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Problem 1 (product norm; Kreyszig Problems 2.1.18 and 2.3.15) Let X and Y be
normed spaces over the same field. In most instances it is easy to see which norm is
being used by the context, but if we want to emphasize or clarify a particular usage
we can use || - ||x for the norm on X and || - ||y for the norm on Y.

(a) Show X xY ={(z,y):x € X,y € Y} becomes a vector space with the operations
of addition given by

(w1, 91) + (22, 42) = (21 + 22, Y1 + 1)

and scaling
a(z,y) = (o, ay).

(b) Show the vector space X XY becomes a normed space with norm

Gz, )l = max{[l]lx, lylly }- (1)



Problem 2 (equivalent norms; Kreyszig section 2.4) Let X be a normed space with
two norms || - ||1 and || - ||2. These two norms are said to be equivalent norms if
there exist my, my > 0 such that

zll2 < my|z|s and |z][1 < ma||z|2 for allz € X.

(a) (Kreyszig Problem 2.4.4) Show equivalent norms determine the same metric
topology on a space X.

(b) Show
Izl = /llzl%x + lyll§- forz € X andy €Y (2)

determines a norm on the Cartesian product X XY of normed spaces X and
Y.

(c) Show the generalized Fuclidean norm defined in (2) is equivalent to the max norm

defined in (1).

Problem 3 (Kreyszig Theorem 2.4-5) Show that any two norms on a finite dimen-
sional vector space X are equivalent. Hint: Use Kreyszig’s linear combinations lemma
(Lemma 2.4-1 in Kreyszig or Lemma 7 and Ezxercise 18 in my notes). This was used
to show every linear operator on a finite dimensional space is continuous. Suggestion.:
Try to give the proof without looking at Kreyszig’s proof of Theorem 2.4-5.

Problem 4 (inner product on a Cartesian product) Given two inner product spaces
X and Y, define an inner product on the Cartesian product X x Y. What is the
induced norm?

Problem 5 (Pythagorean identity; Kreyszig Problem 3.1.2-3) Let X be an inner
product space.

(a) If X is a real inner product space then show two vectors x,y € X satisfy x L y
if and only if
=+ ylI* = ll=l* + [lyl*

(b) If X is a complex inner product space then show two vectors x,y € X satisfy
x Ly only if
2+ yl* = [lz]* + [ly]*. (3)

(c¢) Under what circumstances can it be the case for two vectors x,y € X that (3)
holds but x is not orthogonal to y?



Problem 6 (Closures, Kreyszig section 1.3) Recall that a set A C X in a topological
space X is closed if the complement A° = X\A is open. The intersection of all
closed sets containing a given set A is called the closure of A and is denoted

A= ) c
(Cclosed 5 A

(a) Show that in any normed space X the closure of an open ball B.(p) = {z € X :
|z — p|| <} satisfies

Bi(p) ={r € X:|a—p| <r}

(b) Given any set X with at least two elements, show the function d : X x X — {0,1}

by
_ )0, r=y
st ={ 3 02
defines a metric distance on X for which every open ball of radius r = 1 satisfies

{p} = Bilp) = Bi(p) G {w € X : d(z,p) <1},

(c) Consider X = [0,1] U {2} as a metric subspace of R (with the usual Euclidean
metric distance). Show that in this space

Bi(1) 2 Bi(1) C{reX:|z—1] <1}
Problem 7 (closures) If W is a subspace of a normed space X, then show the fol-
lowing:
(a) (Kreyszig Theorem 2.4-3) If W is finite dimensional, then W is closed.

(b) Even if W is infinite dimensional the closure W is a vector space, i.e., a subspace
of X.



Problem 8 (the completion theorem for inner product spaces; an equivalence relation
among Cauchy sequences) Given any set S, a relation is any subset of S x S. A
subset R of S x S is said to be an equivalence relation if the following hold:

(i) (z,z) € R for every x € S,
(ii) (x,y) € R implies (y,z) € R, and
(iii) If (z,y) € R and (y,z) € R, then (z,z) € R.

Very often the fact that an ordered pair (x,y) is an element of an equivalence relation
R is signified by writing x ~ y (or something similar). Thus, the three properties can
be written (with their usual names as)

(i) x ~x for every x € S (the relation is reflexive),
(ii) = ~ y implies y ~ = (the relation is symmetric), and
(iii) Ifx ~y and y ~ z, then x ~ z (the relation is transitive).

Given an equivalence relation on a set S and any element p € S, the equivalence
class determined by p is

] ={zeS:z~p}
Show the following:

(a) If p,q € S, then either [p| N [qg] = ¢ or [p| = [q]. Consequently, the equivalence
relation partitions the set S into equivalence classes.

(b) The relation
lim (y; —z;) =0 € X
j—o0
is an equualence relation among the Cauchy sequences {x;}52, and {y;}52, in
a normed space X.

(c) Let S be the collection of all Cauchy sequences in a normed space X. Then
[{%}?‘;1} ={&}2 C X jh_{go(gj —x;) =0} CS.

(Notice the set definition appearing in the middle does not require the sequence(s)
{&i1321 to be Cauchy. You should show this.)



Problem 9 (completion of an inner product space) Let X be any inner product space.
Recall that the completion H of X was constructed as the Hilbert space of equivalence

classes
REZ }(3)11}
of Cauchy sequences {x;}52, C X. Consider ¢ : X — H by
¢(v) = [{v}524]
where {v}32, is the constant sequence with all terms v.
(a) Show ¢ is linear and injective.
(b) (Kreyszig Problem 1.4.4) Show a Cauchy sequence in any metric space is bounded.

(c) Use part (b) to show the inner product ( -, - Yy : H X H — F by
<[{xj}joil} ) [{y]};il} >7—L - jh_>r£10<xja yj)X

is well-defined. (You need to show the limit exists and is independent of the
chosen representatives for the elements in H.)



Problem 10 (closure; extension of a linear operator; Kreyszig Theorem 2.7-11) Re-
call that a set A C X is said to be dense in X if the closure of A satisfies

A=X.

(a) Let X be a topological space. Show a subset A C X is dense in X if and only if
for each nonempty open set U C X there holds

ANU # ¢.

(b) Let X be a metric space and A C X with A dense in X. Show that for each
xv € X, there exists a sequence {x;}52, C A with

lim z; = .
j—o0

(c) Let X andY be normed spaces with X a dense subspace of X andY a Banach
space. If
Ly: Xg—Y 1$ a bounded linear operator,

then the function L : X —'Y defined by
Jj—o0

Lx = lim Lyz; where {x;}52, C Xy and lim z; = x
j—o0

1s a well-defined linear operator.

(d) Show the operator L : X — Y in part (c) above is bounded with minimal Lipschitz
constant, i.e., operator norm, the same as that of L.



