
Assignment 2: Structured Vector Spaces

and Riesz Representation

Due Tuesday September 13, 2022

John McCuan

October 6, 2022

Problem 1 Recall the Hermitian inner product

〈z,w〉 =
n

∑

j=1

zjwj

on Cn where z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn). Given a complex vector
n ∈ C2, describe the orthogonal space

Z = {z ∈ C2 : 〈z,n〉 = 0}.

For example, the corresponding answer for a vector n ∈ R2 with respect to the dot
product would be “a two-dimensional plane through the origin orthogonal to the vector
n,” but you should try to avoid resorting to an explanation in terms of (only) complex
dimensions.
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Solution: The point of this problem/exercise is to put a certain kind of “picture” in
your mind. As pointed out, you should have a picture associated with

Z1 = {x ∈ R2 : 〈x,n〉 = 0}.

Let’s think about this case as motivation. What does it really mean that you have a
picture associated with this set? Initially, one can say the points x = (x1, x2) ∈ Z1

satisfy
n1x1 + n2x2 = 0 (1)

for some n1, n2 ∈ R. You’re familiar with the fact that that if n1 = n2 = 0, then
Z1 = R2 and otherwise, the relation (1) determines a line. We can go further to say
that if n2 = 0 6= n1, then the line is the x2-axis, and otherwise assuming n2 6= 0, the
relation can be rewritten as

x2 = −
n1

n2

x1.

Thus, we have a picture in which the height is a simple scaling of the value x1 which
may be pictured as the point (x1, 0) on the x1-axis. That is, the line is the graph of
a function which is a scaling, and which “we” understand pretty well via proportion
(or similar triangles) are whatever elementary geometric intuition “we” have at “our”
disposal.

As further motivation, let’s increase the real dimension by one, and consider the
question for

Z2 = {x ∈ R3 : 〈x,n〉 = 0}.
Again, if n = 0, then Z2 = R3 while if n 6= 0 the relation

n1x1 + n2x2 + n3x3 = 0

determines a plane (passing through 0 ∈ R3). More precisely, if n3 = 0 but n 6= 0,
this plane is the vertical plane over the injection of the line Z1 given by

Z1 ∋ (x1, x2) 7→ (x1, x2, 0) ∈ R3.

If n3 6= 0, then again the plane is a graph

Z2 =

{(

x1, x2,−
n1

n3
x1 −

n2

n3
x2

)

: (x1, x2) ∈ R2

}

(2)

over the x1, x2-plane. Notice that we lose a little something here in our picture. The
height is not given by a simple scaling; the height is obtained by taking some kind of
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(relatively complicated) linear combination of the values of x1 and x2. In particular,
there are many points on the plane at the same height as any given point (p1, p2, h),
and while we can write down a relation

−n1

n3

x1 −
n2

n3

x2 = h

determining the other points, they are a little bit hard to “see.” In fact, I “know” (2)
determines a plane, but it is a little bit difficult to “see” it—in terms of for example
similar triangles. Nevertheless, I have this picture: The coordinates of the points
(x1, x2, 0) in the x1, x2-plane are combined in some algebraic/linear way to determine
a height, specifically h = −n1x1/n3 − n2x2/n3.

The interesting thing about this problem, I think, is that in a certain sense we
can get a better picture for Z than we can for Z2. Let me try to explain. Obviously,
we have the case n = 0 ∈ C2 in which case Z = C2 which everybody can see and
nobody can see. For the other cases, there is a natural identification of C2 with R4

given by
C2 ∋ (x+ iy, ξ + iη)←→ (x, y, ξ, η) ∈ R4

which will be somewhat useful both for visualization and for splitting up C2. You’ll
note that is what we did with R2 and R3 above when we considered graphs. We
separated off one “axis” determining a height and then tried to understand the set in
question as the graph of a function. Following that approach, we consider next the
case n = (n1 + n2i, 0+ 0i). In this case, we get a kind of canonical picture because it
is required for (z1, z2) ∈ Z that

z1(n1 − n2i) = 0 or z1 = 0 ∈ C

as long as n1 + n2 6= 0. That is,

Z = {0} × C ⊂ C2.

This set is obviously identified with the two-dimensional plane

{(0, 0, x3, x4) ∈ R4 : (x3, x4) ∈ R2}.

Again we have a geometric object (a two-dimensional plane) that everyone can see
and no one can see.

We then come to the final (and perhaps most interesting) case:

n = (n1 + n2i, ξ1 + ξ2i) ∈ C2 with ξ1 + ξ2i 6= 0 ∈ C.
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In this case we have the relation

(x1 + x2i)(n1 − n2i) + (x3 + x4i)(ξ1 − ξ2i) = 0

or

x3 + x4i =
n1 − n2i

ξ1 − ξ2i
(x1 + x2i) =

(n1 − n2i)(ξ1 + ξ2i)

ξ21 + ξ22
(x1 + x2i).

This relation determines a “height” (in the second factor of C) above each point
x1 + ix2 ∈ C, and that height admits a very nice geometric interpretation:

Z = {(z, αz) ∈ C2 : z ∈ C2} (3)

where

α =
(n1 − n2i)(ξ1 + ξ2i)

ξ21 + ξ22

is some fixed complex number in C. In particular, scaling z ∈ C by a complex number
α = |α|eiθ corresponds to (simple) scaling of z by |α| and counterclockwise rotation
by the angle θ. Taking a column representation in the subspces of R4 corresponding
to the component decomposition in C × C = C2 mentioned above, the set in R4

corresponding to the representation (3) is

{(x, Lx) ∈ R4 : x ∈ R2} =
{((

x1

x2

)

, L

(

x1

x2

))

:

(

x1

x2

)

∈ R2

}

and L : R2 → R2 is a composition of a dilation by |α| and rotation by θ, that is,
expressed in terms of matrix multiplication

L

(

x1

x2

)

= |α|
(

cos θ − sin θ
sin θ cos θ

)(

x1

x2

)

.

This is clearly a two-dimensional plane. Furthermore the “height,” i.e., the component
in the second factor of C in C2 or the latter two components in R4 is actually easier to
“see” than the real number h = α1x1 + α2x2 considered in the case of the two-plane
Z2 above. Incidentally, it is possible that α = 0 ∈ C in which case we again obtain a
canonical example

Z = C× {0} ←→ {(x1, x2, 0, 0) ∈ R4 : (x1, x2) ∈ R2}.

That’s about the best picture of Z I’ve got. And it’s what I had in mind with the
exercise.
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Saying and seeing a bit more

Returning to the case of two real dimensions and the set

Z1 = {x ∈ R2 : x · n = 0}.
Another way to “see” this line is by realizing it as a rotation of one of the canonical
examples corresponding to either n1 = 0 (the x1-axis) or n2 = 0 (the x2-axis). More
precisely, recall that given the condition n1x1 + n2x2 = 0 with n2 6= 0, we have
x2 = −(n1/n2)x1 and

Z1 = {(1,−n1/n2)x : x ∈ R}.
This gives a parameterization of the line Z1, that is, this expression for Z1 suggests
implicitly consideration of the mapping ℓ : R → R2 by ℓ(x) = (1,−n1/n2)x. The
expression for the set Z1, and the corresponding mapping, can be modified by the
inclusion of a nonzero factor and written as

Z1 = {(n2,−n1)x : x ∈ R} with ℓ(x) = (n2,−n1)x,

or
Z1 = {(b,−a)x : x ∈ R} with ℓ(x) = (b,−a)x,

and
a =

n1
√

n2
1 + n2

2

and b =
n2

√

n2
1 + n2

2

.

The last form suggests the rotation suggested at the beginning. First of all, (a, b) is a
unit vector and {(b,−a), (a, b)} is a positively oriented orthonormal basis. Switching
to column notation for vectors to facilitate matrix multiplication, we have

ℓ(x) =

(

b
−a

)

x

which suggests taking the canonical example corresponding to n1 = 0 (the x-axis).
That is, L : R2 → R2 by

L

(

x
y

)

=

(

b ∗
−a ∗

)(

x
y

)

when restricted to {(x, 0) : x ∈ R} has image Z1. Finally, we can perhaps “see” Z1

most clearly if the linear function L is a rotation:

L

(

x
y

)

=

(

b a
−a b

)(

x
y

)

.
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Thus, we see the line Z1 is the image of the x-axis under rotation of R2:

Z1 =

{

L

(

x
0

)

: x ∈ R

}

.

Let us attempt to realize the plane Z2 as a rotation in R3 of the x, y-plane. That
is, we will look for a 3 × 3 matrix A with columns an orthonormal basis of R3 such
that

Z2 =







L





x
y
0



 : (x, y) ∈ R2







where L : R3 → R3 by Lx = Ax. Again, by homogeneous scaling we can modify the
expression in (2) to obtain

Z2 = {(n3x1, n3x2,−n1x1 − n2x2) : (x1, x2) ∈ R2}
and

Z2 = {(cx1, cx2,−ax1 − bx2) : (x1, x2) ∈ R2}
where

a =
n1

√

n2
1 + n2

2 + n2
3

, b =
n2

√

n2
1 + n2

2 + n2
3

, and c =
n3

√

n2
1 + n2

2 + n2
3

.

Clearly, we should take L(e3) = v3 = (a, b, c), but there is no unique choice for the
images of L(e1) and L(e2) in Z2. One assumes the “geodesic” rotation should be
algebraically simplest, but it is not simple.

According to the assumption (n1, n2) 6= 0 ∈ R2 and n3 6= 0, we can consider the
projection (n1, n2, 0) or (a, b, 0) and the unit vector

u2 =
(n1, n2, 0)
√

n2
1 + n2

2

=
(a, b, 0)√
a2 + b2

along this direction. Taking the cross product u2×e3 of this vector with e3 we obtain
the vector

u1 =
(n2,−n1, 0)
√

n2
1 + n2

2

=
(b,−a, 0)√
a2 + b2

which the geodesic rotation should fix. In addition {u1,u2,u3} is a positive orthonor-
mal basis. If n3 > 0, then u2 × v3 is in the same direction as u1, and

v2 = v3 × u1 =
(ac, bc,−(a2 + b2))√

a2 + b2
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gives a vector so that {u1,v2,v3} is also a positive orthonormal basis. The geodesic
rotation determines the following images:

u1 =
(b,−a, 0)√
a2 + b2

7→ (b,−a, 0)√
a2 + b2

= u1 and u2 =
(a, b, 0)√
a2 + b2

7→ (ac, bc,−(a2 + b2))√
a2 + b2

= v2.

Note that

e1 =
b√

a2 + b2
u1 +

a√
a2 + b2

u2 and e2 = −
a√

a2 + b2
u1 +

b√
a2 + b2

u2.

Therefore, the desired rotation must satisfy

e1 7→
b√

a2 + b2
u1 +

a√
a2 + b2

v2 =
1

a2 + b2
(b2 + a2c,−ab+ abc,−a(a2 + b2)),

e2 7→ −
a√

a2 + b2
u1 +

b√
a2 + b2

v2 =
1

a2 + b2
(−ab+ abc, a2 + b2c,−b(a2 + b2)),

and of course e3 7→ v3 = (a, b, c). Thus, we can write

Z2 =







L





x
y
0



 : (x, y) ∈ R2







where L : R3 → R3 by

L





x
y
z



 =



















b2 + a2c

a2 + b2
−ab 1− c

a2 + b2
a

−ab 1− c

a2 + b2
a2 + b2c

a2 + b2
b

−a −b c























x
y
z



 .

Exercise 1 We have not considered the following two cases:

(a) (n1, n2) = 0 ∈ R2 with n3 6= 0.

(b) (n1, n2) 6= 0 ∈ R2 with n3 < 0.

Fill in the details for these three cases. In case (a) choose an appropriate vertical
canonical plane, i.e., either the x, z-plane or the y, z-plane. (Or you can do both.)
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Finally, we attempt a similar visualization with Z = {(z1, z2) ∈ C2 : z1n1+z2n2 =
0}. We can begin, if necessary, by replacing n with

(a + bi, c+ di) =
(n1, n2)

√

|n1|2 + |n2|2
.

We then have a2 + b2 + c2 + d2 = 1 and (a, b, c, d) is a unit vector in R4. We have
observed above that

Z = {(−(c− di), a− bi)z : z ∈ C}.
Writing z = x+ iy, this means that under the identification

C2 ∋ (x1 + ix2, x3 + ix4) ←→ (x1, x2, x3, x4) ∈ R4

Z corresponds to

{(−cx− dy, dx− cy, ax+ by,−bx+ ay) ∈ R4 : (x, y) ∈ R2}.

Note that (−cx − dy, dx− cy, ax+ by,−bx + ay) = x(−c, d, a,−b) + y(−d,−c, b, a),
and the two vectors (−c, d, a,−b) and (−d,−c, b, a) are elements of an orthonormal
basis for a two-dimensional subspace of R4.

The complex (unit) normal (a + bi, c + di) ∈ C2 corresponds apparently to only
one unit vector (a, b, c, d) ∈ R4. This vector is orthogonal to both (−c, d, a,−b) and
(−d,−c, b, a), but we are apparently lacking a fourth vector to obtain a rotation
L : R4 → R4 given by

L









x1

x2

x3

x4









=









−c −d a ∗
d −c b ∗
a b c ∗
−b a d ∗

















x1

x2

x3

x4









and for which Z corresponds to {Lx : x = (x, y, 0, 0)} is the rotation of the x, y-plane
corresponding to the canonical example

Z0 = {(z, 0) ∈ C2 : z ∈ C}

obtained when n = (0, n3 + n4i) ∈ C2\{(0, 0)}. If we look more carefully at the
orthogonality condition

(x1 + x2i)(a− bi) + (x3 + x4i)(c− di) = 0,
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however, we find this implies two real equations:

ax1 + bx2 + cx3 + dx4 = 0

−bx1 + ax2 − dx3 + cx4 = 0.

The first equation gives us the normal vector (a, b, c, d) we expected. But the second
equation suggests a second vector (−b, a,−d, c) which is indeed orthogonal to the
three vectors we found/observed initially. Thus, by including (−b, a,−d, c) as an
image (with the appropriate sign) we get the desired rotation:

L









x1

x2

x3

x4









=









−c −d a −b
d −c b a
a b c −d
−b a d c

















x1

x2

x3

x4









. (4)

Underlying this problem is the following question: We have a correspondence/identification
between C2 and R4; if two vectors in C2 are orthogonal, satisfying

〈z,n〉 = 0,

what does that say about the corresponding vectors in R4? As we have seen above, if
z corresponds to (x1, x2, x3, x4) and n corresponds to (a, b, c, d), then (x1, x2, x3, x4)
and (a, b, c, d) are indeed orthogonal, but the orthogonality in C2 also gives another
vector (−b, a,−d, c) orthogonal to both (a, b, c, d) and (x1, x2, x3, x4).

Finally, it will be noted that the “new” orthogonal vector (−b, a,−d, c) corre-
sponds to

(−b+ ai,−d + ci) = i(a + bi, c+ di) ∈ C2.

This prompts another interesting observation: Given any vector (x1+ ix2, x3+ ix4) ∈
C2 corresponding to (x1, x2, x3, x4) ∈ R4, the vector

i(x1 + ix2, x3 + ix4) = (−x2 + ix1,−x4 + ix3) ∈ C2

corresponds to a vector (−x2, x1,−x4, x3) ∈ R4 which is “doubly orthogonal” to
the vector (x1, x2, x3, x4) having first two coordinates given by the counterclockwise
rotation (in R2) of the first two coordinates of (x1, x2, x3, x4) and similarly second
two coordinates the counterclockwise rotation (in R2) of the second two coordinates
of (x1, x2, x3, x4).

Exercise 2 Is the matrix in (4) really a rotation matrix? (Is the determinant 1, or
is it −1?
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Problem 2 (norms and norm-like functions; Kreyszig Problems 2.2.3-4; see also
Kreyszig Problems 4.3.1-2) Let X be a normed space.

(a) If q : X → [0,∞) satisfies

(i) q(−x) = q(x) for all x ∈ X, and

(ii) q(x+ y) ≤ q(x) + q(y) for all x, y ∈ X.

then show
|q(y)− q(x)| ≤ q(y − x) for all x, y ∈ X.

In particular,
| ‖y‖ − ‖x‖ | ≤ ‖y − x‖.

(b) If q : X → R satisfies q(ax) = aq(x) for all a ≥ 0 and x ∈ X, then

q(0) = 0.

In particular, ‖0‖ = 0, even if we only assume “‖x‖ = 0 implies x = 0” instead
of “‖x‖ = 0 if and only if x = 0” in the definition of “norm.”

(c) If p : X → R satisfies

(i) p(αx) = |α|p(x) for all x ∈ X and α ∈ F , and

(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

then show
p(x) ≥ 0 for all x ∈ X.

In particular, the condition “‖ · ‖ : X → [0,∞)” can be relaxed to “‖ · ‖ :
X → R” in the definition of “norm,” and the function p itself is a seminorm
satisfying p : X → [0,∞) and

SN1 p(0) = 0,

SN2 p(αx) = |α|p(x) for all x ∈ X, and

SN3 p(x+ y) ≤ p(x) + p(y).

See also Kreyszig Problem 2.3.12.
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Problem 3 (inner products and an inner product-like function) Let X be an inner
product space. If h : X ×X → F satisfies

(i) h(x, x) ∈ R for all x ∈ X,

(ii) h(αx+ βy, z) = αh(x, z) + βh(y, z) for all α, β ∈ F and x, y, z ∈ X, and

(ii) h(z, αx+ βy) = αh(z, x) + βh(z, y) for all α, β ∈ F and x, y, z ∈ X,

then show the following:

(a) h(y, x) = h(x, y) for all x, y ∈ X. In particular, the conjugate symmetry

〈y, x〉 = 〈x, y〉 for all x, y ∈ X

in the definition of the inner product can be replaced with conjugate linearity in
the second argument:

〈z, αx+ βy〉 = α〈x, z〉 + β〈z, y〉 for all x, y, z ∈ X and α, β ∈ F .

Hint: Consider h(x+ y, x+ y) and h(x+ iy, x+ iy).

(b) (Kreyszig Problem 3.1.1; Exercise 57 in my notes) h(x+y, x+y)+h(x−y, x−y) =
2[h(x, x) + h(y, y)] for all x, y ∈ X. In particular, the induced norm on an
inner product space satisfies the parallelogram identity:

‖x+ y‖2 + ‖x− y‖2 = 2[‖x‖2 + ‖y‖2] for all x, y ∈ X.
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Problem 4 (an inner product space; Kreyszig (sub)section 1.2-3) Let ℓ2 = ℓ2(F )
denote the collection of all sequences {aj}∞j=1 ⊂ F of scalars having the property that

∞
∑

j=1

|aj|2 <∞.

Such sequences are said to be (absolutely) square summable.

(a) Show ℓ2 is a vector space by completing the following steps:

1. Show ℓ2 is closed under scaling where the scaling α{aj}∞j=1 is defined by

α{aj}∞j=1 = {αaj}∞j=1.

2. Use the triangle inequality for the norm in F n to conclude

n
∑

j=1

|aj + bj |2 ≤





√

√

√

√

n
∑

j=1

|aj|2 +

√

√

√

√

n
∑

j=1

|bj |2




2

.

3. Conclude ℓ2 is closed under addition where the sum {aj}∞j=1 + {bj}∞j=1 is
defined by

{aj + bj}∞j=1.

(b) Show that if {aj}∞j=1, {bj}∞j=1 ∈ ℓ2, then

〈

{aj}∞j=1, {bj}∞j=1

〉

=
∞
∑

j=1

ajbj

is a well-defined inner product with value in F . Hint: Use the Cauchy-Schwarz
inequality in F n like we used the triangle inequality in F n in the previous part.

Problem 5 Give a detailed proof of the triangle inequality for the (induced) norm
on F n.
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Problem 6 (another inner product space) Consider C([a, b] → F ) the collection of
all continuous scalar valued functions on the closed interval [a, b]. Note that one can
define the integral of a continuous scalar valued function by

∫ b

a

f(x) dx =

∫ b

a

Re[f(x)] dx+ i

∫ b

a

Im[f(x)] dx

where Re[f ] and Im[f ] are the real and imaginary parts of the value of f . Show

〈f, g〉 =
∫ b

a

f(x)g(x) dx

defines an inner product on C([a, b]→ F ).

Problem 7 (a normed space; exercises 58-59 in my notes) Show that C0[a, b] with
the sup norm

‖f‖∞ = max
a≤x≤b

|f(x)|

is a normed space with a norm that is not induced by an inner product. Hint: Con-
sider positive functions f ≡ 1 and g(x) = x+ c; check the paralellogram identity.

Problem 8 Recall that a function f : X → Y where X and Y are topological spaces
is continuous at the point p ∈ X if for every open set V in Y with f(p) ∈ V , there
exists an open set U in X with p ∈ U and

f(U) = {f(x) : x ∈ U} ⊂ V.

Also, the function f : X → Y is continuous if f is continuous at each point p ∈ X.
Show this definition of continuity is equivalent to the condition:

The inverse image of every open set is open.

That is, for each open set V in Y , the set

f−1(V ) = {x ∈ X : f(x) ∈ V } is open in X.
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Problem 9 (Riesz representation) Let X be any inner product space.

(a) Show that given any vector w ∈ X, the function defined by

ℓ(x) = 〈x, w〉

is a continuous linear functional.

Definition: Given any inner product space X , let R(X → F ) denote the repre-
sented linear functionals on X . That is,

R(X → F ) = {φ ∈ L(X → F ) : there exists some w ∈ X such that

φ(x) = 〈x, w〉 for all x ∈ X} .

Part (a) above asserts R(X → F ) is a subset of the (continuous) dual space i(X →
F ) of bounded linear functionals. The Riesz representation theorem says that if X is
a Hilbert space, then R(X → F ) = i(X → F ). Part (a) also shows the assumption
of continuity cannot be left out of the Riesz representation theorem. Parts (b) and
(c) below give an explicit example.

(b) Let ℓ2 denote the inner product space of square summable real sequences; see
Problem 4 above. Let ek = {δkj}∞j=1 ∈ ℓ2 be the sequence with all zeros except
for 1 in the k-th entry. Notice that

{aj}∞j=1 =

∞
∑

j=1

ajej

is a convergent series in ℓ2 for every {aj}∞j=1 ∈ ℓ2. Consider the inner product
space W = span{e1, e2, e3, . . .}. Note that W is a proper subspace of ℓ2. Show
ℓ : W → R by

ℓ
(

{aj}∞j=1

)

=
∞
∑

j=1

aj

is a well-defined linear functional.

(c) Show the linear functional ℓ from part (b) does not admit Riesz representation,
that is, there is no sequence w ∈ W (or even w ∈ ℓ2) for which ℓ(v) = 〈v, w〉
for all v ∈ W . Hint: Show ℓ is discontinuous and use the assertion of part (a)
above.
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Problem 10 (Riesz representation) Our proof of the Riesz representation theorem,
i.e., Riesz’ proof, relied very strongly on the fact that we were able to take a nonzero
vector in the orthogonal complement of a certain (proper) subspace. More specifically,
we needed to find a nonzero vector in in the null space N (ℓ)⊥ where ℓ was a continuous
linear functional on a Hilbert space.

Recall that given any subspace W of an inner product space X, the orthogonal
complement of W is defined by

W⊥ = {x ∈ X : 〈x, w〉 = 0 for all w ∈ W}.

(a) Show that W⊥ is a subspace.

(b) Take it as given that L2(a, b), the collection of all square integrable functions
f : (a, b)→ R satisfying

∫

(a,b)

f 2 <∞,

is an inner product space with inner product

〈f, g〉 =
∫

(a,b)

fg.

(We will prove this in some detail later.) If you believe this, then it is clear that
W = C0[a, b] is a subspace of X = L2(a, b). Show W = C0[a, b] is a proper
subspace of X = L2(a, b), i.e., W ( X, but W⊥ = {0}. (It may be a little
difficult for you to give all the details correctly here, but you should be able to
see the main idea.)

(c) It was also important in our proof that N (ℓ)⊥ was one-dimensional that W⊥⊥ =
W for a certain subspace, namely for W = span{w} where w was the represent-
ing vector. Show that in general

W ⊂W⊥⊥ for any subspace W .

(d) Give an example in which W ( W⊥⊥. Hint: Look at part (b) above.
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