Assignment 4: Examples Due Tuesday October 4, 2022

John McCuan

October 5, 2022

Problem 1 (ℓ^p norms) Prove that for any p_1 and p_2 with $1 \le p_1 < p_2 \le \infty$ there holds

$$\ell^{p_1} \subset \ell^{p_2}$$
,

and

$$\left\| \{a_j\}_{j=1}^{\infty} \right\|_{\ell^{p_2}} \le \left\| \{a_j\}_{j=1}^{\infty} \right\|_{\ell^{p_1}}$$

for every sequence $\{a_j\}_{j=1}^{\infty}$.

Problem 2 (Kreyszig Problem 1.5.2) Show directly that F^n is complete under the ℓ^p norm for $1 \le p \le \infty$.

Problem 3 (Kreyszig Problem 1.5.2) Show that if a normed space X is complete, i.e., is a Banach space, under one norm, then X is also a Banach space under any equivalent norm. Use this to give another proof that F^n is complete under the ℓ^p norm. Hint: Recall Problem 3 of Assignment 3.

Problem 4 (Kreyszig Example 1.5-4) Show ℓ^p is complete for $1 \le p < \infty$.

Problem 5 Consider the ℓ^p norm on F^n . For which p and n is this norm induced by an inner product?

Problem 6 Show the dual space of ℓ^2 is Hilbert space isomorphic to ℓ^2 . Hint: Use the Riesz representation theorem. You also need to define an inner product on $(\ell^2)' = \square(\ell^2 \to \mathbb{R})$ and show it is well-defined.

Problem 7 (closures; Kreyszig Theorem 2.7-11, Exercise 84 in my notes) If W is a subspace of a normed space X and $L \in \beth(W \to Y)$ where Y is a Banach space, then show the following:

(a) There exists a unique extension $M \in \beth(\overline{W} \to Y)$ satisfying

$$M_{\mid_{W}} \equiv L.$$

Recall Exercise 7(b) of Assignment 3 in which it was shown \overline{W} is a (closed) vector space.

(b) Show the minimal modulus of continuity/operator norm of the extension, i.e.,

$$||M||_{\beth} = \min\{c \ge 0 : ||Mx|| \le c||x|| \text{ for all } x \in \overline{W}\}$$

is equal to the operator norm of L.

Problem 8 (linear isometries) Consider a linear function $\phi: X \to Y$ where X and Y are normed spaces. We say ϕ is a linear isometry if ϕ is linear and

$$\|\phi(x)\| = \|x\| \qquad \text{for all } x \in X. \tag{1}$$

If X and Y are inner product spaces, we also require (or require instead)

$$\langle \phi(x), \phi(y) \rangle = \langle x, y \rangle$$
 for all $x, y \in X$. (2)

- (a) What is the operator norm of an isometry?
- (b) Show (2) implies (1) with respect to the induced norm.
- (c) Show that if $\|\cdot\|: X \to [0,\infty)$ and $\|\cdot\|: Y \to [0,\infty)$ are the induced norms on the inner product spaces X and Y, then (1) implies (2).
- (d) Show every linear isometry is injective.

Problem 9 Give an example of a closed proper subspace W of an inner product space X such that W is not complete. Find the completion of your example W.

Problem 10 (Kreyszig Problem 3.2.3) Let $\mathcal{P} = \mathcal{P}[t]$ denote the real polynomials in t considered as a subspace of the inner product space $L^2(a,b)$.

- (a) Show $X = \text{span}\{1, t, t^2\}$ is complete.
- (b) Use Gram-Schmidt orthonormalization to find an orthonormal basis $\{q_0, q_1, q_2\}$ for X with $q_2(t) = t^2/c$ with

$$c = \sqrt{\frac{b^5 - a^5}{5}}.$$

- (c) Is $W = \{ p \in X : p(a) = 0 \}$ a subspace of X?
- (d) Is $Z = \{ p \in X : \deg(p) = 2 \}$ a subspace of X?