Assignment 5: Examples Due Tuesday October 11, 2022

John McCuan

September 26, 2022

Problem 1 (ℓ^p and other norms on \mathbb{R}^n ; Kreyszig Problems 2.2.6,8,10) Plot, i.e., draw pictures of, the unit spheres

$$\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| = 1\}$$

when n = 2 and 3 for the following norms:

$$\|\mathbf{x}\|_{1} = \sum_{j=1}^{n} |x_{j}|.$$

$$\|\mathbf{x}\|_{p} = \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p}, \qquad 1
$$\|\mathbf{x}\|_{2} = \left(\sum_{j=1}^{n} |x_{j}|^{2}\right)^{1/2}.$$

$$\|\mathbf{x}\|_{p} = \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p}, \qquad 2
$$\|\mathbf{x}\|_{\infty} = \max_{1 \le j \le n} |x_{j}|.$$$$$$

Problem 2 (Kreyszig Problem 1.5.9) Show the uniform limit of a sequence of continuous functions (on a closed interval of \mathbb{R}) is continuous. More precisely, assume $\{f_j\}_{j=1}^{\infty} \subset C^0[a,b]$ where $a,b \in \mathbb{R}$ with a < b and $f:[a,b] \to \mathbb{R}$ satisfy

$$\lim_{j \to \infty} \sup_{a \le x \le b} |f_j(x) - f(x)| = 0,$$

and show $f \in C^0[a, b]$.

Problem 3 (L¹ norm) Show $\|\cdot\|_{L^1}: C^0[a,b] \times C^0[a,b] \to \mathbb{R}$ by

$$||f||_{L^1} = \int_a^b |f(x)| dx$$

defines a norm on $C^0[a,b]$, but that norm is not induced by an inner product.

Problem 4 Give a detailed proof of the fact that the L^p norm is positive definite on $C^0[a,b]$. More precisely, given $a,b \in \mathbb{R}$ with a < b and a function $f \in C^0[a,b]$ for which

$$\int_a^b |f(x)|^p dx = 0,$$

show f(x) = 0 for every $x \in [a, b]$.

Problem 5 Prove the fundamental lemma of the calculus of variations: If $f \in C^0[a,b]$ and

$$\int_{a}^{b} f(x)\phi(x) dx = 0 \quad \text{for all } \phi \in C_{c}^{\infty}(a,b),$$

then f(x) = 0 for every $x \in [a, b]$.

Problem 6 Let $\{f_j\}_{j=1}^{\infty} \subset C^0[a,b]$ be a sequence of continuous functions converging with respect to the L^p norm to a continuous function $f \in C^0[a,b]$. Let

$$A = \left\{ x \in [a, b] : f(x) = \lim_{j \to \infty} f_j(x) \right\}$$

be the set of pointwise convergence of the sequence, let $B = [a, b] \setminus A$ and $C = (a, b) \setminus A$. Find examples for which

- (a) $B = \{a\}.$
- **(b)** $C = \{x_0\} \text{ for some } x_0 \in (a, b).$
- (c) $\overline{C} = [a, b].$

Problem 7 (absolute convergence in normed spaces; Kreyszig problems 2.3.7–2.3.9) Let $\{x_j\}_{j=1}^{\infty} \subset X$ be a sequence in a Banach space X. Assume

$$\sum_{j=1}^{\infty} \|x_j\| < \infty.$$

Show there is some $x \in X$ for which

$$\lim_{k \to \infty} \sum_{j=1}^{k} x_j = x.$$

Problem 8 We gave as examples of closed proper subspaces of $C^0[a,b]$ with respect to the C^0 norm (or any L^p norm) the finite dimensional subspaces spanned by a finite collection of functions. We also know the polynomials $\mathcal P$ are an infinite dimensional proper subspace, but it turns out $\mathcal P$ is not closed. Give an example of an infinite dimensional proper subspace of $C^0[a,b]$ which is closed (and hence complete) with respect to the C^0 (or L^∞) norm.

Problem 9 (measure; my notes section 1.3.5 subsection on the Lebesgue spaces L^p) Given a σ -algebra \mathcal{A} of subsets of a set X, a function $\mu: \mathcal{A} \to [0, \infty]$ is a **general** measure if

- (i) $\mu(\phi) = 0$,
- (ii) If A_1, A_2, A_3, \ldots is a sequence of pairwise disjoint sets in A, then

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j).$$

Notice that this definition allows μ to take the value $+\infty$ in the extended real numbers and does not require μ to be σ -finite.

- (a) State precisely the definition of σ -algebra and what it means for a measure to be σ -finite.
- (b) (Royden Chapter 11 Problem 20) Show that cardinality $\#: 2^X \to [0, \infty]$ with #(A) giving the number of elements in a set A is a general measure on any set X. This measure is called **counting measure**.

(c) Let $\Sigma = \Sigma^+$ denote the collection of all non-negative simple functions $\phi: X \to [0, \infty]$ given by

$$\phi(x) = \sum_{j=1}^{k} c_j \chi_{A_j}(x)$$

where χ_A is the characteristic function of the set A, the values $c_1, c_2, \ldots, c_k \in [0, \infty]$ and A_1, A_2, \ldots, A_k are pairwise disjoint subsets in X. Let us define integration $I_{\Sigma} : [0, \infty]^{X} \to \mathbb{R}$ and $I : [0, \infty]^{X} \to [0, \infty]$ on the collection $[0, \infty]^{X}$ of all real valued function on X by

$$I_{\Sigma}[\phi] = \sum_{j=1}^{k} c_j \#(A_j)$$
 and $I[f] = \sup\{I_{\Sigma}[\phi] : \phi \in \Sigma \text{ with } \phi \le f\}$

respectively. Show that if the integral $\int f = I[f]$ satisfies

$$\int f < \infty$$

for some nonnegative real valued function $f \in [0, \infty]^X$, then

$$\{x \in X : f(x) > 0\}$$
 is σ -finite.

Note: For parts (b) and (c) above we have used cardinality $\#: 2^X \to [0, \infty]$ in a "course" manner, so that the value of # is either finite or infinite. Of course, we can think of cardinality in the more usual precise manner saying #(A) = #(B) if there exists a bijection $\nu: A \to B$ and then ordering infinite sets by cardinality. We use this distinction among infinite sets in part (d).

(d) (Royden's bizzare example, chapter 11 section 1) Show

$$\mathfrak{C} = \{ A \subset X : \#(A) \le \#(\mathbb{N}) \text{ or } \#(X \backslash A) \le \#(\mathbb{N}) \}$$

is a σ -algebra on any uncountable set X, i.e., a set with $\#(X) > \#(\mathbb{N})$, and $\beta : \mathfrak{C} \to \{0,1\}$ by

$$\beta(A) = \begin{cases} 0, & \#(A) \le \#(\mathbb{N}) \\ 1, & \#(X \setminus A) \le \#(\mathbb{N}) \end{cases}$$

is a general measure.

(e) (Dirac measure) Given $a, b \in \mathbb{R}$ with a < b and a point $x_0 \in [a, b]$, the evaluation functional $\mathcal{E} \in \beth(C^0[a, b] \to \mathbb{R})$ is given by $\mathcal{E}[f] = f(x_0)$. This is also sometimes called the Dirac functional; there is no such thing as a Dirac δ function. There is, however, also a Dirac measure. If $p \in X$ is an element of any set X, then $\delta : 2^X \to \{0,1\}$ by

$$\delta(A) = \begin{cases} 1, & p \in A \\ 0, & p \in X \backslash A. \end{cases}$$

This is also sometimes called an **atomic measure** and the singleton set $\{p\} \subset X$ is called an **atom**. Show δ is a measure, and define integration with respect to this measure. What is the relation between the evaluation functional and the Dirac measure?

Problem 10 (simple functions and measurable functions) For this problem, let $a, b \in \mathbb{R}$ with a < b, and consider simple functions $\phi : [a, b] \to \mathbb{R}$ given by

$$\phi(x) = \sum_{j=1}^{k} c_j \chi_{A_j}(x) \tag{1}$$

where χ_A is the characteristic function of the set A, the values $c_1, c_2, \ldots, c_k \in \mathbb{R}$, and $A_1, A_2, \ldots, A_k \in \mathfrak{M}$ are pairwise disjoint Lebesgue measurable sets in [a, b]. Let us denote the collection of these simple functions by Σ .

- (a) Show Σ is a real vector space.
- (b) Recall that a function $f:[a,b] \to \mathbb{R}$ is Lebesgue measurable if

$$\{x \in [a,b] : f(x) \in U\} \in \mathfrak{M}$$
 for every open set $U \subset \mathbb{R}$.

Show that if $f:[a,b] \to \mathbb{R}$ satisfies

$$\{x \in [a,b] : f(x) > t\} \in \mathfrak{M}$$
 for every $t \in \mathbb{R}$,

then f is Lebesgue measurable. Hint(s): Recall that \mathfrak{M} is a σ -algebra and every open set in \mathbb{R} is a countable union of open intervals.

(c) Show every simple function in Σ is Lebesgue measurable and every characteristic function χ_N where N is a non-measurable set, i.e., $N \subset [a,b]$ by $N \notin \mathfrak{M}$, is not measurable.

(d) Show the integral of $\phi \in \Sigma$ is well-defined by

$$\int_{[a,b]} \phi = \sum_{j=1}^k c_j \mu(A_j)$$

where μ is Lebesgue measure. The point is that the sets A_1, A_2, \ldots, A_k in the representation (1) are not uniquely determined.

(e) Show

$$\int_{[a,b]} \phi = \sum_{j=1}^k c_j \mu(A_j)$$

whenever

$$\phi(x) = \sum_{j=1}^{k} c_j \chi_{A_j}(x) \quad \text{for all } x \in [a, b]$$

for measurable sets $A_1, A_2, \ldots, A_k \in \mathfrak{M}$. The point is that the sets A_1, A_2, \ldots, A_k in this representation are not assumed to be disjoint.