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John McCuan

September 23, 2022

Problem 1 (product norm; Kreyszig Problems 2.1.13 and 2.3.15) Let X and Y be
normed spaces over the same field. In most instances it is easy to see which norm is
being used by the context, but if we want to emphasize or clarify a particular usage
we can use ‖ · ‖X for the norm on X and ‖ · ‖Y for the norm on Y .

(a) Show X×Y = {(x, y) : x ∈ X, y ∈ Y } becomes a vector space with the operations
of addition given by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and scaling
α(x, y) = (αx, αy).

(b) Show the vector space X × Y becomes a normed space with norm

‖(x, y)‖ = max{‖x‖X , ‖y‖Y }. (1)
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Problem 2 (equivalent norms; Kreyszig section 2.4) Let X be a normed space with
two norms ‖ · ‖1 and ‖ · ‖2. These two norms are said to be equivalent norms if
there exist m1, m2 > 0 such that

‖x‖2 ≤ m1‖x‖1 and ‖x‖1 ≤ m2‖x‖2 for all x ∈ X.

(a) (Kreyszig Problem 2.4.4) Show equivalent norms determine the same metric
topology on a space X.

(b) Show

‖(x, y)‖ =
√

‖x‖2X + ‖y‖2Y for x ∈ X and y ∈ Y (2)

determines a norm on the Cartesian product X × Y of normed spaces X and
Y .

(c) Show the generalized Euclidean norm defined in (2) is equivalent to the max norm
defined in (1).

Problem 3 (Kreyszig Theorem 2.4-5) Show that any two norms on a finite dimen-
sional vector space X are equivalent. Hint: Use Kreyszig’s linear combinations lemma
(Lemma 2.4-1 in Kreyszig or Lemma 7 and Exercise 18 in my notes). This was used
to show every linear operator on a finite dimensional space is continuous. Suggestion:
Try to give the proof without looking at Kreyszig’s proof of Theorem 2.4-5.

Problem 4 (inner product on a Cartesian product) Given two inner product spaces
X and Y , define an inner product on the Cartesian product X × Y . What is the
induced norm?

Problem 5 (Pythagorean identity; Kreyszig Problem 3.1.2-3) Let X be an inner
product space.

(a) If X is a real inner product space then show two vectors x, y ∈ X satisfy x ⊥ y

if and only if
‖x+ y‖2 = ‖x‖2 + ‖y‖2.

(b) If X is a complex inner product space then show two vectors x, y ∈ X satisfy
x ⊥ y only if

‖x+ y‖2 = ‖x‖2 + ‖y‖2. (3)

(c) Under what circumstances can it be the case for two vectors x, y ∈ X that (3)
holds but x is not orthogonal to y?
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Problem 6 (Closures, Kreyszig section 1.3) Recall that a set A ⊂ X in a topological
space X is closed if the complement Ac = X\A is open. The intersection of all
closed sets containing a given set A is called the closure of A and is denoted

A =
⋂

Cclosed⊃A

C.

(a) Show that in any normed space X the closure of an open ball Br(p) = {x ∈ X :
‖x− p‖ < r} satisfies

Br(p) = {x ∈ X : ‖x− p‖ ≤ r}.

(b) Given any set X with at least two elements, show the function d : X×X → {0, 1}
by

d(x, y) =

{

0, x = y

1, x 6= y

defines a metric distance on X for which every open ball of radius r = 1 satisfies

{p} = B1(p) = B1(p) ( {x ∈ X : d(x, p) ≤ 1}.

(c) Consider X = [0, 1] ∪ {2} as a metric subspace of R (with the usual Euclidean
metric distance). Show that in this space

B1(1) ( B1(1) ( {x ∈ X : |x− 1| ≤ 1}.

Problem 7 (closures) If W is a subspace of a normed space X, then show the fol-
lowing:

(a) (Kreyszig Theorem 2.4-3) If W is finite dimensional, then W is closed.

(b) Even if W is infinite dimensional the closure W is a vector space, i.e., a subspace
of X.
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Problem 8 (the completion theorem for inner product spaces; an equivalence relation
among Cauchy sequences) Given any set S, a relation is any subset of S × S. A
subset R of S × S is said to be an equivalence relation if the following hold:

(i) (x, x) ∈ R for every x ∈ S,

(ii) (x, y) ∈ R implies (y, x) ∈ R, and

(iii) If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

Very often the fact that an ordered pair (x, y) is an element of an equivalence relation
R is signified by writing x ∼ y (or something similar). Thus, the three properties can
be written (with their usual names as)

(i) x ∼ x for every x ∈ S (the relation is reflexive),

(ii) x ∼ y implies y ∼ x (the relation is symmetric), and

(iii) If x ∼ y and y ∼ z, then x ∼ z (the relation is transitive).

Given an equivalence relation on a set S and any element p ∈ S, the equivalence
class determined by p is

[p] = {x ∈ S : x ∼ p}.

Show the following:

(a) If p, q ∈ S, then either [p] ∩ [q] = φ or [p] = [q]. Consequently, the equivalence
relation partitions the set S into equivalence classes.

(b) The relation
lim
j→∞

(yj − xj) = 0 ∈ X

is an equvalence relation among the Cauchy sequences {xj}
∞
j=1

and {yj}
∞
j=1

in
a normed space X.

(c) Let S be the collection of all Cauchy sequences in a normed space X. Then

[

{xj}
∞

j=1

]

= {{ξj}
∞

j=1
⊂ X : lim

j→∞
(ξj − xj) = 0} ⊂ S.

(Notice the set definition appearing in the middle does not require the sequence(s)
{ξj}

∞
j=1

to be Cauchy. You should show this.)
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Problem 9 (completion of an inner product space) Let X be any inner product space.
Recall that the completion H of X was constructed as the Hilbert space of equivalence
classes

[

{xj}
∞

j=1

]

of Cauchy sequences {xj}
∞
j=1

⊂ X. Consider φ : X → H by

φ(v) =
[

{v}∞j=1

]

where {v}∞j=1
is the constant sequence with all terms v.

(a) Show φ is linear and injective.

(b) (Kreyszig Problem 1.4.4) Show a Cauchy sequence in any metric space is bounded.

(c) Use part (b) to show the inner product 〈 · , · 〉H : H×H → F by

〈[

{xj}
∞

j=1

]

,
[

{yj}
∞

j=1

]〉

H
= lim

j→∞
〈xj , yj〉X

is well-defined. (You need to show the limit exists and is independent of the
chosen representatives for the elements in H.)
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Problem 10 (closure; extension of a linear operator; Kreyszig Theorem 2.7-11) Re-
call that a set A ⊂ X is said to be dense in X if the closure of A satisfies

A = X.

(a) Let X be a topological space. Show a subset A ⊂ X is dense in X if and only if
for each nonempty open set U ⊂ X there holds

A ∩ U 6= φ.

(b) Let X be a metric space and A ⊂ X with A dense in X. Show that for each
x ∈ X, there exists a sequence {xj}

∞
j=1

⊂ A with

lim
j→∞

xj = x.

(c) Let X and Y be normed spaces with X0 a dense subspace of X and Y a Banach
space. If

L0 : X0 → Y is a bounded linear operator,

then the function L : X → Y defined by

Lx = lim
j→∞

L0xj where {xj}
∞

j=1
⊂ X0 and lim

j→∞
xj = x

is a well-defined linear operator.

(d) Show the operator L : X → Y in part (c) above is bounded with minimal Lipschitz
constant, i.e., operator norm, the same as that of L0.
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