Assignment 2: Structured Vector Spaces and Riesz Representation Due Tuesday September 13, 2022

John McCuan

September 18, 2022

Problem 1 Recall the Hermitian inner product

$$\langle \mathbf{z}, \mathbf{w} \rangle = \sum_{j=1}^{n} z_j \overline{w_j}$$

on \mathbb{C}^n where $\mathbf{z} = (z_1, z_2, \dots, z_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$. Given a complex vector $\mathbf{n} \in \mathbb{C}^2$, describe the orthogonal space

$$Z = \{ \mathbf{z} \in \mathbb{C}^2 : \langle \mathbf{z}, \mathbf{n} \rangle = 0 \}.$$

For example, the corresponding answer for a vector $\mathbf{n} \in \mathbb{R}^2$ with respect to the dot product would be "a two-dimensional plane through the origin orthogonal to the vector \mathbf{n} ," but you should try to avoid resorting to an explanation in terms of (only) complex dimensions.

Problem 2 (norms and norm-like functions; Kreyszig Problems 2.2.3-4; see also Kreyszig Problems 4.3.1-2) Let X be a normed space.

(a) If $q: X \to [0, \infty)$ satisfies

(i)
$$q(-x) = q(x)$$
 for all $x \in X$, and

(ii)
$$q(x+y) \le q(x) + q(y)$$
 for all $x, y \in X$.

then show

$$|q(y) - q(x)| \le q(y - x)$$
 for all $x, y \in X$.

In particular,

$$||y|| - ||x||| \le ||y - x||.$$

(b) If $q: X \to \mathbb{R}$ satisfies q(ax) = aq(x) for all $a \ge 0$ and $x \in X$, then

$$q(\mathbf{0}) = 0.$$

In particular, $\|\mathbf{0}\| = 0$, even if we only assume " $\|x\| = 0$ implies $x = \mathbf{0}$ " instead of " $\|x\| = 0$ if and only if $x = \mathbf{0}$ " in the definition of "norm."

(c) If $p: X \to \mathbb{R}$ satisfies

(i)
$$p(\alpha x) = |\alpha|p(x)$$
 for all $x \in X$ and $\alpha \in F$, and

(ii)
$$p(x+y) \le p(x) + p(y)$$
 for all $x, y \in X$.

then show

$$p(x) \ge 0$$
 for all $x \in X$.

In particular, the condition " $\|\cdot\|: X \to [0,\infty)$ " can be relaxed to " $\|\cdot\|: X \to \mathbb{R}$ " in the definition of "norm," and the function p itself is a **seminorm** satisfying $p: X \to [0,\infty)$ and

SN1
$$p(0) = 0$$
,

SN2
$$p(\alpha x) = |\alpha| p(x)$$
 for all $x \in X$, and

SN3
$$p(x + y) \le p(x) + p(y)$$
.

See also Kreyszig Problem 2.3.12.

Problem 3 (inner products and an inner product-like function) Let X be an inner product space. If $h: X \times X \to F$ satisfies

- (i) $h(x,x) \in \mathbb{R}$ for all $x \in X$,
- (ii) $h(\alpha x + \beta y, z) = \alpha h(x, z) + \beta h(y, z)$ for all $\alpha, \beta \in F$ and $x, y, z \in X$, and
- (ii) $h(z, \alpha x + \beta y) = \overline{\alpha}h(z, x) + \overline{\beta}h(z, y)$ for all $\alpha, \beta \in F$ and $x, y, z \in X$, then show the following:
- (a) $h(y,x) = \overline{h(x,y)}$ for all $x,y \in X$. In particular, the conjugate symmetry

$$\langle y, x \rangle = \overline{\langle x, y \rangle}$$
 for all $x, y \in X$

in the definition of the inner product can be replaced with conjugate linearity in the second argument:

$$\langle z, \alpha x + \beta y \rangle = \overline{\alpha} \langle x, z \rangle + \overline{\beta} \langle z, y \rangle$$
 for all $x, y, z \in X$ and $\alpha, \beta \in F$.

Hint: Consider h(x + y, x + y) and h(x + iy, x + iy).

(b) (Kreyszig Problem 3.1.1; Exercise 57 in my notes) h(x+y, x+y)+h(x-y, x-y) = 2[h(x,x) + h(y,y)] for all $x,y \in X$. In particular, the induced norm on an inner product space satisfies the parallelogram identity:

$$||x+y||^2 + ||x-y||^2 = 2[||x||^2 + ||y||^2]$$
 for all $x, y \in X$.

Problem 4 (an inner product space; Kreyszig (sub)section 1.2-3) Let $\ell^2 = \ell^2(F)$ denote the collection of all sequences $\{a_j\}_{j=1}^{\infty} \subset F$ of scalars having the property that

$$\sum_{j=1}^{\infty} |a_j|^2 < \infty.$$

Such sequences are said to be (absolutely) square summable.

- (a) Show ℓ^2 is a vector space by completing the following steps:
 - 1. Show ℓ^2 is closed under scaling where the scaling $\alpha\{a_j\}_{j=1}^{\infty}$ is defined by

$$\alpha \{a_j\}_{j=1}^{\infty} = \{\alpha a_j\}_{j=1}^{\infty}.$$

2. Use the triangle inequality for the norm in F^n to conclude

$$\sum_{j=1}^{n} |a_j + b_j|^2 \le \left[\sqrt{\sum_{j=1}^{n} |a_j|^2} + \sqrt{\sum_{j=1}^{n} |b_j|^2} \right]^2.$$

3. Conclude ℓ^2 is closed under addition where the sum $\{a_j\}_{j=1}^{\infty} + \{b_j\}_{j=1}^{\infty}$ is defined by

$$\{a_j + b_j\}_{j=1}^{\infty}.$$

(b) Show that if $\{a_j\}_{j=1}^{\infty}, \{b_j\}_{j=1}^{\infty} \in \ell^2$, then

$$\left\langle \{a_j\}_{j=1}^{\infty}, \{b_j\}_{j=1}^{\infty} \right\rangle = \sum_{j=1}^{\infty} a_j \overline{b_j}$$

is a well-defined inner product with value in F. Hint: Use the Cauchy-Schwarz inequality in F^n like we used the triangle inequality in F^n in the previous part.

Problem 5 Give a detailed proof of the triangle inequality for the (induced) norm on F^n .

Problem 6 (another inner product space) Consider $C([a,b] \to F)$ the collection of all continuous scalar valued functions on the closed interval [a,b]. Note that one can define the integral of a continuous scalar valued function by

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \operatorname{Re}[f(x)] dx + i \int_{a}^{b} \operatorname{Im}[f(x)] dx$$

where Re[f] and Im[f] are the real and imaginary parts of the value of f. Show

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx$$

defines an inner product on $C([a,b] \to F)$.

Problem 7 (a normed space; exercises 58-59 in my notes) Show that $C^0[a,b]$ with the sup norm

$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|$$

is a normed space with a norm that is **not** induced by an inner product. Hint: Consider positive functions $f \equiv 1$ and g(x) = x + c; check the parallellogram identity.

Problem 8 Recall that a function $f: X \to Y$ where X and Y are topological spaces is continuous at the point $p \in X$ if for every open set V in Y with $f(p) \in V$, there exists an open set U in X with $p \in U$ and

$$f(U) = \{f(x) : x \in U\} \subset V.$$

Also, the function $f: X \to Y$ is **continuous** if f is continuous at each point $p \in X$. Show this definition of continuity is equivalent to the condition:

The inverse image of every open set is open.

That is, for each open set V in Y, the set

$$f^{-1}(V) = \{x \in X : f(x) \in V\} \qquad \text{is open in } X.$$

Problem 9 (Riesz representation) Let X be any inner product space.

(a) Show that given any vector $w \in X$, the function defined by

$$\ell(x) = \langle x, w \rangle$$

is a continuous linear functional.

Definition: Given any inner product space X, let $\mathcal{R}(X \to F)$ denote the **represented linear functionals** on X. That is,

$$\mathcal{R}(X \to F) = \{ \phi \in \mathcal{L}(X \to F) : \text{there exists some } w \in X \text{ such that } \phi(x) = \langle x, w \rangle \text{ for all } x \in X \}.$$

Part (a) above asserts $\mathcal{R}(X \to F)$ is a subset of the (continuous) dual space $\beth(X \to F)$ of bounded linear functionals. The Riesz representation theorem says that if X is a Hilbert space, then $\mathcal{R}(X \to F) = \beth(X \to F)$. Part (a) also shows the assumption of continuity cannot be left out of the Riesz representation theorem. Parts (b) and (c) below give an explicit example.

(b) Let ℓ^2 denote the inner product space of square summable real sequences; see Problem 4 above. Let $\mathbf{e}_k = \{\delta_{kj}\}_{j=1}^{\infty} \in \ell^2$ be the sequence with all zeros except for 1 in the k-th entry. Notice that

$$\{a_j\}_{j=1}^{\infty} = \sum_{j=1}^{\infty} a_j \mathbf{e}_j$$

is a convergent series in ℓ^2 for every $\{a_j\}_{j=1}^{\infty} \in \ell^2$. Consider the inner product space $W = \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \ldots\}$. Note that W is a proper subspace of ℓ^2 . Show $\ell: W \to \mathbb{R}$ by

$$\ell\left(\{a_j\}_{j=1}^{\infty}\right) = \sum_{j=1}^{\infty} a_j$$

is a well-defined linear functional.

(c) Show the linear functional ℓ from part (b) does not admit Riesz representation, that is, there is no sequence $w \in W$ (or even $w \in \ell^2$) for which $\ell(v) = \langle v, w \rangle$ for all $v \in W$. Hint: Show ℓ is discontinuous and use the assertion of part (a) above.

Problem 10 (Riesz representation) Our proof of the Riesz representation theorem, i.e., Riesz' proof, relied very strongly on the fact that we were able to take a nonzero vector in the orthogonal complement of a certain (proper) subspace. More specifically, we needed to find a nonzero vector in the null space $\mathcal{N}(\ell)^{\perp}$ where ℓ was a continuous linear functional on a Hilbert space.

Recall that given any subspace W of an inner product space X, the **orthogonal** complement of W is defined by

$$W^{\perp} = \{ x \in X : \langle x, w \rangle = 0 \text{ for all } w \in W \}.$$

- (a) Show that W^{\perp} is a subspace.
- **(b)** Take it as given that $L^2(a,b)$, the collection of all square integrable functions $f:(a,b)\to\mathbb{R}$ satisfying

$$\int_{(a,b)} f^2 < \infty,$$

is an inner product space with inner product

$$\langle f, g \rangle = \int_{(a,b)} fg.$$

(We will prove this in some detail later.) If you believe this, then it is clear that $W = C^0[a,b]$ is a subspace of $X = L^2(a,b)$. Show $W = C^0[a,b]$ is a **proper** subspace of $X = L^2(a,b)$, i.e., $W \subsetneq X$, but $W^{\perp} = \{0\}$. (It may be a little difficult for you to give all the details correctly here, but you should be able to see the main idea.)

(c) It was also important in our proof that $\mathcal{N}(\ell)^{\perp}$ was one-dimensional that $W^{\perp \perp} = W$ for a certain subspace, namely for $W = \operatorname{span}\{w\}$ where w was the representing vector. Show that in general

$$W \subset W^{\perp \perp}$$
 for any subspace W .

(d) Give an example in which $W \subsetneq W^{\perp \perp}$. Hint: Look at part (b) above.