Assignment 3: Inner Product Spaces Kreyszig Chapter 3 Due Tuesday September 20, 2022

John McCuan

September 23, 2022

Problem 1 (product norm; Kreyszig Problems 2.1.13 and 2.3.15) Let X and Y be normed spaces over the same field. In most instances it is easy to see which norm is being used by the context, but if we want to emphasize or clarify a particular usage we can use $\|\cdot\|_X$ for the norm on X and $\|\cdot\|_Y$ for the norm on Y.

(a) Show $X \times Y = \{(x, y) : x \in X, y \in Y\}$ becomes a vector space with the operations of addition given by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

and scaling

$$\alpha(x, y) = (\alpha x, \alpha y).$$

(b) Show the vector space $X \times Y$ becomes a normed space with norm

$$||(x,y)|| = \max\{||x||_X, ||y||_Y\}.$$
(1)

Problem 2 (equivalent norms; Kreyszig section 2.4) Let X be a normed space with two norms $\|\cdot\|_1$ and $\|\cdot\|_2$. These two norms are said to be **equivalent norms** if there exist $m_1, m_2 > 0$ such that

$$||x||_2 \le m_1 ||x||_1$$
 and $||x||_1 \le m_2 ||x||_2$ for all $x \in X$.

- (a) (Kreyszig Problem 2.4.4) Show equivalent norms determine the same metric topology on a space X.
- **(b)** *Show*

$$\|(x,y)\| = \sqrt{\|x\|_X^2 + \|y\|_Y^2}$$
 for $x \in X$ and $y \in Y$ (2)

determines a norm on the Cartesian product $X \times Y$ of normed spaces X and Y.

(c) Show the generalized Euclidean norm defined in (2) is equivalent to the max norm defined in (1).

Problem 3 (Kreyszig Theorem 2.4-5) Show that any two norms on a finite dimensional vector space X are equivalent. Hint: Use Kreyszig's linear combinations lemma (Lemma 2.4-1 in Kreyszig or Lemma 7 and Exercise 18 in my notes). This was used to show every linear operator on a finite dimensional space is continuous. Suggestion: Try to give the proof without looking at Kreyszig's proof of Theorem 2.4-5.

Problem 4 (inner product on a Cartesian product) Given two inner product spaces X and Y, define an inner product on the Cartesian product $X \times Y$. What is the induced norm?

Problem 5 (Pythagorean identity; Kreyszig Problem 3.1.2-3) Let X be an inner product space.

(a) If X is a real inner product space then show two vectors $x, y \in X$ satisfy $x \perp y$ if and only if

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

(b) If X is a complex inner product space then show two vectors $x, y \in X$ satisfy $x \perp y$ only if

$$||x + y||^2 = ||x||^2 + ||y||^2.$$
(3)

(c) Under what circumstances can it be the case for two vectors $x, y \in X$ that (3) holds but x is not orthogonal to y?

Problem 6 (Closures, Kreyszig section 1.3) Recall that a set $A \subset X$ in a topological space X is **closed** if the complement $A^c = X \setminus A$ is open. The intersection of all closed sets containing a given set A is called the **closure** of A and is denoted

$$\overline{A} = \bigcap_{C^{\text{closed}} \supset A} C.$$

(a) Show that in any normed space X the closure of an open ball $B_r(p) = \{x \in X : \|x - p\| < r\}$ satisfies

$$\overline{B_r(p)} = \{x \in X : ||x - p|| \le r\}.$$

(b) Given any set X with at least two elements, show the function $d: X \times X \to \{0, 1\}$ by

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

defines a metric distance on X for which every open ball of radius r = 1 satisfies

$$\{p\} = B_1(p) = \overline{B_1(p)} \subsetneq \{x \in X : d(x,p) \le 1\}.$$

(c) Consider $X = [0,1] \cup \{2\}$ as a metric subspace of \mathbb{R} (with the usual Euclidean metric distance). Show that in this space

$$B_1(1) \subsetneq \overline{B_1(1)} \subsetneq \{x \in X : |x - 1| \le 1\}.$$

Problem 7 (closures) If W is a subspace of a normed space X, then show the following:

- (a) (Kreyszig Theorem 2.4-3) If W is finite dimensional, then W is closed.
- (b) Even if W is infinite dimensional the closure \overline{W} is a vector space, i.e., a subspace of X.

Problem 8 (the completion theorem for inner product spaces; an equivalence relation among Cauchy sequences) Given any set S, a **relation** is any subset of $S \times S$. A subset R of $S \times S$ is said to be an **equivalence relation** if the following hold:

- (i) $(x, x) \in R$ for every $x \in S$,
- (ii) $(x,y) \in R$ implies $(y,x) \in R$, and
- (iii) If $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

Very often the fact that an ordered pair (x, y) is an element of an equivalence relation R is signified by writing $x \sim y$ (or something similar). Thus, the three properties can be written (with their usual names as)

- (i) $x \sim x$ for every $x \in S$ (the relation is **reflexive**),
- (ii) $x \sim y$ implies $y \sim x$ (the relation is symmetric), and
- (iii) If $x \sim y$ and $y \sim z$, then $x \sim z$ (the relation is transitive).

Given an equivalence relation on a set S and any element $p \in S$, the equivalence class determined by p is

$$[p] = \{x \in S : x \sim p\}.$$

Show the following:

- (a) If $p, q \in S$, then either $[p] \cap [q] = \phi$ or [p] = [q]. Consequently, the equivalence relation partitions the set S into equivalence classes.
- (b) The relation

$$\lim_{j \to \infty} (y_j - x_j) = \mathbf{0} \in X$$

is an equivalence relation among the Cauchy sequences $\{x_j\}_{j=1}^{\infty}$ and $\{y_j\}_{j=1}^{\infty}$ in a normed space X.

(c) Let S be the collection of all Cauchy sequences in a normed space X. Then

$$[\{x_j\}_{j=1}^{\infty}] = \{\{\xi_j\}_{j=1}^{\infty} \subset X : \lim_{j \to \infty} (\xi_j - x_j) = \mathbf{0}\} \subset \mathcal{S}.$$

(Notice the set definition appearing in the middle does not require the sequence(s) $\{\xi_i\}_{i=1}^{\infty}$ to be Cauchy. You should show this.)

Problem 9 (completion of an inner product space) Let X be any inner product space. Recall that the completion \mathcal{H} of X was constructed as the Hilbert space of equivalence classes

$$\left[\{x_j\}_{j=1}^{\infty}\right]$$

of Cauchy sequences $\{x_j\}_{j=1}^{\infty} \subset X$. Consider $\phi: X \to \mathcal{H}$ by

$$\phi(v) = \left[\{v\}_{j=1}^{\infty} \right]$$

where $\{v\}_{j=1}^{\infty}$ is the constant sequence with all terms v.

- (a) Show ϕ is linear and injective.
- (b) (Kreyszig Problem 1.4.4) Show a Cauchy sequence in any metric space is bounded.
- (c) Use part (b) to show the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to F$ by

$$\left\langle \left[\{x_j\}_{j=1}^{\infty} \right], \left[\{y_j\}_{j=1}^{\infty} \right] \right\rangle_{\mathcal{H}} = \lim_{j \to \infty} \langle x_j, y_j \rangle_X$$

is well-defined. (You need to show the limit exists and is independent of the chosen representatives for the elements in \mathcal{H} .)

Problem 10 (closure; extension of a linear operator; Kreyszig Theorem 2.7-11) Recall that a set $A \subset X$ is said to be **dense** in X if the closure of A satisfies

$$\overline{A} = X$$
.

(a) Let X be a topological space. Show a subset $A \subset X$ is dense in X if and only if for each nonempty open set $U \subset X$ there holds

$$A \cap U \neq \phi$$
.

(b) Let X be a metric space and $A \subset X$ with A dense in X. Show that for each $x \in X$, there exists a sequence $\{x_j\}_{j=1}^{\infty} \subset A$ with

$$\lim_{j \to \infty} x_j = x.$$

(c) Let X and Y be normed spaces with X_0 a dense subspace of X and Y a Banach space. If

 $L_0: X_0 \to Y$ is a bounded linear operator,

then the function $L: X \to Y$ defined by

$$Lx = \lim_{j \to \infty} L_0 x_j$$
 where $\{x_j\}_{j=1}^{\infty} \subset X_0$ and $\lim_{j \to \infty} x_j = x$

is a well-defined linear operator.

(d) Show the operator $L: X \to Y$ in part (c) above is bounded with minimal Lipschitz constant, i.e., operator norm, the same as that of L_0 .