Examples

We now return to some examples from the introduction and write down
the associated Euler-Lagrange equations. We also make some elementary
observations about those examples and introduce some additional examples.

1.5.1 Dirichlet energy

Recall that D[u] = 0 if u ≡ c (constant), and these are absolute minimizers
in C1[a, b], but they may not be admissible.

For the Dirichlet energy, the Lagrangian is F (p) = p2 and the Euler-
Lagrange equation is

u′′ = 0. (1.22)

Notice the argument of DuBois-Raymond now implies added regularity: Any
C1 (weak) extremal must be a C2 (classical) extremal. Given the admissible
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class A0 = {u ∈ C1[a, b] : u(a) = ua, u(b) = ub}, it is easy to integrate (1.22)
to obtain the unique admissible extremal:

u0(x) =
ub − aa

b− a
(x− a) + ua.

Let’s try to show u0 is the minimizer. Say u is some other admissible com-
petitor. Then

D[u] −D[u0] =

∫ b

a

{

[u′0 + (u′ − u′0)]
2 − u′0

2
}

dx

=

∫ b

a

{

(u′ − u′0)
2 + 2u′0(u

′ − u′0)
}

dx

≥ 2

∫ b

a

u′0(u
′ − u′0) dx

= 2u′0

∫ b

a

(u′ − u′0) dx

= 2u′0[ub − ub − (ua − ua)]

= 0.

This shows D[u] ≥ D[u0] with equality if and only if u′ ≡ u′0, which means
u ≡ u0. That is, u0 is the unique minimizer.

This approach suggests the following simple rephrasing of the condition
for minimizers:

Lemma 5 (Lemma 2.1 in Troutman). If the universal set U is a linear space
(e.g., C1[a, b] or <

1[a, b], etc.) and u0 ∈ A satisfies

F [u0 + v] −F [u0] ≥ 0 whenver v ∈ U and u0 + v ∈ A, (1.23)

then u0 is a minimizer. Conversely, if u0 ∈ A is a minimizer, then (1.23)
holds.

Furthermore, if equality holds in (1.23) only for v = 0, then u0 is the
unique minimizer (and conversely, if u0 is the unique minimzer, then equality
in (1.23) can only hold when v = 0.)

1.5.2 Poisson’s functional

Here we consider

F [u] =

∫ 1

0

(u+ u′2) dx
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on
A0 = {u ∈ C1[a, b] : u(0) = 0 = u(1)}.

Here the function u ≡ 0 is admissible and gives F [u] = 0, but this is not
the minimizer. The Lagrangian is F (z, p) = z + p2 and the Euler-Lagrange
equation is

2u′′ − 1 = 0.

Again, we have extra regularity for extremals, and the unique extremal is

u0 =
1

4
x(x− 1).

Computing F [u0] we get

∫ 1

0

[

1

4
x2 − 1

4
x+

1

4

(

x− 1

2

)2
]

dx =
1

4

(

1

3
− 1

2
+

1

24
+

1

24

)

= − 1

24
.

Thus, F [u0] < 0. See Exercise 16.

1.5.3 Arclength functional

Here is an instance where C2 regularity is not immediate from the Euler-
Lagrange equation. The Lagrangian is

√

1 + p2, and the Euler-Lagrange
equation is

d

dx

(

u′√
1 + u′2

)

= 0.

With additional regularity, the differentiation may be carried out so that the
left side is immediately recognizable as the curvature of the graph of u:

k =
u′′

(1 + u′2)3/2
.

Of course, if the curvature vanishes, the graph is a straight line. See Exer-
cise 17.

1.5.4 Potential equation

An ordinary differential equation (ODE) central to the study of many phys-
ical phenomena is the second order linear potential equation

−u′′ + c(x)u = 0
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associated with the variational integral

F [u] =

∫ b

a

[

u′2 + c(x)u2
]

dx.

The function c = c(x) is called the potential. See Exercise 19. This is
Example 2 on page 14 of BGH.

1.6 Exercises

Exercise 15. Compute the Dirichlet energy of the sequence of functions
uj ∈ A0 = {u ∈ C1[0, 1] : u(0) = 0, u(1) = 1} which converge in L1(0, 1) to
the constant zero function.

Exercise 16. Show u0 = x(x − 1)/4 is the unique minimizer of Poisson’s
functional

F [u] =

∫ 1

0

(u+ u′2) dx

on
A0 = {u ∈ C1[0, 0] : u(0) = 0 = u(1)}.

Exercise 17. Explicitly integrate the Euler-Lagrange equation for the ar-
clength functional to verify all extremal solutions must be affine, having the
form u(x) = αx+ β for some constants α and β.

Exercise 18. Find the extremals for the total variation functional.

Exercise 19. Show the potential equation is the Euler-Lagrange equation of
the functional

F [u] =

∫ b

a

[

u′2 + c(x)u2
]

dx.

What can you say about the regularity of solutions in C1[a, b]?

Exercise 20 (project exercise). Consider a cylindrical container (modeled
by)

{(x, y, z) : x2 + y2 = 1, z ≥ 0} ∪ {(x, y, 0) : x2 + y2 ≤ 1}.
Assume the container contains a volume V = π of liquid in a gravity field so
that the volume initially occupies the space

{(x, y, z) : x2 + y2 < 1, 0 < z < 1}.
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(Ignore surface tension and wetting energy.) Assume, more generally, that
the liquid is bounded by the graph of an even function z = u(r) for −1 < r < 1
(in polar coordinates) in the admissible class

A =

{

u ∈ C1[0, 1] : u′(0) = 0, 2π

∫ 1

0

ru(r) dr = π

}

.

If the container (along with the liquid it contains) is rotating at a constant
angular velocity ω, calculate the physical energy of the system two ways:

(a) The physical energy is the kinetic energy of rotation.

(b) With respect to a rotating frame fixed to the container, the physical en-
ergy is the potential energy with respect to the apparent field.

Find (and solve) the Euler-Lagrange equation for the interface. What happens
if the container has some other shape (but still rotates with a given volume
of liquid around some axis)?

Solutions

Solution 1 (Exercise 8). Let

f(x) = χ(−δ,δ)

(

x− x0

δ

)

and consider the convolution integral

µǫ ∗ f(x) =

∫

ξ∈R

µ(ξ)f(ξ − x).

Show the following:

(a) µǫ ∗ f = f ∗ µǫ.

(b) µǫ ∗ f ∈ C∞

c (R).

(c) 0 ≤ µǫ ∗ f(x) ≤ 1 for all x ∈ R.

(d) When ǫ < δ

µǫ ∗ f(x) =

{

0, |x| ≥ δ + ǫ
1, |x| ≤ δ − ǫ.


