Chapter 6

The Hanging Chain

If a chain or cable has its ends fixed at two different points and hangs under
the influence of gravity, it takes the shape of a hyperbolic cosine curve. We
now describe this shape precisely and explain how it arises as a minimizer of
potential energy among many possible shapes.

Y

Figure 6.1: the shape of a chain hanging from its endpoints in gravity

6.1 Analysis

6.1.1 Model

Let ¢ > 0 be the length of the chain and let p denote the linear density of
mass along the length of chain. Choose x, y-coordinates with the left end of
the chain fixed at (—1,0) and the right end at (1,u;). We have made a choice
of units here so that the horizontal distance between the fixed endpoints is
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92 CHAPTER 6. THE HANGING CHAIN

2 units. This is equivalent to scaling the system given in some particular
initial units. We could also assume wu; has a specific sign, say u; > 0, but
this is not necessary.

Given the length constraint on the chain, we must have

1+ui < (2 (6.1)

There are many curves of length ¢ connecting (—1,0) to (1,u1). Among
these consider C! curves given by the graph of a function u : [0,1] — R. The

Figure 6.2: an alternative chain shape and the associated potential energy

length constraint may then be written as
1
/ VIFW@Pdr = ¢.
—1

Assuming a constant gravitational field G = —¢(0,1) and zero potential at
y = 0, we may integrate to approximate the potential energy of a portion of

the chain having mass Am; = p, /1 + [v/(2})]* Aw;:

u(x*)
approximate potential energy V; = / ’ pgy/ 1+ u’(xj-)Q Ax;dy.
0

The potential energy associated with a point mass is given by the work re-
quired to move the mass from a position of zero potential to another position,
that is, — fﬁ/ F-T where F is the force field, 7 is a path connecting a position
of zero potential to the position of the mass, and T' is the unit tangent vector
along the path. In this case the force F' = Amjé = —Am;g(0,1) is assumed
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constant, and the integral amounts to the force multiplied by the vertical
distance to equilibrium:

Vy = pgu(a;)/1 + w/(23)? Aa.

Summing over all model portions of chain and taking the limit as the mazi-
mum portion length tends to 0, we find an expression for the total potential
energy as a function of the chain shape determined by wu:

1
potential energy V' = limz pgu(;) /1 +u'(25)? Ax; = / pgu(x)\/1+ u'(z)? dx.
-1

By the Leibniz’/Maupertuis’ principle of virtual work, or Hamilton’s action
principle, the observable shape u should be a critical point for

Viu) = / pgule)TF W@ da

subject to the constraint

Llu] = /_1 V1+u(z)tde = L.

Under the assumption that p and ¢ are positive constants, we may replace
the expression for V' above with

V{u] = /_1u(:c)\/1 +u/(z)? dx

Introducing a Lagrange multiplier A associated with the constraint and
assuming the existence of the model shape within the admissible class

A={uecC*-1,1]:u(-1) =0, u(l) = w; },

we set F =V 4+ AL and obtain the necessary condition

1
dF.[9] :i/ (u+ep+ N1+ (W +ed)2dey =0

dE -1 e=0

for all ¢ € C2°(—1,1). Differentiating under the integral and evaluating, we
find

/ l¢x/1+u'2+(u+>\)ﬂ der = 0.

1
1 1+ u/?
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We may integrate by parts in the second term to obtain

1 /
(u+ N ; B oo
/_1 [— (W) +\/1+u2}¢—0 for all p € C°(—1,1).

Finally, we may apply the fundamental lemma of the calculus of variations
to obtain a two point boundary value problem for a second order nonlinear
ordinary differential equation for the observed shape u:

<%) _VIT, u(-1) =0, u(l) = us.

We know this equation is satisfied even under the assumption v € C*[—1,1].

6.1.2 Extremal graphs

Using the assumed regularity of the observed shape u, we can also write

u// u/2
A — VIt u?
(U+ )(1 +u/2)3/2 + /1 _'_u/2 +u

or
(u+Nu" =1+ u”

Under the assumption u”(—1) > 0, which (based on observation of the shape
of actual physical hanging chains) seems rather reasonable, we can solve for
the Lagrange multiplier and find

1+d/(=1)?

A u"(—1)

> 0.

More generally, whenever u + A # 0, we can write

Lu”:#u/
1+ u? w+ N

In particular, integrating from x = —1 to ,

’

v t v 1
[

[In(1 4 u?) —In(1 +u'(-1)%)] =In(u+ A) —InA.

or

N | —
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It follows that

1 4 u'? U 2
T (Y1) 2
1+ uw(—1)2 5+ (6:2)

Let us pause at this point to consider the first integral equation
u' Fy(u,u') — F(u,u’) = —c (6.3)

where ¢ is some constant and F(z,p) = (z + A\)y/1 + p? is the Lagrangian
associated with F. We have used —c instead of ¢ here to simplify things
later. After a computation, we find

2

U e C
_— 1 ,2:— .
V1+u? o u+ A

That is,
1
V1i4+u?=—(u+N).
c

Taking the contant ¢ = A/y/1 + u/(—1)?, which it must be, we see several
things. First of all, any solution of the first integral equation with ¢ # 0 will
give a solution of (6.2). It is possible to get a solution of (6.3) with the choice
¢ = 0, but in this case, we must take u = —\ = 0, and we must therefore have
u; = 0. This is, indeed, not a solution of the Euler-Lagrange equation for
F =V 4+ AL, but this possibility represents the exceptional case of Theorem 9
(Proposition 1.17 in BGH) in which the constraint is degenerate. In this case,
the solution u = 0 gives the shortest path between (—1,0) and (1,u1) = (1,0)
and is, therefore, a critical point for the length functional L providing the
constraint. When ¢ # 0, we obtain from the first integral equation a global
justification for our assumption

u+ A # 0.

This is because every solution of the Euler-Lagrange equation must be a
solution of the first integral equation. Only the solution u = 0 in the case
u; = 0 and ¢ = 2 is exceptional.

Finally, the first integral equation tells us something about the sign of
u—+ A because

1 /_12
v1+u’2:#(u+)\).
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It follows that u+ A and A must share the same sign, and under our, seemingly
justified, assumpetion u”(—1) > 0, that sign is positive. Thus, we may pro-
ceed to solve either the Euler-Lagrange equation or the first integral equation
under this assumption. Making the substituion v = (u+ A)y/1 4+ w/(=1)2/),
we find

A

v =+Vv2—1 or — =tV - 1.
1+ u/(—1)?
It follows that
1 "(—1)2
cosh ™ v — cosh™tv(—1) = i# (x+1),
1 / _1 2 1 / _1 2
v = %(ujt)\) = cosh ﬂ:# (z +1) + cosh™ v(—l)] :
or
A 1 '(—1)2
U = —A\+——=——=—=cosh jL4()( 4+ 1) £cosh™ /1 +u/(— :
1+ (—1)2 A

This looks rather complicated, but it does tell us that the extremals have
the form of hyperbolic cosine curves This also confirms that the constant
¢ from the first integral equation should be positive with ¢ < 0 extremals
corresponding to maximizers of the energy. Substituting the value of ¢ from
the first integral equation and differentiating, we also see

u' = sinh ((:)3+1 Je£cosh™ /1 +u/(— )

This allows us to nominally locate the vertex or lowest point on the hyperbolic
cosine curve which occurs for

= p=—1Fccosh ' (\c).

In terms of this parameter, the extremals may be written as

u = —\ + ccosh <x;,u)
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There are now three unknown parameters A, i, and ¢, but the initial condition

u(—1) = 0 implies
1
A = ccosh ( t'u)

u = ccosh (x—,u) — ccosh (1 +,u) .
c c

The other endpoint condition takes the symmetric form

1— 1
ccosh( ,u) — ccosh (ﬂ) = u.
c c

Another equation we can use to determine the parameters ¢ and u is given
by the length constraint L]u] = ¢.

u' = sinh <x—u) and 1+ u? = cosh? (:L"—u) )

C C

and

Therefore,

1 1 =y
L[u]:/ vl—i-u’zdm:/ cosh( )d:c,
-1

-1 C

and writing down L[u] = ¢ we are led to the fundamental symmetric system:

1- 1
ccosh( M) —ccosh< +M) = u. (6.4)
c c
1— 1
csinh ( ,u) + csinh (%) =/ (6.5)
c

In this symmetric form, it is possible to eliminate p as follows: Square both
equations and subtract the first from the second, noting ¢? — uf > 4. We get

c [—2+2cosh (1 —,u) cosh <1Jg'u) + 2sinh (1 —,u) sinh (1 —i—,u)] = 02—l
c c c

That is,
2 1 1 2 —u?
—1+cosh(=)=1+cosh?(=) +sinh? (=)= ul.
c c c 2c2

and
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That is,

) 1 1
csinh <E) = 5\/62 —u? > 1. (6.6)

In this way, we obtain a single transcendental equation for ¢. One can show
csinh(1/c) is monotone decreasing in ¢ for ¢ > 0 and takes every value
greater than 1. Let us verify the equivalent assertions for the function f(z) =
sinh z/z. First of all if 2\ 0, we have by L’Hopital’s rule

sinh 2 sinh z
lim =limcoshz=1 and lim = lim cosh z = 0.
2\0 Z 2\,0 z/l00 2 z,/ 00

Also,

zcosh z — sinh z

f/(z) = 2

Setting fi(z) = zcosh z — sinh z we see f1(0) = 0 and f{(z) = zsinhz > 0
for z > 0. In particular, f1(z) > 0 for z > 0, so f'(z) > 0 for z > 0. Also,

lim f'(z) = lim fi(2)

=0.
2\0 N0 2z

We have shown that f takes every value on [1, 00) uniquely and has a well-
defined inverse on that interval. Thus, we have a unique solution

__ sinh
f(Z) - smz z

s
%
%

1 2 3 A’Z

Figure 6.3: sinh z/z and its inverse
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1
P

Once we know ¢ > 0, we can expand (6.4) to see

—2c¢sinh (1) sinh (H) = Uuy.
c c

Therefore, substituting from (6.6),

. -1 Uy
n = —csinh —

Setting g = f~!, we also know

C =

lim ¢'(v) = +o0.

v\, 1
In order to get an accurate approximation for ¢ = f~! near v = 1, we
compute the next derivative of f:
. 22fl —2zf1  2*sinhz — 2z cosh z + 2sinh 2
.f (Z) = 4 - 3 .
z z
Again, using L’Hopital’s rule
coshz 1
lim f”(z) = lim =—.
2\,0 2\.0 3 3

Thus, we have to leading order v ~ 14 g(v)?/6 or g(v) ~ go(v) = \/6(v — 1).

It is less obvious how to obtain a simple approximation for g(v) when v
is large. Let us begin with an intermediate approximation obtained from the
Taylor expansion of f at z = 1. We have

f(1) = sinh(1), f'(1) = cosh(1)—sinh(1), and  f"(1) = 3sinh(1)—2cosh(1).

Thus, v ~ sinh(1)+(cosh(1)—sinh(1))(g—1)+ (3 sinh(1)—2 cosh(1))(g—1)?/2,
and we have an approximation

sinh(1) — cosh(1) + \/coshz(l) +sinh(2) — 5sinh®(1) + 2(3sinh(1) — 2 cosh(1))v
3sinh(1) — 2 cosh(1) ’

g(v) ~ gi(v) = 1+
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This approximation is relatively accurate on a rather small interval about
sinh(1). The average (g1(v) + g2(v))/2 is accurate for somewhat larger v.

For v > 1, we also have recourse to a recursive approximation scheme.
Picking an initial value gy, for example, we could take gy = sinh™*(v) which
will be smaller than ¢g(v) as long as v > sinh(1). We see the actual value
g(v) satisfies

sinh g(v)
9(v)

This suggests setting g; = sinh™'(vg) and g;1 = sinh™'(vg;) in general for
i=0,1,2,...

Conjecture 1. The sequence g; tends (upward) to g(v) with the estimate

=0 or  g(v) =sinh " (vg(v)).

9(v) = gj+1 < gjt1 — gj-
For example, if we take v = 33.6189 ~ sinh[6]/6, then
go = sinh ™' (v) ~ 4.20846
g1 = sinh™!(gov) ~ 5.64534
g2 = sinh™ ! (g1v) ~ 5.93907
(

)
g3 = sinh ™ (gov) ~ 5.98979.

6.1.3 Minimality of extremals

We have established the existence of a unique catenary extremal given by
the graph of a function u € C*°[—1, 1] and satisfying

1
u(—1) =0, wu(l)=u, and / V1+u?dr =0
-1

The function u satisfies

u(x) = cosh (x;“) —ccosh(lt’u) (6.7)

where ¢ > 0 is the unique solution of ¢sinh(1/c) = /%2 — u? / 2 >0, and

(= —csinh™! LQ .
vV 62 — U

We now wish to establish the following result.
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Theorem 16. The function u given in (6.7) is the unique minimizer of

1
V{ul :/ uv1+u?de
-1

A={uecC'-1,1]:u(-1) =0, u(l) =u}

subject to

1
Llu] :/ V1+u?dr =4
-1

A fundamental difficulty in establishing this result is that the Lagrangian
F(z,p) = (2 + A)y/1 + p? associated with the augmented functional F =

V + AL where
1
)\:ccosh< tu) >0

is not (always) convex. Showing this is Problem 30 of Chapter 3 in Troutman.
Following Troutman, we take the special case u; = 0. In this case p = 0, and
the extremal is given by

1
u(x) = ccosh (f) - A with A = ccosh (—) :
c c
On the other hand, the function wy = 0 satisfies uy € A, and 0F,[v] = 0.
Taking v = —u, we have u + v = uy and showing F is not convex amounts
to showing
f[U()] —]-"[u] <0

(under some circumstances). In fact,

1 1
= 2ccosh (—) — c/ cosh? (E) dx
c _1 c
1
= 2ccosh <1) — E/ [cosh <2—$) + 1} dx
c 2/, c
2
= 2ccosh <1) < sinh (g) —c
c 2 c
1 1 1
c [2 cosh <—) — ¢sinh <—) cosh (—) — 1] .
c c c
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Since xsinhx — oo as ¢ " oo, we see that for ¢ > 0 small enough

1
csinh (—) > 2
c

and Flug] — Flu] < 0. Recalling that ¢ is determined by

1 1 14
csinh (;) :i 52—2@:5,

we find nonconvexity for chains of any length ¢ > 4.

In spite of this nonconvexity, Troutman suggests a rephrasing of the prob-
lem which leads to a much stronger result than Theorem 16 above. The
function u determines a parametric curve parameterized by arclength. This
is given by the function x € C1([0, (] — R?) by x(s) = (£(s),n(s)) where

(6.8)

{ &(s) = p+ csinh™" [2 — sinh (2£)]
n(s) = u(£(s)) = ccosh (sinh™" [£ — sinh (2£)]) — ccosh (H£) .

c c

This parametric map x also satisfies

¢ ¢
X|=1 and 2= / g'(s)ds = / V1—n?ds.
1 0

Now if we let x = (¢,7) € C*([0,¢] — R?) be any parametric curve parame-
terized by arclength (|x'| = 1) with x(0) = (—1,0) and x(¢) = (1, uy), then
the potential energy expression

1
Vu] = / uv1+u?de
-1
generalizes to

Vi[x] Z/Oznd&

To see this, we may again consider a portion of chain of mass Am; = pAs;
located at a point x(s}). The potential energy of this particular section of
chain is approximately

n
/ pgAs;dy = pgnAs;.
0
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Figure 6.4: an parametric chain shape: These shapes are also not required to
satisfy —1 < £ < 1 though the one illustrated does. (Actually, this shape has
length a little longer than the original catenary chain shape.)

Summing over a partition of such portions and taking the limit as the maxi-
mum length As; tends to zero (and dividing out by the constant pg as usual),
we arrive at the expression for V; above. The following result treats these
general parametric curves of length ¢ connecting (—1,0) to (1,u;) and as-
serts that the catenary graph extremal is the unique minimizer among such
curves.

Theorem 17. The catenary graph satisfying (6.8) is the unique minimizer

of .
Vl[x]:/o nds
B={xcC0,{] — R :x(0) = (-1,0), x(¢{) = (1,uy), |x|=1}

subject to
‘
Li[x] = / V1—n?ds=2.
0

Finally, we simplify the previous result slightly and prove something even
more general. It will be noted that the functionals appearing above only
depend on the second coordinate function of x, namely, n € C*[0,¢]. Thus,
it makes sense to extend their domains and rename them:

4
ViCod—R by Vb= [ s
0
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and

¢
Ly :{neC'0,0:|n(s)| <1for0<s</(}—-R by L[] :/ V1-—n?ds.
0

We now state the main result.

Theorem 18. The second component of the parametric map defined in (6.8)
is the unique minimizer of

Vili = [ s
B = {x C}(0,0] R : n(0) = 0, n(6) = s}
subject to

¢
Lq[n] :/ V1—n?ds =2.
0

Notice the absence of the condition |x’| = 1 in the definition of B. Notice,
furthermore, that the functional L, is not (even) defined on all of B, but only
on

Bi={neB:|n(s) <1for0<s</}

Proof of Theorem 18: We show first that n from (6.8) is the unique
minimizer of

Glol = (i~ el = [ [n-ev/T= 7] as

on B; (without constraint). This follows from two facts

1. The augmented functional G = V; — ¢ is strictly convex on B; in the
sense of Definition 5.

2. The function 7 from (6.8) is an extremal for G, that is dG,[v] = 0
whenever n 4+ v € By.

If we can establish these two assertions, we may apply Theorem 14 on min-
imizing convex functionals. The strict convexity does not follow from our
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previous result because the augmented Lagrangian G(z,p) = z — ¢y/1 — p?
is not strictly second order convex. We do have

0 0
pa- (i 0 ).
=277

Therefore, for each v € C*[0, ¢] such that n +v € By, we have

/ / / / __c
G +ov,n +v)—Gnn') =G.(n,n)v+Gpn,n ) + 21— 2)3/27’/2

*

> G.(n, 1 )v+ Gyp(n,n )V’

with equality only if v/ = 0 (pointwise). Integrating this inequality

¢ l 2
c v
G110l = [ 1G.n.a)yo+ Gl )ds+§ [ ds = a0,
with equality only if v = 0. But if n + v € By, then v(0) = v(¢) = 0, so
equality implies v = 0. This establishes the strict convexity of G.
On the other hand, the Euler-Lagrange equation for G is

, /
el ) =
/1 + 77/2
where the derivatives are with respect to the arclength s. To compute this

for the function 7 from the arclength parameterization of the catenary we
observe first that

¢ - 1
s:/ \/1—i-u’2alm:csinh<f M)—l—csinh( +M).
0

C C

Therefore,
d§ 1

ds cosh (g_T“) .

Having made this observation/calculation we have from (6.8)

% __sinh (5_“)

du :

- dm( ds  cosh (5_“)'

C

1'(s)
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d n d [ . E—pu a1

— | —— | = — [ sinh — =,

ds 1 —n? dx c ‘ ds ¢
r=E£

and 7 is a C? classical extremal for G. In particular, 6G,[v] = 0, and G[n +
v] — G[n] > 0 whenever n 4+ v € B; with equality only if v = 0.
The usual argument of Theorem 10 now applies. That is, it happens that

¢
Lq[n] :/ V1—n?ds =2,
0

so for any v € C*0, ¢] such that n+ v € B and for which Li[n + v] = 2, we
have

Therefore,

Viln +v] = clan + 0] = Gln + v] = Gl = Viln] — cLa[n]
with equality only if v = 0. Since L[ + v] = L[] = 2, we have

Viln+v] > Vi[n] with equality only if v = 0.

This establishes Theorem 18. o
Proof of Theorem 17: If x = (£, 7) € B satisfies

l
/)Ml—ﬁ%k:2
0

and x is the parametric catenary, then 77 € By C B and satisfies L;[7] = 2.
Thus, by Theorem 18

Vi[X] = Vi[n] > Vi[n] = Vi[x] with equality only if 7 = 7.
We have, in particular, V;[X] > V;[x] for all X € B satisfying the constraint
Ly[x] = 2.

In the case of equality we have & = ++/1 — 72 and

¢ ¢
2:/§'ds:/ V1 —n"?ds.
0 0

Since 1/(s) = 1 for at most one arclength s, we conclude € = /1 — 72 and
X =X. O
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Finally we prove the initial (and weakest) assertion.
Proof of Theorem 16: If u € A and

1
L[d] :/ V1= a2dr =,
-1

then the graph of & may be parameterized by arclength to give a parameter-
ized curve X € B satisfying the constraint

l
Li[X] :/ V1—i2ds = 2.
0

By Theorem 17, we know V;[x]| > V;[x] with equality only if X = x. Changing
variables, we find

Vi[X] :/Ogﬁds:/_zamdx:vm

and

Vilx] = /Oznds: /_zumdx: V{u).

The result evidently follows. O

Relations to physical parameters

If we wished to consider the right endpoint to have a general coordinate (¢, d)
with ¢ > 0 and ¢ + d? < (2, we could first make a choice of units so that
the length ¢ measures one unit in the new system. Equivalently, we consider
the problem with right endpoint at (1,d/c). If d > 0, we can reverse the
endpoints.



