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POLYHEDRAL NORMS
IN AN INFINITE DIMENSIONAL SPACE

ROLAND DURIER AND PIER LUIGI PAPINI

ABSTRACT. In finite dimensional linear spaces, polyhedral
norms have been widely studied. Many extensions of such no-
tions to infinite-dimensional spaces are possible: in fact, sev-
eral different definitions have been given, leading to different
classes of spaces; the comparison among these classes has not
been studied in detail.

In the present paper we prove equivalences and inclusions
among the classes considered in this context, and we indicate
some counterexamples.

1. Introduction. In a finite dimensional linear space over the
real field, a polytope is the convex hull of a finite set of points, or
equivalently, the intersection of a finite number of closed half spaces.
A finite dimensional normed space is said to be polyhedral if its unit
ball is a polytope; note that such a space is polyhedral if and only if
its dual space is also polyhedral.

In an infinite dimensional normed space X, we may consider several
properties concerning the unit ball of X or of its dual space, which
reduce to polyhedrality when the dimension of X is finite. In this paper
we study eight properties of this kind, which have been introduced in
the literature, and we establish relations among them. We study in
depth two among the more important ones (polyhedrality according to
Klee and quasi-polyhedrality according to Amir and Deutsch); several
equivalent formulations of them are given. The particular case of
Lindenstrauss spaces (spaces whose dual is linearly isometric to Lj(u)
for some measure p) leads to a simpler situation.

2. Preliminaries. Throughout the paper, X is a normed space over
R, and unless otherwise stated, X is assumed to be infinite dimensional;
B is its closed unit ball and S its unit sphere. The space X will always
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be endowed with the topology of the norm. For a subset A C X, A
and int (A) will indicate, respectively, the closure and the interior of A;
for z € X, V(z) indicates the set of all neighborhoods of . We denote
by X* the topological dual of X and by B* and S*, respectively, the
closed unit ball and the unit sphere of X*. The space X* will always
be endowed with the o(X*, X)-topology, also called the w*-topology.
With this topology, B* is known to be compact; £(B*) will indicate
the set of all extreme points of B* and &'(B*) its derived set; £(B*)
is known to be infinite (X™* is infinite dimensional); thus, £'(B*) is
nonempty (due to the w*-compactness of B*).

For z € X, we denote by 0v(z) the subdifferential of the norm at
z. If ¢ # 0, 0y(z) is the face of B* : {z* € S*/z*(z) = ||z||}; this
is also called the peak-set. We have, moreover, 9y(0) = B* and the
correspondence z = 9y(z) is known to be upper semicontinuous. For
x # 0, the set 0. (z) = Oy(z) NE(B*) is the set of all extreme points of
the convex compact set 9y(z). The directional derivative of the norm
at z in the direction v # 0 is

"(z50) = li tv]| - t;
7 (@;0) = lim ([l +tol] —[le]])/t;

it is related to the subdifferential 0v(x) by
v (z;v) = max{z" (v)/z" € Ov(z)}.

Let x be a point in .S. We introduce now three cones with vertex at
x:

K(z) ={y € X/3X>0,[lz+ Ay — 2)|| <1},
Clz) ={y € X/AX>0,[lz + Ay — 2)|| < 1},
I(z)={y € X/y # z,7(z;y — z) < 0}.

We define also on S the function /,:
forue S, [;(uv)=max{k >0/z+ku e B} =inf{k > 0/z+ku ¢ B}.
Let v be a point in X, v # 0. We introduce three sets:
Qy={z € X/YA>0,|lz— || > |z||},

P, is the complementary set of Q,,
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U, ={z € X/9 (x;—v) > 0}
={z € X/Oy(z)N{z* € X*/z*(v) < 0} # T}.

Concerning the three kinds of cones, these sets and the function [,
we collect in Proposition 1 some properties useful in the sequel.

Proposition 1. A. Let x € S. Then

i) K(z) is open, I'(x) is closed, and we have

int (B)CK(z), BCC(z), and K(z)CC(z)CC(z)= K(z)CI'(z).

ii) Lety # x. Then

y € C(z) if and only if x € P,_,
y € (z) if and only if x ¢ Uy_y.

iii) The function l, is upper semicontinuous on S, and, for u € S,

lo(u—2) >0 if and only if u € C(x).
B. Letv # 0. Then we have

U’UCQ’U Cm:@

Proof. The proofs are straightforward. For B, see [8]. o

3. Eight kinds of polyhedrality. We recall four definitions of
polyhedrality for an infinite dimensional normed space X, which have
been proposed.

Polyhedrality according to Klee [15]: every intersection of B with any
finite dimensional subspace of X is a polytope. It is the most widely
studied definition in the area. Some results concerning this notion will
be given in Section 4.

Polyhedrality according to Bastiani [3-4]: if 7 denotes the finest
topology on X for which X is a locally convex Hausdorff vector space,
B is t-closed and, for every z € S, C(x) is 7-closed. In fact, in [3-4],
Bastiani defines “pyramids” and “polyhedra” in an abstract setting.
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Polyhedrality according to Maserick [21]: B is a “convex polytope”
if, for every ¢ € X, the set {z* € £(B*)/z*(x) > 1} is finite. The
following assertions are clearly equivalent:

(i) B is not a “convex polytope” according to Maserick,
(ii) there exist z € X and z* € £'(B*) such that z*(z) > 1,
(iii) there exists z* € £'(B*) with z* # 0.

Thus, polyhedrality according to Maserick means, in fact:

&'(B*) = {0}, or equivalently, &'(B*)c {0}.

Quasi-polyhedrality: for every x € S, there exists V' € V(z) such that
K(z)NV =int (B) N V. This is the definition initially given by Amir
and Deutsch [1]. This concept will be intensively studied in Section 5.

The following theorem establishes implications and equivalences
among these properties and four other ones which appear in the lit-
erature.

Theorem 1. With the following notations:
(1) &(B*) c {0}
(2) Forallz* € E'(B*), forallx € S, z*(z) < 1,

(3) For all x € S, there exists I, C E(B*), I, finite, such that
sup{z*(z)/z* € E(B*)\L.} < 1,

(4) For allx € S, sup{z*(z)/z* € E(B*)\Ove(v)} < 1,
(5) X is quasi-polyhedral,
(6) For allv #0, U, is closed,
(7) X 1s polyhedral according to Klee,
(8) X is polyhedral according to Bastiani,
we have the implications:
(2) (7)
I=| 0 |=@=06)=06)=1 1
(3) (8)

The proof of the theorem is postponed to Section 6.
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If X is finite dimensional, then each of the eight properties of Theorem
2 means that X is polyhedral and all these properties are equivalent.

If X = ¢o(N), or more generally, X = ¢o(I") where I is an abstract
infinite set, then X satisfies (1) and therefore all other properties; but
the duals of these spaces satisfy none of these properties.

The following implications between some pairs of properties are
proved in the literature. (1) = (8) is due to Maserick [21]. (2) is used
by Gleit and McGuigan [13] and (3) by Lindenstrauss [18, Lemma
7.12] as sufficient conditions for a space to be polyhedral according to
Klee. (5) = (7), (1) = (5), but (5) # (1) are due to Amir and Deutsch
[1]. (4) is introduced by Brosowski and Deutsch [5], and (6) appears
in [8] where the implication (5) = (6) is proved.

4. Polyhedrality according to Klee.

Theorem 2. The following properties are equivalent:
(K1) X is polyhedral according to Klee,

(K2) Forallz e S, C(z) is closed,

(K3) Forallz €S, {ue S/l,(u) > 0} is closed,
(K4) Forallz e S, C(x) =T (z),

(Ks) Forallv#0,Q,="U,.

Proof. In a finite dimensional normed space, (K;) < (K3) is proved
in [14, Proposition 5.8]. As an immediate consequence, in our setting,
(K2) = (K1); indeed, if Y is a finite dimensional subspace of X, for
z € SNY, C(z)NY is closed and then Y is polyhedral. We prove
(K1) = (K5) by the contrapositive; assume @, # U, for some v # 0;
then there exists some y € Q,\U,, y # 0 and the two-dimensional
subspace generated by v and y is not polyhedral, so X cannot be
polyhedral. To prove (K5) = (K4), let « € S and y € I'(z), thus
y # x; then (cf. Proposition 1), x ¢ U,_, and (due to (K5)) ¢ Qu—y;
i.e.,, y € C(z). Thus, (K5) implies I'(z) C C(z) for every z € S; it is
sufficient since C(z) C I'(z) always. Now (K4) = (K3), since I'(z) is
closed, and finally (K3) is obviously equivalent to (K3). O
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The above theorem allows us to answer a question raised in [2, p.
306]. Does the condition that B is polyhedral according to Klee imply
that each C(z) is closed, when z is an extreme point of B? The answer
is clearly positive.

Since its introduction by Klee, polyhedrality in his sense has been
widely studied. Instead of quoting all the articles on this subject, we
indicate only some recent papers of Fonf [9, 10, 11, 12], who considers
several different aspects of polyhedral spaces.

5. Quasi-polyhedral spaces.
Theorem 3. The following properties are equivalent.

(a1) X is quasi-polyhedral according to Amir and Deutsch, i.e., for
all z € S, there exists V € V(z), K(x)NV =int(B)NV,

az) for allx € S, there exists V € V(z), K(x)NV =BNV,

(b1) for all x € S, there exists V € V(z), for ally € V, Oy(y) C
9(),

(ba) for all z € S, there exists V € V(z), for ally € V, dv(z)
N (y) # 2,

(bs) for allx € S, there exists V € V(x), forally e V, Ov(z+y) C
9y(x) N 9y(y),

(b)) for all x € S, there exists V € V(z), for ally € V, Ove(y) C
e(z),

(by) for all x € S, there exists V € V(x), for all y € V, Ov.(z) N
e(y) # 2,

(b)) for allx € S, there exists V € V(z), for ally € V, Ov.(x+y) C
e(x) N O7e(y),



POLYHEDRAL NORMS 869

(c1) for all z € S, there exists V € V(z), for ally € V, ||z +y|| =
[ + [ly/1;

(c2) for all x € S, there exists V € V(x), for ally € SNV, the
segment [x,y] is included in S.

Each of these properties may have its own interest. (a1), (az2), (a3) and
(a4) have a clear geometric meaning; (a;) and (ag) were introduced in
[1] and [7], (a3) in [22]. Formulation (b;) which is probably the most
useful is due to Wegmann [23]. The other formulations are more or
less new; (c1) links up quasi-polyhedrality with the wedges in which
the norm is an additive function (cf. Day [6, p. 116]).

The following results: (a1) < (a2) < (a3) < (b1) are known [1, 7,
23]. For the sake of completeness, we give here independent proofs.

Proof of Theorem 3. (a1) < (az2) < (a3): it is sufficient to observe
that, if V' is an open neighborhood of z € S, then, according to
Proposition 1,

int(B)NVOK(X)NV=BNVD>K()nV
=BNV>Cx)nV

=int(B)NV DOintC(z)NV =int(B)NV D K(z)NV.

(a3) < (as): (as) is another formulation of (a3z). By considering
the norm as the gauge of B, we obtain (¢1) < (cz). We prove now
(c1) = (asz); let € S and V' € V(zx) such that, for every y € V,
llz + yl| = [|z|| + ||ly||. Let y € C(xz) NV, then for some X\ € (0,1),
z = 4+ Az — y) is a member of B. As z belongs to the segment
[z, y], we have ||z]| = (1 — A)||z|| + A||y||, which implies ||y|| < 1. Thus,
C(z) NV C B. To establish (a;) and (a2) = (c2), we take in (a;)
and (az) the same neighborhood V of z € S and we assume that V is
convex; let y € SNV, so y € K(z)\K(z); then each z of the segment
[z, y] satisfies z € K(z) and z ¢ K(z), whence z € B and z ¢ int (B).
Thus, [z,y] is included in S.
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We still have to prove the chain of implications:

(bs) = () = (b2)

f U
(c1) (c1)
Y f

®s) = () = (b))
We will use the following lemma:

Lemma. Let xz # 0 and y # 0. The following are equivalent:

(1) e +yll = (|l + |yl

(ii) Ov(z+y) Cov(z)Nov(y) (ii") Ove(z +y) C 0ve(z) N OTVe(y)
(ili) Ov(z+y) =0v(z)Noy(y) (iil') Ove(z+y) = Ive(z) NOVe(y)
(iv) Ov(z)Nov(y) # @ (iv') Ove(z) N Ove(y) # @

Proof of the lemma. (i) = (ii). Let 2* € 9y(z + y); then, from (i),
|zl +lyl| = [l +y[| = 2"(z +y) = 2"(z) + 2 (y) < [|z][ + [|y]|. So we
have z*(z) = ||z|| and z*(y) = ||y|; i-e., * € Ov(z) N Iy(y).

(i) = (iii). Indeed, Ov(z) N Oy(y) C Oy(z + y) is always true:
z*(z) = ||z|| and z*(y) = ||y|| imply =*(z +y) = [lz|| +[ly|| = |lz+yll,
and thus equality z*(z 4+ y) = ||z + y|| is the only one possible.

(iii) = (iv) is obvious.

(iv) = (i). Let z* € 9y(z) N dv(y); then ||z + y|| > z*(z + y) =
z*(x) + 2*(y) = |lz|l + lyl| = ||z + yl|, so we have (i).

The same reasoning is available with 0. instead of 0v.

We now finish the proof of Theorem 3. The lemma implies (¢1) =
(bs) = (b2) = (c1) and (c1) = (b)) = (b3) = (c1). Obviously,
(b1) = (b2) and (b)) = (by). It remains to establish (bs) = (b1),
(and analogously, (b3) = (b})). Let z € S and V, € V(0) such that, for
y €x+Vy, Oy(z+y) C dy(z) Ndvy(y). Since, for v € X and k > 0,
0v(kv) = 0v(v), then 0y((x 4+ y)/2) C Oy(z) NOy(y). Buty c x + 1}
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means (z + y)/2 € x + Vu/2, then we have 0v(z) C dvy(x) for every
zex+Vy/2. o

6. Proof of Theorem 1. Some counterexamples.

Proof of Theorem 1. (1) = (2) is obvious.

We prove (3) = (2), and then (2) = (3) by the contrapositive. Let
X not satisfy (2); thus there exists * € £'(B*) such that 2*(z) = 1
for some z € S. We want to show that sup{y*(z)/y* € E(B*)\I} > 1
for every finite subset I of £(B*). In fact, given a finite set I C £(B*),
there exists a net {z%} in £(B*)\I which w*-converges to z*; thus,
xk(Z) converges to z*(Z) = 1. This implies 1 < sup, z%(Z) and,

[e4 [e4

therefore, sup{y*(z)/y* € E(B*)\I} > 1; so (3) does not hold.

Let now X not satisfy (3). Thus, there exists Z € S such that, for
every finite set I C £(B*) and every £ > 0, some z} exists in £(B*)\I
with 2¥(Z) > 1—¢. By choosing €, = 1/n, we may construct a sequence
(xf) such that, for all n > 1, x} € &(B*), z;(Z) > 1 —1/n and
xy 1 ¢ {z1,...,2;}. Let * be an accumulation point of the infinite
family {x}} C £(B*); then z* € £'(B*) and we have z*(z) = 1; thus
(2) does not hold.

We prove (2) = (4) also by the contrapositive. Let X not satisfy
(4); then there exists Z € S and a sequence z, € £(B*) such that, for
alln > 1, z;(z) > 1 —1/n and ;. ¢ {z7,...,x},}. We conclude as
above that (2) does not hold.

We prove (4) = (5) by using the upper semi-continuity of the
subdifferential. Let X satisfy (4), and let € S; we choose k such that
sup{z*(z)/z* € E(B*)\07e(z)} < k < 1. Then every z* € £(B*) such
that *(z) > k is included in 07 (x), and thus 0(z) is included in the
w*-open half space {y* € X*/y*(x) > k}. There exists some V € V(z)
such that y*(z) > kif y € V and y* € 9v(y). Thus if y* € 07.(y),
then y* € £(B*) and y*(z) > k. Therefore, 0v.(y) C dv.(z) for every
y € V. This is property (b}) of Theorem 3.

By using property (b1) of Theorem 3, we establish: (5) = (6). Indeed,
let v # 0 and « ¢ U, what amounts to dvy(z) C {z* € X*/z*(v) > 0};
let V' € V(z) such that, for y € V, 0y(y) C dv(z), then dy(y) C
{z* € X*/2*(v) > 0}. Thus, V is included in the complementary set
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of U,, which is open.

To obtain (6) = (7), we use Proposition 1 and (K5) of Theorem 2:
if U, is closed, then U, = Q,,, for any v # 0.

Finally, (7) = (8). If X satisfies (7), then each C(z), for x € S, is
closed in the norm-topology (Property (K2) of Theorem 2); whence it
is 7-closed and the same is true for the ball B. Conversely, if C(z) is 7-
closed for each z € B, then the section of B with any finite dimensional
subspace, which is naturally 7-closed, has the same property. Since
there is only one locally convex topology compatible with the linear
structure on a finite dimensional space, the section of B with such a
subspace is a polytope [14, Proposition 5.8]. Thus, X satisfies (7).
O

Theorem 1 leaves open some questions. We give below counterexam-
ples which show that (2) or (3) does not imply (1), and (4) does not
imply (2) or (3). Answers concerning the hypothetical implications:
(7) or (8) = (6), (6) = (5) and (5) = (4) are not known. Particularly,
(7) = (5) is an old open problem [7]. Note that (K3) of Theorem 2 and
(a3) of Theorem 3, as well as (K5) of Theorem 2 and (a4) of Theorem 3,
might perhaps be useful to attack this question. We add only a simple
remark. If we define the new condition:

(H) each dv.(z), for x # 0, is finite,
then it is easy to verify that:
(2) or (3) = (H); (4) and (H) = (3) or (2); (6) and (H) = (5).

Section 7 describes a general setting in which all properties (2), (3),
(4), (5), (6), (7), and (8) are equivalent.

Counterexamples. We denote briefly by ¢y (respectively, I1) the
space of real sequences = = (z,),>1 which converge to 0 (respectively,
for which ) ., |z,| is finite). For n > 1, e, denotes the sequence

0,...,0,1,0,...), with 1 in the nt! place.
(7 b ) ) ) ) p

First example. Let X be the space of all the convergent sequences
(Zn)n>1, such that lim, z, = (1/2)z1 + (1/3)x2, endowed with the
sup norm [17]. Then X* = [; and the extreme points of B* are
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the £e, (n > 1). The only w*-accumulation points of £(B*) are
+((1/2)e; + (1/3)e2), both of norm less than one. Thus, this space
X satisfies (2) but not (1).

Second example. Let X be the [i-product of R and cg, i.e.,
X = (R x ¢o)i; [1]. Then X* = (R X l1)s and E(B*) is the set
{(£1,£e,)/n > 1}. For instance, z* = (1,0) is a point of &'(B*)
such that z*(z) = 1 for z = (1,0), a point of S. Thus, X does not
satisfy (2). We prove now that X satisfies (4). To make explicit
07.(z) for z € S, we will use the notations: for t € R, o(t) = 1
ift >0,0(t) =—-1ift <0 and 0(0) = £1. For z € ¢, x # 0,

set J(z) = {n > 1/|z,] = ||2|lcc = supy|zk]} If 2 = (o, 2) with
x # 0, then 07v.(z) is the finite set {(o(a),o(zn)en)/n € J(z)}.
If 2z = (o,0) with @« = +1 or @ = —1, 97.(2) is the infinite set

{(o(e), xe,)/n > 1}. It is easy to verify that, for every z € S,
sup{z*(z)/z* € £E(B*)\07.(z)} < 1, which amounts to (4).

Third example. Let X be ¢y with the norm ||z|| = max((|z;| +
|j])/2,4 # j). This space is considered in [19] with another definition.
Then X* = {; with the norm ||z*|| = max{};", |=}|, max; 2|z}|}, and
E(B*) is the set {£(e;/2) £ (¢;/2)/i # j,¢ > 1,5 > 1}. For instance,
z* =€1/2 is a point of &'(B*) such that z*(z) = 1 for z = 2¢;, a point
of S. Thus, X does not satisfy (2) (compare with [19]).

We prove now that X satisfies (4). To make explicit 0v,.(z) for z € S,
we will use the notation:

L(z) = {(i,5)/i # j,i 2 1,5 = L||=l| = (l&| + |=;1)/2}-

L(z) is infinite if x = +&, (n > 1), and finite in all other cases. If
z is different from e, and —e, for all n, then Ov.(z) is the finite
set {(o(zi)e; + o(xj)e;)/2/(3,5) € L(z)} (o is defined in the second
example).

If x = +e,, Ov.(z) is the infinite set {(o(zn)en + €m)/2/m >
1,m # n}. It is easy to verify that, for every z € S, sup{z*(z)/z* €
E(B*)\07e(z)} < 1, which is (4).

7. Polyhedral Lindenstrauss spaces. A Lindenstrauss space
(abbreviated LS-space) is an Lq-predual, i.e., a space X such that X*
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is linearly isometric to an L;(u) space for some measure p.

For an LS-space, conditions (2) through (8) are equivalent, as proved
in [13]. We recall (see [17]) that, if an LS-space X satisfies one of
these conditions, then X* = [1(T") for a suitable set I". The class of
LS-spaces satisfying (1) is strictly smaller (see, e.g., our first example).
In fact, we have the following result:

Proposition 2. If X is an LS-space, then X satisfies (1) if and only
ZfX = Co (F)

Proof. Tt is sufficient to prove that, if X is an LS-space and satisfies
(1), then X = ¢o(T'). Indeed, if an LS-space satisfies (1), then
E(X*)U {0} is w*-closed; thus, according to [16, Proposition 4.6], it is
a C,(K) space (see, e.g., [20] for the definition). Moreover, in [20, p.
346], it is proved that a C,(K) space satisfying (7) is a space co(T'),
which concludes the proof. ]

REFERENCES

1. D. Amir and F. Deutsch, Suns, moons, and quasi-polyhedra, J. Approx. Theory
6 (1972), 176-201.

2. T.E. Armstrong, Polyhedrality of infinite dimensional cubes, Pacific J. Math.
70 (1977), 297-307.

3. A. Bastiani, Polyédres convezres de dimension quelconque, C.R. Acad. Sci.
Paris 247 (1958), 1943-1946.

4. , Cones convezes et pyramides convezes, Ann. Inst. Fourier (Grenoble)
9 (1959), 249-292.

5. B. Brosowski and F. Deutsch, On some geometric properties of suns, J. Approx.
Theory 10 (1974), 245-267.

6. M.M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1973.

7. F. Deutsch, On some geometric properties of the wunit sphere, in Linear
operators and approzimation, Oberwolfach 1971; ISNM 20, Birkhiuser Verlag, Basel
(1972), 186-195.

8. R. Durier and C. Michelot, Sets of efficient points in a normed space, J. Math.
Anal. Appl. 117 (1986), 506-528.

9. V.P. Fonf, Massiveness of the set of extreme points of the dual ball of a Banach
space. Polyhedral spaces, Functional Anal. Appl. 12 (1978), 237-239.

10. , Some properties of polyhedral Banach spaces, Functional Anal. Appl.
14 (1980), 323-324.

11. , Polyhedral Banach spaces, Math. Notes USSR 30 (1981), 809-813.




POLYHEDRAL NORMS 875

12. , A form of infinite-dimensional polytopes, Functional Anal. Appl. 18
(1984), 154-155.

13. A. Gleit and R. McGuigan, A note on polyhedral Banach spaces, Proc. Amer.
Math. Soc. 33 (1972), 398-404.

14. V. Klee, Some characterizations of convez polyhedra, Acta Math. 102 (1959),
79-107.

15.
243-267.

16. K.-S. Lau, The dual ball of a Lindenstrauss space, Math. Scand. 33 (1973),
323-337.

17. A. Lazar, Polyhedral Banach spaces and extensions of compact operators,
Israel J. Math. 7 (1969), 357-364.

18. J. Lindenstrauss, Eztension of compact operators, Mem. Amer. Math. Soc.
48 (1964).

19. , Notes on Klee’s paper “Polyhedral sections of convex bodies,” Israel
J. Math. 4 (1966), 235-242.

20. J. Lindenstrauss and D.E. Wulbert, On the classification of the Banach spaces
whose duals are L1 spaces, J. Funct. Anal. 4 (1969), 332-349.

21. P.H. Maserick, Convez polytopes in linear spaces, Illinois J. Math. 9 (1965),
623-635.

22. J. Reif, (P)-sets, quasipolyhedra and stability, Comm. Math. Univ. Carolinae
20 (1979), 757-763.

23. R. Wegmann, Some properties of the peak-set mapping, J. Approx. Theory 8
(1973), 262-284.

, Polyhedral sections of convex bodies, Acta Math. 103 (1960),

LABORATOIRE D’ANALYSE NUMERIQUE, UNIVERSITE DE BOURGOGNE, CAMPUS
UNIVERSITAIRE, SCIENCES MIRANDE, B.P. 138, F-21004 DijoN CEDEX, FRANCE

DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI BOLOGNA, P1AzzAa PoORTA S.
DonNato, 5, I-40127 BOoLOGNA, ITALY



