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John McCuan

September 18, 2022

Problem 1 Recall the Hermitian inner product

〈z,w〉 =
n

∑

j=1

zjwj

on Cn where z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn). Given a complex vector
n ∈ C2, describe the orthogonal space

Z = {z ∈ C2 : 〈z,n〉 = 0}.

For example, the corresponding answer for a vector n ∈ R2 with respect to the dot
product would be “a two-dimensional plane through the origin orthogonal to the vector
n,” but you should try to avoid resorting to an explanation in terms of (only) complex
dimensions.
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Problem 2 (norms and norm-like functions; Kreyszig Problems 2.2.3-4; see also
Kreyszig Problems 4.3.1-2) Let X be a normed space.

(a) If q : X → [0,∞) satisfies

(i) q(−x) = q(x) for all x ∈ X, and

(ii) q(x+ y) ≤ q(x) + q(y) for all x, y ∈ X.

then show
|q(y)− q(x)| ≤ q(y − x) for all x, y ∈ X.

In particular,
| ‖y‖ − ‖x‖ | ≤ ‖y − x‖.

(b) If q : X → R satisfies q(ax) = aq(x) for all a ≥ 0 and x ∈ X, then

q(0) = 0.

In particular, ‖0‖ = 0, even if we only assume “‖x‖ = 0 implies x = 0” instead
of “‖x‖ = 0 if and only if x = 0” in the definition of “norm.”

(c) If p : X → R satisfies

(i) p(αx) = |α|p(x) for all x ∈ X and α ∈ F , and

(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

then show
p(x) ≥ 0 for all x ∈ X.

In particular, the condition “‖ · ‖ : X → [0,∞)” can be relaxed to “‖ · ‖ :
X → R” in the definition of “norm,” and the function p itself is a seminorm
satisfying p : X → [0,∞) and

SN1 p(0) = 0,

SN2 p(αx) = |α|p(x) for all x ∈ X, and

SN3 p(x+ y) ≤ p(x) + p(y).

See also Kreyszig Problem 2.3.12.
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Problem 3 (inner products and an inner product-like function) Let X be an inner
product space. If h : X ×X → F satisfies

(i) h(x, x) ∈ R for all x ∈ X,

(ii) h(αx+ βy, z) = αh(x, z) + βh(y, z) for all α, β ∈ F and x, y, z ∈ X, and

(ii) h(z, αx+ βy) = αh(z, x) + βh(z, y) for all α, β ∈ F and x, y, z ∈ X,

then show the following:

(a) h(y, x) = h(x, y) for all x, y ∈ X. In particular, the conjugate symmetry

〈y, x〉 = 〈x, y〉 for all x, y ∈ X

in the definition of the inner product can be replaced with conjugate linearity in
the second argument:

〈z, αx+ βy〉 = α〈x, z〉 + β〈z, y〉 for all x, y, z ∈ X and α, β ∈ F .

Hint: Consider h(x+ y, x+ y) and h(x+ iy, x+ iy).

(b) (Kreyszig Problem 3.1.1; Exercise 57 in my notes) h(x+y, x+y)+h(x−y, x−y) =
2[h(x, x) + h(y, y)] for all x, y ∈ X. In particular, the induced norm on an
inner product space satisfies the parallelogram identity:

‖x+ y‖2 + ‖x− y‖2 = 2[‖x‖2 + ‖y‖2] for all x, y ∈ X.
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Problem 4 (an inner product space; Kreyszig (sub)section 1.2-3) Let ℓ2 = ℓ2(F )
denote the collection of all sequences {aj}∞j=1 ⊂ F of scalars having the property that

∞
∑

j=1

|aj|
2 < ∞.

Such sequences are said to be (absolutely) square summable.

(a) Show ℓ2 is a vector space by completing the following steps:

1. Show ℓ2 is closed under scaling where the scaling α{aj}
∞
j=1 is defined by

α{aj}
∞
j=1 = {αaj}

∞
j=1.

2. Use the triangle inequality for the norm in F n to conclude

n
∑

j=1

|aj + bj |
2 ≤





√

√

√

√

n
∑

j=1

|aj|2 +

√

√

√

√

n
∑

j=1

|bj |2





2

.

3. Conclude ℓ2 is closed under addition where the sum {aj}∞j=1 + {bj}∞j=1 is
defined by

{aj + bj}
∞
j=1.

(b) Show that if {aj}
∞
j=1, {bj}

∞
j=1 ∈ ℓ2, then

〈

{aj}
∞
j=1, {bj}

∞
j=1

〉

=
∞
∑

j=1

ajbj

is a well-defined inner product with value in F . Hint: Use the Cauchy-Schwarz
inequality in F n like we used the triangle inequality in F n in the previous part.

Problem 5 Give a detailed proof of the triangle inequality for the (induced) norm
on F n.
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Problem 6 (another inner product space) Consider C([a, b] → F ) the collection of
all continuous scalar valued functions on the closed interval [a, b]. Note that one can
define the integral of a continuous scalar valued function by

∫ b

a

f(x) dx =

∫ b

a

Re[f(x)] dx+ i

∫ b

a

Im[f(x)] dx

where Re[f ] and Im[f ] are the real and imaginary parts of the value of f . Show

〈f, g〉 =

∫ b

a

f(x)g(x) dx

defines an inner product on C([a, b] → F ).

Problem 7 (a normed space; exercises 58-59 in my notes) Show that C0[a, b] with
the sup norm

‖f‖∞ = max
a≤x≤b

|f(x)|

is a normed space with a norm that is not induced by an inner product. Hint: Con-
sider positive functions f ≡ 1 and g(x) = x+ c; check the paralellogram identity.

Problem 8 Recall that a function f : X → Y where X and Y are topological spaces
is continuous at the point p ∈ X if for every open set V in Y with f(p) ∈ V , there
exists an open set U in X with p ∈ U and

f(U) = {f(x) : x ∈ U} ⊂ V.

Also, the function f : X → Y is continuous if f is continuous at each point p ∈ X.
Show this definition of continuity is equivalent to the condition:

The inverse image of every open set is open.

That is, for each open set V in Y , the set

f−1(V ) = {x ∈ X : f(x) ∈ V } is open in X.
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Problem 9 (Riesz representation) Let X be any inner product space.

(a) Show that given any vector w ∈ X, the function defined by

ℓ(x) = 〈x, w〉

is a continuous linear functional.

Definition: Given any inner product space X , let R(X → F ) denote the repre-
sented linear functionals on X . That is,

R(X → F ) = {φ ∈ L(X → F ) : there exists some w ∈ X such that

φ(x) = 〈x, w〉 for all x ∈ X} .

Part (a) above asserts R(X → F ) is a subset of the (continuous) dual space i(X →
F ) of bounded linear functionals. The Riesz representation theorem says that if X is
a Hilbert space, then R(X → F ) = i(X → F ). Part (a) also shows the assumption
of continuity cannot be left out of the Riesz representation theorem. Parts (b) and
(c) below give an explicit example.

(b) Let ℓ2 denote the inner product space of square summable real sequences; see
Problem 4 above. Let ek = {δkj}

∞
j=1 ∈ ℓ2 be the sequence with all zeros except

for 1 in the k-th entry. Notice that

{aj}
∞
j=1 =

∞
∑

j=1

ajej

is a convergent series in ℓ2 for every {aj}
∞
j=1 ∈ ℓ2. Consider the inner product

space W = span{e1, e2, e3, . . .}. Note that W is a proper subspace of ℓ2. Show
ℓ : W → R by

ℓ
(

{aj}
∞
j=1

)

=
∞
∑

j=1

aj

is a well-defined linear functional.

(c) Show the linear functional ℓ from part (b) does not admit Riesz representation,
that is, there is no sequence w ∈ W (or even w ∈ ℓ2) for which ℓ(v) = 〈v, w〉
for all v ∈ W . Hint: Show ℓ is discontinuous and use the assertion of part (a)
above.

6



Problem 10 (Riesz representation) Our proof of the Riesz representation theorem,
i.e., Riesz’ proof, relied very strongly on the fact that we were able to take a nonzero
vector in the orthogonal complement of a certain (proper) subspace. More specifically,
we needed to find a nonzero vector in in the null space N (ℓ)⊥ where ℓ was a continuous
linear functional on a Hilbert space.

Recall that given any subspace W of an inner product space X, the orthogonal
complement of W is defined by

W⊥ = {x ∈ X : 〈x, w〉 = 0 for all w ∈ W}.

(a) Show that W⊥ is a subspace.

(b) Take it as given that L2(a, b), the collection of all square integrable functions
f : (a, b) → R satisfying

∫

(a,b)

f 2 < ∞,

is an inner product space with inner product

〈f, g〉 =

∫

(a,b)

fg.

(We will prove this in some detail later.) If you believe this, then it is clear that
W = C0[a, b] is a subspace of X = L2(a, b). Show W = C0[a, b] is a proper
subspace of X = L2(a, b), i.e., W ( X, but W⊥ = {0}. (It may be a little
difficult for you to give all the details correctly here, but you should be able to
see the main idea.)

(c) It was also important in our proof that N (ℓ)⊥ was one-dimensional that W⊥⊥ =
W for a certain subspace, namely for W = span{w} where w was the represent-
ing vector. Show that in general

W ⊂ W⊥⊥ for any subspace W .

(d) Give an example in which W ( W⊥⊥. Hint: Look at part (b) above.
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