Assignment 7: Inner Product Spaces etc. Due Tuesday November 1, 2022

John McCuan

October 23, 2022

Problem 1 (seminorms; my notes Chapter 7) Let X be a normed space, and $\sigma: X \to [0, \infty)$ a seminorm on X. Show that if there is some M > 0 for which

$$||x|| \le M$$
 for every $x \in X$ with $\sigma(x) \le 1$,

then σ is a norm. In this case, are σ and $\|\cdot\|$ equivalent?

Problem 2 (convexity) Let V be a vector space.

- (a) State precisely the definition of convexity as it applies to a subset of V.
- (b) Show every subspace of a vector space V is convex.

Problem 3 (orthogonal space) Let X be an inner product space and let $S \subset X$ be any nonempty subset.

(a) Show

$$S^\perp = \{x \in X : \langle x, v \rangle = 0 \text{ for all } v \in S\}$$

is a subspace of X.

- (b) Show S^{\perp} is closed. (Kreyszig Problem 3.3.8)
- (c) Show $S^{\perp\perp} \supset S$.

Problem 4 (Kreyszig's proof of Theorem 3.3-2) Let W be a subspace of an inner product space X, and let $q \in W$ is the nearest point projection of a point p so that

$$\operatorname{dist}(p, W) = \|q - p\|.$$

Assume there is some $w \in W$ with $\langle p - q, w \rangle \neq 0$, and compute

$$||p - q - \alpha w||^2$$
 for $\alpha \in F$.

Take

$$\alpha = \frac{\langle p - q, w \rangle}{\|w\|^2}$$

and obtain a contradiction. What other result is proved using a very similar technique?

Problem 5 Let S be any nonempty subset of a finite dimensional inner product space X. Show $X = S^{\perp \perp} \oplus S^{\perp}$. (See Problem 3 above.)

Problem 6 Let \mathcal{H} be a Hilbert space and let W be a proper closed subspace in \mathcal{H} . Then $\mathcal{H} = W \oplus W^{\perp}$, and there is a well-defined function/projection map $\pi_W : \mathcal{H} \to W$ given by by

$$\pi_W(x) = q$$
 where $x = q + z$ with $q \in W$ and $z \in W^{\perp}$.

Show the following

- (a) $\pi_W \in \beth(\mathcal{H} \to W)$, i.e., π_W is linear and continuous.
- **(b)** π_W is surjective (onto W).
- (c) $\pi_{W_{|_{W}}}: W \to W$ is surjective, in fact,

$$\pi_{W|_{W}} = \mathrm{id}_{W}.$$

(d)
$$\pi_{W_{|_{W^{\perp}}}}: W^{\perp} \to \{\mathbf{0}\}, i.e.,$$
 $\pi_{W_{|_{W^{\perp}}}} \equiv \mathbf{0}.$

(e)
$$\pi_W^2: \mathcal{H} \to W$$
 by $\pi_W^2(x) = \pi_W \circ \pi_W(x)$ satisfies

$$\pi_W^2 = \pi_W.$$

Such a function is said to be idemponent of order 2.

Problem 7 (Problem 2.10.13 of Kreyszig) If S is any nonempty subset of a normed space X, the **annihilator** $\mathcal{A}(S)$ of the set S is defined to be

$$a(S) = \left\{ \phi \in \beth(X \to F) : \phi_{\mid_S} \equiv 0 \right\}.$$

- (a) Show a(S) is a subspace of $\beth(X \to F)$.
- (b) Compute a(X) and $a(\{0\})$.
- (c) The algebraic annihilator $a^{alg}(S)$ of a nonempty subset $S \subset V$ in any vector space V is

$$a^{alg}(S) = \left\{ \phi \in \mathcal{L}(V \to F) : \phi_{\mid_{S}} \equiv 0 \right\}.$$

Show $a^{alg}(S)$ is also a subspace of the algebraic dual $V^{alg\ dual} = \mathcal{L}(V \to F)$.

- (d) If X is a normed space, the (continuous) dual space $X' = \beth(X \to F)$ is a subspace of $X^{alg\ dual}$ and the (continuous) annihilator a(S) of a subset S is a subspace of the algebraic annihilator $a^{alg}(S)$.
- (e) If X is an inner product space, find an injection $\psi: S^{\perp} \to \mathcal{A}(S)$.
- (f) If \mathcal{H} is a Hilbert space, find a bijection $\psi: S^{\perp} \to \mathcal{A}(S)$.

When we have discussed (more fully) the norm on the dual space $X' = \beth(X \to F)$ of a normed space, then it will make sense to address topological questions concerning the annihilator. We will show, for example, that if X is a normed space and $S \subset X$, then a(S) is closed. Also, if \mathcal{H} is a Hilbert space and $S \subset \mathcal{H}$, then S^{\perp} and a(S) are isomorphic as Hilbert spaces.

Problem 8 (Theorem 3.3-4 of Kreyszig—generalization) If W is a complete subspace of an inner product space X (which may not be complete) and $p \in X$, then there exists a unique $q \in W$ for which

$$dist(p, W) = ||q - p||.$$

Furthermore, $q - p \in W^{\perp}$ and $X = W \oplus W^{\perp}$

Problem 9 (Riesz representation) If $\phi \in \beth(X \to F)$ where X is an inner product space and $\mathcal{N}(\phi)$ is complete, then there exists a unique $w \in X$ for which $\phi(x) = \langle x, w \rangle$ for all $x \in X$.

Problem 10 (Kreyszig Problems 3.2.5-6) Show the following:

(a) Let $\{z_n = a_n + ib_n\}_{n=1}^{\infty} \subset \mathbb{C}$ with $a_n, b_n \in \mathbb{R}$ for $n = 1, 2, 3, \ldots$ and $z = a + ib \in \mathbb{C}$ with $a, b \in \mathbb{R}$ be complex numbers for which the following hold:

$$\lim_{n \to \infty} |z_n| = |z| \quad \text{and} \quad \lim_{n \to \infty} z_n \overline{z} = ||z||^2.$$

Show

$$\lim_{n \to \infty} z_n = z.$$

(b) Let X be a normed space. Consider $\{x_n\}_{n=1}^{\infty} \subset X$ and $x \in X$ for which the following hold:

$$\lim_{n \to \infty} ||x_n|| = ||z|| \quad \text{and} \quad \lim_{n \to \infty} \langle x_n, x \rangle = ||x||^2.$$

Show

$$\lim_{n \to \infty} x_n = x.$$