Assignment 10: Final Exam Due Tuesday December 6, 2022

John McCuan

December 5, 2022

Problem 1 (distribution derivative) Find the second distribution derivative of the Heaviside functional $H: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ by

$$H(\phi) = \int_0^\infty \phi(x) \, dx.$$

Problem 2 Given $a, b \in \mathbb{R}$ with a < b, consider the spaces $\mathcal{L}^{\infty}(a, b)$ of essentially bounded functions, the space $L^{\infty}(a, b)$ of (equivalence classes of) essentially bounded functions, and the space $C^{0}(a, b)$ of continuous functions.

- (a) Define what it means for a measurable function $u:(a,b)\to\mathbb{R}$ to be **essentially** bounded.
- (b) State the definition of a **seminorm** σ on a vector space X.
- (c) Show $\mathcal{L}^{\infty}(a,b)$ is a vector space and $\sigma: \mathcal{L}^{\infty}(a,b) \to [0,\infty)$ by

$$\sigma(u) = \inf \left\{ M > 0 : \int_{(a,b)} \max\{|u| - M, 0\} = 0 \right\}$$

is a seminorm on $\mathcal{L}^{\infty}(a,b)$ but not a norm.

- (d) State the definition of a **norm** on a vector space X.
- (e) Show $\|\cdot\|: L^{\infty}(a,b) \to [0,\infty)$ by $\|[u]\| = \sigma(u)$ is a well-defined norm on $L^{\infty}(a,b)$ where [u] represents an appropriate equivalence class of functions in $\mathcal{L}^{\infty}(a,b)$. (You should define the equivalence relation.)

(f) Consider the injections $\phi: C^0[a,b] \to \mathcal{L}^\infty(a,b)$ and $\psi: C^0(a,b) \to L^\infty(a,b)$ by $\phi(f) = f$ and $\psi(f) = [f]$

respectively. Show these maps are both linear and injective.

- (g) Show the seminorm σ from part (c) is a norm on the subspace $\phi(C^0[a,b])$.
- (h) Define what it means for a normed space to be complete, i.e., a Banach space.
- (i) Show $\phi(C^0[a,b])$, $\psi(C^0[a,b])$, and $L^{\infty}(a,b)$ are Banach spaces.
- (j) Is $\psi(C^0[a,b])$ dense in $L^{\infty}(a,b)$?

Problem 3 (topologies on a vector space or seminormed space) Let $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in\Gamma}$ be any collection of topologies on a vector space X. Typically, in applications these topologies will be the topologies associated with a family of seminorms also indexed by ${\alpha}\in\Gamma$.

- (a) Define the **seminorm topology** associated with a seminorm $\sigma: X \to [0, \infty)$ and show it is a topology. Hint: Seminorm balls.
- (b) A basis for a topology on X is a collection \mathcal{B} of subsets of X such that

$$\bigcup_{U\in\mathcal{B}}U=X$$

and for each $U_1, U_2 \in \mathcal{B}$,

 $x \in U_1 \cap U_2$ \Longrightarrow there exists some $U \in \mathcal{B}$ with $x \in U \subset U_1 \cap U_2$.

Show the collection

$$\left\{\bigcup_{U\in\mathcal{V}}U:\mathcal{V}\subset\mathcal{B}\right\}$$

of arbitrary unions of sets in a basis \mathcal{B} is a topology, and is the smallest topology containing \mathcal{B} .

(c) Given any collection \mathcal{C} of subsets of X satisfying

$$\bigcup_{U\in\mathcal{C}}U=X,$$

show the collection

$$\mathcal{B} = \left\{ \bigcap_{j=1}^{k} U_k : U_1, U_2, \dots, U_k \in \mathcal{C} \right\}$$

is a basis for a topology on X.

(d) Show/conclude

$$\mathcal{T} = \left\{ \bigcup_{\beta \in \mathcal{V}} \left(\bigcap_{j=1}^{k_{\beta}} U_j^{\beta} \right) : U_1^{\beta}, U_2^{\beta}, \dots, U_{k_{\beta}}^{\beta} \in \bigcup_{\alpha \in \Gamma} \mathcal{T}_{\alpha} \quad \text{for} \quad \beta \in \mathcal{V} \right\}$$
(1)

is a topology on X and is the smallest topology containing \mathcal{T}_{α} for every $\alpha \in \Gamma$. Here the symbol \mathcal{V} represents any indexing set for which the set conditional holds, and the topology \mathcal{T} is called **the topology generated by the family** $\{\mathcal{T}_{\alpha}\}_{\alpha \in \Gamma}$.

(e) Show a sequence $\{x_j\}_{j=1}^{\infty} \subset X$ converges (to an element $x \in X$) with respect to the topology \mathcal{T} if and only if $\{x_j\}_{j=1}^{\infty}$ converges (to x) with respect to every topology \mathcal{T}_{α} with $\alpha \in \Gamma$.

Note: In general, the topology generated by a family of topologies need not be Hausdorff; in particular, it may be that a given sequence converges to two distinct points, i.e., limits are not unique.

Problem 4 $(C_c^{\infty}(U) \text{ topology})$ Given an open set $U \subset \mathbb{R}$, a natural number $k \in \mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$, and an open set $V \subset\subset U$, let $\sigma_{k,V}$ denote the seminorm $\sigma: C_c^{\infty}(U) \to [0, \infty)$ by

$$\sigma(u) = \sum_{j=0}^{k} \left\| \frac{d^{j}u}{dx^{j}} \right\|_{C^{0}(\overline{V})} = \sum_{j=0}^{k} \max_{x \in \overline{V}} \left| \frac{d^{j}u}{dx^{j}}(x) \right|.$$

As in the previous problem, let \mathcal{T} denote the topology generated by this family of seminorms.

- (a) Let $S = \{\sigma_1, \sigma_2, \dots, \sigma_m\}$ be any finite collection of the seminorms $\sigma_{k,V}$. Explain how to construct a sequence $\{u_j\}_{j=1}^{\infty} \subset C_c^{\infty}(U)$ which converges to two distinct functions $v_1 \neq v_2$ with respect to every seminorm in Σ .
- (b) Show that a sequence $\{u_j\}_{j=1}^{\infty} \subset C_c^{\infty}(U)$ converges to a function $u \in C_c^{\infty}(U)$ if and only if $\{u_j\}_{j=1}^{\infty}$ converges to u in $C^k(\overline{V})$ for every $k \in \mathbb{N}_1$ and every $V \subset\subset U$.

(c) Conclude $C_c^{\infty}(\Omega)$ is a Hausdorff space with respect to the topology \mathcal{T} .

The topology in this case is called the C^{∞} topology on $C_c^{\infty}(U)$.

Problem 5 (distributions) Recall that a **distribution** is by definition a continuous linear functional $F: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$.

- (a) Define the distribution derivative of a distribution F.
- (b) If $c \in \mathbb{R}$, consider the distribution $C: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ by

$$C(\phi) = \int_{\mathbb{R}} c\phi.$$

Calculate the distribution derivative of C.

(c) Show every distribution F determines uniquely a set of distribution **antiderivitives**

 $\{G = G_0 + C : \text{the distribution derivative of } G_0 \text{ is } F\}.$

Note: Technically, once a linear functional $G_0: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ is identified satisfying $-G_0(\phi') \equiv F(\phi)$, then one needs to (and one should) show the functional $G_0: C_c^{\infty} \to \mathbb{R}$ is continuous, i.e., $G_0 \in X'$ where $X = C_c^{\infty}(\mathbb{R})$. Unfortunately, as explained in the lecture the topology on $Y = C_c^{\infty}(\mathbb{R})$ described in Problem 4 (and called "the K topology" in the lecture) is not the correct topology to consider when using the space $X = C_c^{\infty}(\mathbb{R})$ in the theory of distributions. In particular, even the constant distributions C are discontinuous with respect to the K topology on $Y = C_c^{\infty}(\mathbb{R})$ unless c = 0. Schwarz suggested the use of a different topology. I called this the Schwarz topology \mathcal{S} on $X = C_c^{\infty}(\mathbb{R})$ and G_0 should be continuous with respect to this topology. For this exercise (at the moment) perhaps it is enough to write down the formula for G_0 and verify the required properties (linearity and $-G_0(\phi') = F(\phi)$) other than continuity. I will try to describe/construct the Schwarz topology at the end of this assignment, and you should then (with some work) be able to verify G_0 (and every integral functional and evaluation functional) is continuous. Incidentally, as noted in the lecture, the evaluation functionals $E_x: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ by $E_x(\phi) = \phi(x)$ do satisfy $E_x \in Y'$ for all fixed $x \in \mathbb{R}$, as you can verify.

Problem 6 (weak topology) Let X be a normed space and denote by X' the dual space $\beth(X \to F)$ of continuous linear functionals on X. The **weak topology** on X is the topology \mathcal{T}_w generated by

$$\mathcal{B} = \left\{ \bigcap_{j=1}^k \omega_j^{-1}(V_1) : \omega_1, \dots, \omega_k \in X' \text{ and } V_1, \dots, V_k \text{ are open sets in } F. \right\}.$$

A sequence $\{x_j\}_{j=1}^{\infty} \subset X$ is said to **converge weakly** to an element $x \in X$ if

$$\lim_{j \to \infty} \omega(x_j) = \omega(x) \qquad \text{for every } \omega \in X'.$$

- (a) Show every (strongly) convergent sequence in X is weakly convergent.
- (b) Show that a sequence in X is weakly convergent if and only if it is convergent with respect to the weak topology.
- (c) Which topology has more open sets, the norm topology \mathcal{T} or the weak topology \mathcal{T}_w ?

Problem 7 (topology) Let \mathcal{T} and \mathcal{T}_w be two topologies on a space X satisfying $\mathcal{T}_w \subsetneq \mathcal{T}$. For the following assertions, choose $\mathcal{S}_1, \mathcal{S}_2 \in \{\mathcal{T}, \mathcal{T}_w\}$ with $\mathcal{S}_1 \neq \mathcal{S}_2$ to make the assertion true, and then prove the assertion.

- (a) If the function $f: X \to Y$ from X into the topological space Y is continuous with respect to S_1 , then f is continuous with respect to S_2 .
- (b) If $\{x_j\}_{j=1}^{\infty} \subset X$ converges to $x \in X$ with respect to \mathcal{S}_1 , then $\{x_j\}_{j=1}^{\infty}$ converges to x with respect to \mathcal{S}_2 .
- (c) There exists a continuous function $f: X \to Y$ which is continuous with respect to S_2 but not with respect to S_1 .
- (d) There exists a sequence $\{x_j\}_{j=1}^{\infty} \subset X$ which is convergent to an element $x \in X$ with respect to S_2 but $\{x_j\}_{j=1}^{\infty}$ does not converge to x with respect to S_1 .

Problem 8 (Shur's result(s)) Let X be a normed space and let $X' = \beth(X \to F)$ denote the dual space of X. Let $\{\omega_1, \ldots, \omega_k\}$ be a finite subset of X' and let V_1, \ldots, V_k be open sets in \mathbb{R} . Assume

$$\omega_{\ell}(\mathbf{0}) = 0 \in V_{\ell} \quad \text{for } \ell = 1, \dots, k.$$

Consider $\Phi: X \to \mathbb{R}^k$ by $\Phi(x) = (\omega_1(x), \dots, \omega_k(x))$.

- (a) Show $\Phi \in \beth(X \to \mathbb{R}^k)$.
- **(b)** Show

$$\mathcal{N}(\omega_{\ell}) = \{ x \in X : \omega_{\ell}(x) = 0 \} \subset \omega^{-1}(V_{\ell}).$$

(c) Show

$$\mathcal{N}(\Phi) = \{x \in X : \Phi(x) = \mathbf{0} \in \mathbb{R}^k\} = \bigcap_{\ell=1}^k \mathcal{N}(\omega_\ell).$$

- (d) Show that if $\dim X > k$, then Φ is not injective.
- (e) Conclude that if $\dim X > k$, then no nonempty set of the form

$$W = \bigcap_{\ell=1}^k \omega_\ell^{-1}(V_\ell)$$

is contained in **any** open ball $B_r(\mathbf{0}) \subset X$.

(f) Conclude that if $\dim X > k$, then no nonempty open set in the weak topology on X is a subset of any bounded set in X.

Problem 9 (topological vector spaces; cf. Yôsida Chapter 1, section 6, Lemma 1) Let X be a vector space and let \mathcal{T} be a topology of open subsets of X.

(a) (first lemma of topological vector spaces) Assume the addition mapping $p: X \times X \to X$ given by p(x,y) = x + y is continuous. Show

$${x + v : x \in U}$$
 is open in X (2)

for every (fixed) $v \in X$ and every (fixed) open set $U \subset X$. The topology on a vector space X is said to be **translation invariant** if the assertion of (2) holds.

- (b) (second lemma of topological vector spaces) Assume X and Y are vector spaces over the same field, and each has a translation invariant topology. Recall the equivalent definitions of continuity for a linear function $L: X \to Y$.
 - (i) (continuity at each point) For each $x_0 \in X$ and each open set $V \subset Y$ with $Lx_0 \in V$, there is some open set $U \subset X$ with $x_0 \in U$ and

$$LU = \{Lx : x \in U\} \subset V.$$

(ii) (topological continuity) For each open set $V \subset Y$, the set

$$L^{-1}V = \{x \in X : Lx \in V\}$$
 is open in X.

Note: There is no (obvious) characterization of continuity in terms of an operator norm/Lipschitz continuity modulus in this case.

Show the linear function $L: X \to Y$ is continuous if and only if L is continuous at $\mathbf{0} \in X$.

Problem 10 (convergence of distributions) Let $g : \mathbb{R} \to \mathbb{R}$ denote the absolute value function given by g(x) = |x|, let $h : \mathbb{R} \to \mathbb{R}$ denote the Heaviside function given by

$$h(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

and let μ_{δ} denote the standard mollifier for $\delta > 0$; recall your work on the mollifications $\mu_{\delta} * g$ and $\mu_{\delta} * h$ (perhaps from Problems 6 and 7 of Assignment 9 and/or from section 1.5.2 of my notes).

We say a family of distributions $\{M_{\delta}\}_{\delta>0} \subset [C_c^{\infty}(\mathbb{R})]'$ converges strongly to a distribution $M \in [C_c^{\infty}(\mathbb{R})]'$ as $\delta \searrow 0$ if the following holds:

For any $\epsilon > 0$, any N > 0, and any open set $V \subset [-N, N] \subset \mathbb{R}$, there exists some $\delta_0 > 0$ such that $\delta < \delta_0$ implies

$$|M_{\delta}(\phi) - M(\phi)| < \epsilon$$
 uniformly for $\phi \in \{\psi \in C_c^{\infty}(V) : \|\psi\|_{L^1} < N\}.$

(a) Let $M_{\delta} \in [C_c^{\infty}(\mathbb{R})]'$ denote the integral functional associated with the (classical) derivative $(\mu_{\delta} * g)'$, and show M_{δ} converges strongly to $M : C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ by

$$M\phi = \int_{\mathbb{R}} (-1 + 2h)\phi$$

as $\delta \searrow 0$.

(b) Now let $M_{\delta} \in [C_c^{\infty}(\mathbb{R})]'$ denote the integral functional associated with the (classical) derivative $(\mu_{\delta} * h)'$, and show M_{δ} does not converge strongly to $E: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ by

$$E\phi = \phi(0)$$

as $\delta \searrow 0$.

(c) Show the distributional derivative of h is the evaluation function E mentioned in part (b) above.

Different notions of **weak convergence** for distributions can be obtained in the following way: Let $\sigma: C_c^{\infty}(\mathbb{R}) \to [0, \infty)$ be a seminorm. We say a family of distributions $\{M_{\delta}\}_{\delta>0} \subset [C_c^{\infty}(\mathbb{R})]'$ converges σ -weakly to a distribution $M \in [C_c^{\infty}(\mathbb{R})]'$ as $\delta \searrow 0$ if the following holds:

For any $\epsilon > 0$, any N > 0, and any open set $V \subset [-N, N] \subset \mathbb{R}$, there exists some $\delta_0 > 0$ such that $\delta < \delta_0$ implies

$$|M_{\delta}(\phi) - M(\phi)| < \epsilon$$
 uniformly for $\phi \in \{\psi \in C_c^{\infty}(V) : \sigma(\psi) < N\}.$

Note that taking the $L^1(V)$ norm of (the restriction of) a function $\phi \in C_c^{\infty}(\mathbb{R})$ gives a seminorm on $C_c^{\infty}(\mathbb{R})$, and it is this choice of norm that gives the definition of strong convergence of distributions.

(d) Determine a "natural" choice of seminorm $\sigma: C_c^{\infty}(\mathbb{R}) \to [0, \infty)$ for which the family of distributions $\{M_{\delta}\}_{\delta>0}$ of part (b) above does converge to the evaluation functional σ -weakly. If you have trouble with this, you may want to consider part (e) below first.

(e) Let $\sigma_0: C_c^{\infty}(\mathbb{R}) \to [0, \infty)$ be given by the C^0 /sup norm. Show that strong convergence of any family $\{M_{\delta}\}_{\delta>0}$ of distributions to a distribution $M \in [C_c^{\infty}(\mathbb{R})]'$ as $\delta \searrow 0$ implies σ_0 -weak convergence of M_{δ} to M. Just to be clear, σ_0 -weak convergence means the following:

For any $\epsilon > 0$, any N > 0, and any open set $V \subset [-N, N] \subset \mathbb{R}$, there exists some $\delta_0 > 0$ such that $\delta < \delta_0$ implies

$$|M_{\delta}(\phi) - M(\phi)| < \epsilon$$
 uniformly for $\phi \in \{ \psi \in C_c^{\infty}(V) : \|\psi\|_{C^0(\overline{V})} < N \}.$

What is being clarified here is the precise use/restriction of the seminorm. Of course the C^0 norm is actually a norm on $C_c^{\infty}(\mathbb{R})$. Can you explain why one would not (want to) use the much simpler condition

For any $\epsilon > 0$ and any N > 0, there exists some $\delta_0 > 0$ such that $\delta < \delta_0$ implies

$$|M_{\delta}(\phi) - M(\phi)| < \epsilon$$
 uniformly for $\phi \in \{ \psi \in C_c^{\infty}(\mathbb{R}) : \|\psi\|_{C^0(\mathbb{R})} < N \}$

as a definition of C^0 -weak convergence of distributions?

Problem 11 (Extra/Bonus: The third lemma of topological vector spaces, aka Yôsida Theorem 1, Chapter 1, Section 6) Let X and Y be topological vector spaces (over the same field) in which the operation mappings

$$p_X: X \times X \to X$$
 by $p_X(x, y) = x + y$,
 $p_Y: Y \times Y \to Y$ by $p_Y(x, y) = x + y$,
 $\tau_X: F \times X \to X$ by $\tau_X(\alpha, x) = \alpha x$, and
 $\tau_Y: F \times Y \to Y$ by $\tau_Y(\alpha, y) = \alpha y$

are continuous. Assume further that the topology on X is the topology generated by a/the family of topologies $\{\mathcal{T}_{\sigma}\}_{{\sigma}\in A}$ where each topology \mathcal{T}_{σ} is the "seminorm ball" topology associated with a seminorm $\sigma: X \to [0, \infty)$. Recall that this means the topology on X is the smallest topology containing all the open sets in $\cup_{\sigma} \mathcal{T}_{\sigma}$. Similarly, assume the topology on Y is the topology generated by a/the family of topologies $\{\mathcal{S}_{\nu}\}_{\nu\in B}$ where each topology \mathcal{S}_{ν} is the "seminorm ball" topology associated with a seminorm $\nu: Y \to [0, \infty)$.

Show a linear operator $L: X \to Y$ is continuous if and only if for each seminorm $\nu \in B$, there exists a seminorm $\sigma \in A$ and some c > 0 for which

$$\nu(Lv) \le c \ \sigma(v)$$
 for all $v \in X$.

1 The Schwarz topology on $C_c^{\infty}(\mathbb{R})$.

The construction of the Schwarz topology on $X = C_c^{\infty}(\mathbb{R})$ uses the \mathcal{K} topologies (or the topologies of uniform convergence of derivatives on compact subsets). I will briefly attempt to give the details here as I have adapted them from Chapter 6 of Rudin's book Functional Analysis (1973, first edition). One of the main differences is that Rudin considers \mathcal{K} seminorms on subspaces called (by Schwarz) \mathcal{D}_K where \mathcal{D}_K as a vector space is $C_c^{\infty}(K)$ and K is a compact set while I restrict to the situation where $K = \overline{V}$ with V an open set and \overline{V} compact. Also, Rudin considers $K \subset \mathbb{R}^n$, and I restrict attention to to $V \subset \mathbb{R}$. Finally, Rudin considers a general subset $\Omega \subset \mathbb{R}^n$ as the primary domain of functions under consideration, and I restrict attention to the special case where $\Omega = \mathbb{R}$. Some additional background material and discussion may be found in my notes.

The starting point is with the K topology on all of $C^{\infty}(\mathbb{R})$. Then the main tool to construct the Schwarz topology is the topology on $C_c^{\infty}(\overline{V})$ or what Rudin would call $\mathcal{D}_{\overline{V}}$. Here is a quick review:

The K topology on $C^{\infty}(\mathbb{R})$ is the topology generated by the C^k norms

$$||f||_{C^k(\overline{V})} = \max\left\{\left|\frac{d^j f}{dx^j}(x)\right| : x \in \overline{V} \text{ and } 0 \le j \le k\right\}$$

considered as seminorms on $C^{\infty}(\mathbb{R})$. These seminorms are actually norms on the subspaces $C^k(\overline{V})$ as V ranges over open sets with $V \subset \mathbb{R}$ and k takes all values in the set $\{0,1,2,3,\ldots\}$ with k=0 corresponding to the uniform C^0 norm. Each of these seminorms determines a topology $\mathcal{T}_{k,\overline{V}}$ on $C^{\infty}(\mathbb{R})$.

Precisely, the K topology on $C^{\infty}(\mathbb{R})$ is the smallest topology \mathcal{T} containing all the topologies $\mathcal{T}_{k,\overline{V}}$ or

$$\bigcup \{ \mathcal{T}_{k,\overline{V}} : V \text{ is open in } \mathbb{R} \text{ with } V \subset \mathbb{R} \text{ and } k \in \{0,1,2,3,\ldots\} \}.$$

Recall that $Y = C_c^{\infty}(\mathbb{R})$ is a subspace of $C^{\infty}(\mathbb{R})$ with respect to the \mathcal{K} topology. For this construction, we back up and consider

$$C_c^{\infty}(\overline{V}) = \{ f \in C_c^{\infty}(\mathbb{R}) : \operatorname{supp}(f) \subset \overline{V} \}.$$

as a subspace of $C^{\infty}(\mathbb{R})$ with respect to the \mathcal{K} topology. Note this $C_c^{\infty}(V)$ is a proper subspace of the space $C_c^{\infty}(\overline{V})$ which Rudin (and Schwarz) would call $\mathcal{D}_{\overline{V}}$. Most importantly, denote the \mathcal{K} subspace topology on $C_c^{\infty}(\overline{V})$ by

$$\mathcal{S}_{\overline{V}} = \{ \mathcal{U} \cap C_c^{\infty}(\overline{V}) : \mathcal{U} \in \mathcal{K} \}.$$

Now we use the spaces $C_c^{\infty}(\overline{V})$ with the \mathcal{K} subspace topology $\mathcal{S}_{\overline{V}}$ as follows: Denote by X the vector space $C_c^{\infty}(\mathbb{R})$. We define a **local base** \mathcal{B}_0 **at** $\mathbf{0} \in X$, i.e., at the zero function in X, by

$$\mathcal{B}_0 = \{ \mathcal{V} \subset X : \mathcal{V} \text{ is convex, centrally symmetric, and} \\ \mathcal{V} \cap \overline{V} \in \mathcal{S}_{\overline{V}} \text{ for every } V \subset\subset \mathbb{R} \}.$$

A base for the Schwarz topology is then obtained by translating the sets in \mathcal{B}_0 :

$$\mathcal{B} = \{ \{ \phi + f : f \in \mathcal{V} \} : \phi \in X = C_c^{\infty}(\mathbb{R}) \text{ and } \mathcal{V} \in \mathcal{B}_0 \}.$$

The Schwarz topology \mathcal{S} on $C_c^{\infty}(\mathbb{R})$ is then the collection of arbitrary unions of these basis elements:

$$\mathcal{S} = \left\{ \bigcup_{\alpha \in \Gamma} \mathcal{V}_{\alpha} : \{\mathcal{V}_{\alpha}\}_{\alpha \in \Gamma} \subset \mathcal{B} \right\}.$$

Problem 12 Let $X = C_c^{\infty}(\mathbb{R})$ denote the topological vector space defined above with respect to the Schwarz topology.

- (a) Show S is a topology which is strictly finer than the K topology on $Y = C_c^{\infty}(\mathbb{R})$, that is $K \subseteq S$.
- (b) Show the sequence $\{\phi_j\}_{j=1}^{\infty} \subset C_c^{\infty}(\mathbb{R})$ with $\phi_j(x) = \mu_1(x-j)$ where μ_1 is the standard mollifier
 - (i) converges to the zero function in Y, and
 - (ii) does not converge to the zero function in X.
- (c) Show that a sequence $\{f_j\}_{j=1}^{\infty} \subset X = C_c^{\infty}(\mathbb{R})$ converges to a function $f \in X$ if and only if there is a fixed compact set $K \subset \mathbb{R}$ for which

$$supp(f_j) \subset K \text{ for all } j = 1, 2, 3, \dots \text{ and } \lim_{j \to \infty} ||f_j - f||_{C^k} = 0 \text{ for all } k = 0, 1, 2, 3, \dots$$

- (d) The integral functionals associated with $L^1_{loc}(\mathbb{R})$ functions as well as the evaluation functionals are all in X', i.e., they are all continuous with respect to the Schwarz topology on $C_c^{\infty}(\mathbf{r})$. Hint: Continuity at the zero function $\mathbf{0} \in X = C_c^{\infty}(\mathbb{R})$ implies continuity for a linear function $G_0: X \to \mathbb{R}$, even if there is no norm. See part (b) of Problem 9 above.
- (e) Your antiderivative functional $G_0: X \to \mathbb{R}$ from Problem 5 above is continuous with respect to the Schwarz topology.
- (f) Consider the antiderivative operator $\Phi: X \to X$ by

$$\Phi(\psi) = \phi$$
 with $\phi(x) = \int_{-\infty}^{x} \psi(t) dt - \left(\int_{\mathbb{R}} \psi\right) \int_{-\infty}^{x} \eta(t) dt$

where $\eta \in X = C_c^{\infty}(\mathbb{R})$ is fixed with $\int_{\mathbb{R}} \eta = 1$. Show Φ is continuous.