
Assignment 10: Final Exam
Due Tuesday December 6, 2022

John McCuan

December 5, 2022

Problem 1 (distribution derivative) Find the second distribution derivative of the
Heaviside functional H : C∞

c (R) → R by

H(φ) =

∫

∞

0

φ(x) dx.

Problem 2 Given a, b ∈ R with a < b, consider the spaces L∞(a, b) of essentially
bounded functions, the space L∞(a, b) of (equivalence classes of) essentially bounded
functions, and the space C0(a, b) of continuous functions.

(a) Define what it means for a measurable function u : (a, b) → R to be essentially
bounded.

(b) State the definition of a seminorm σ on a vector space X .

(c) Show L∞(a, b) is a vector space and σ : L∞(a, b) → [0,∞) by

σ(u) = inf

{

M > 0 :

∫

(a,b)

max{|u| −M, 0} = 0

}

is a seminorm on L∞(a, b) but not a norm.

(d) State the definition of a norm on a vector space X .

(e) Show ‖ · ‖ : L∞(a, b) → [0,∞) by ‖[u]‖ = σ(u) is a well-defined norm on L∞(a, b)
where [u] represents an appropriate equivalence class of functions in L∞(a, b).
(You should define the equivalence relation.)
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(f) Consider the injections φ : C0[a, b] → L∞(a, b) and ψ : C0(a, b) → L∞(a, b) by

φ(f) = f and ψ(f) = [f ]

respectively. Show these maps are both linear and injective.

(g) Show the seminorm σ from part (c) is a norm on the subspace φ(C0[a, b]).

(h) Define what it means for a normed space to be complete, i.e., a Banach space.

(i) Show φ(C0[a, b]), ψ(C0[a, b]), and L∞(a, b) are Banach spaces.

(j) Is ψ(C0[a, b]) dense in L∞(a, b)?

Problem 3 (topologies on a vector space or seminormed space) Let {Tα}α∈Γ be any
collection of topologies on a vector spaceX . Typically, in applications these topologies
will be the topologies associated with a family of seminorms also indexed by α ∈ Γ.

(a) Define the seminorm topology associated with a seminorm σ : X → [0,∞)
and show it is a topology. Hint: Seminorm balls.

(b) A basis for a topology on X is a collection B of subsets of X such that

⋃

U∈B

U = X

and for each U1, U2 ∈ B,

x ∈ U1 ∩ U2 =⇒ there exists some U ∈ B with x ∈ U ⊂ U1 ∩ U2.

Show the collection
{

⋃

U∈V

U : V ⊂ B

}

of arbitrary unions of sets in a basis B is a topology, and is the smallest topology
containing B.

(c) Given any collection C of subsets of X satisfying

⋃

U∈C

U = X,
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show the collection

B =

{

k
⋂

j=1

Uk : U1, U2, . . . , Uk ∈ C

}

is a basis for a topology on X .

(d) Show/conclude

T =







⋃

β∈V





kβ
⋂

j=1

U
β
j



 : Uβ
1 , U

β
2 , . . . , U

β
kβ

∈
⋃

α∈Γ

Tα for β ∈ V







(1)

is a topology on X and is the smallest topology containing Tα for every α ∈ Γ.
Here the symbol V represents any indexing set for which the set conditional
holds, and the topology T is called the topology generated by the family
{Tα}α∈Γ.

(e) Show a sequence {xj}∞j=1 ⊂ X converges (to an element x ∈ X) with respect to
the topology T if and only if {xj}∞j=1 converges (to x) with respect to every
topology Tα with α ∈ Γ.

Note: In general, the topology generated by a family of topologies need not be Haus-
dorff; in particular, it may be that a given sequence converges to two distinct points,
i.e., limits are not unique.

Problem 4 (C∞
c (U) topology) Given an open set U ⊂ R, a natural number k ∈ N0 =

{0, 1, 2, 3, . . .}, and an open set V ⊂⊂U , let σk,V denote the seminorm σ : C∞
c (U) →

[0,∞) by

σ(u) =
k

∑

j=0

∥

∥

∥

∥

dju

dxj

∥

∥

∥

∥

C0(V )

=
k

∑

j=0

max
x∈V

∣

∣

∣

∣

dju

dxj
(x)

∣

∣

∣

∣

.

As in the previous problem, let T denote the topology generated by this family of
seminorms.

(a) Let S = {σ1, σ2, . . . , σm} be any finite collection of the seminorms σk,V . Explain
how to construct a sequence {uj}∞j=1 ⊂ C∞

c (U) which converges to two distinct
functions v1 6= v2 with respect to every seminorm in Σ.

(b) Show that a sequence {uj}∞j=1 ⊂ C∞
c (U) converges to a function u ∈ C∞

c (U) if

and only if {uj}∞j=1 converges to u in Ck(V ) for every k ∈ N1 and every V ⊂⊂U .
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(c) Conclude C∞
c (Ω) is a Hausdorff space with respect to the topology T .

The topology in this case is called the C∞ topology on C∞
c (U).

Problem 5 (distributions) Recall that a distribution is by definition a continuous
linear functional F : C∞

c (R) → R.

(a) Define the distribution derivative of a distribution F .

(b) If c ∈ R, consider the distribution C : C∞
c (R) → R by

C(φ) =

∫

R

cφ.

Calculate the distribution derivative of C.

(c) Show every distribution F determines uniquely a set of distribution antiderivi-
tives

{G = G0 + C : the distribution derivative of G0 is F}.

Note: Technically, once a linear functional G0 : C
∞
c (R) → R is identified satis-

fying −G0(φ
′) ≡ F (φ), then one needs to (and one should) show the functional

G0 : C∞
c → R is continuous, i.e., G0 ∈ X ′ where X = C∞

c (R). Unfortunately,
as explained in the lecture the topology on Y = C∞

c (R) described in Prob-
lem 4 (and called “the K topology” in the lecture) is not the correct topology
to consider when using the space X = C∞

c (R) in the theory of distributions. In
particular, even the constant distributions C are discontinuous with respect to
the K topology on Y = C∞

c (R) unless c = 0. Schwarz suggested the use of a
different topology. I called this the Schwarz topology S on X = C∞

c (R) and
G0 should be continuous with respect to this topology. For this exercise (at the
moment) perhaps it is enough to write down the formula for G0 and verify the
required properties (linearity and −G0(φ

′) = F (φ)) other than continuity. I will
try to describe/construct the Schwarz topology at the end of this assignment,
and you should then (with some work) be able to verify G0 (and every integral
functional and evaluation functional) is continuous. Incidentally, as noted in
the lecture, the evaluation functionals Ex : C∞

c (R) → R by Ex(φ) = φ(x) do
satisfy Ex ∈ Y ′ for all fixed x ∈ R, as you can verify.
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Problem 6 (weak topology) Let X be a normed space and denote by X ′ the dual
space i(X → F ) of continuous linear functionals on X . The weak topology on X
is the topology Tw generated by

B =

{

k
⋂

j=1

ω−1
j (V1) : ω1, . . . , ωk ∈ X ′ and V1, . . . , Vk are open sets in F .

}

.

A sequence {xj}∞j=1 ⊂ X is said to converge weakly to an element x ∈ X if

lim
j→∞

ω(xj) = ω(x) for every ω ∈ X ′.

(a) Show every (strongly) convergent sequence in X is weakly convergent.

(b) Show that a sequence in X is weakly convergent if and only if it is convergent
with respect to the weak topology.

(c) Which topology has more open sets, the norm topology T or the weak topology
Tw?
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Problem 7 (topology) Let T and Tw be two topologies on a space X satisfying
Tw ( T . For the following assertions, choose S1,S2 ∈ {T , Tw} with S1 6= S2 to make
the assertion true, and then prove the assertion.

(a) If the function f : X → Y from X into the topological space Y is continuous
with respect to S1, then f is continuous with respect to S2.

(b) If {xj}
∞
j=1 ⊂ X converges to x ∈ X with respect to S1, then {xj}

∞
j=1 converges

to x with respect to S2.

(c) There exists a continuous function f : X → Y which is continuous with respect
to S2 but not with respect to S1.

(d) There exists a sequence {xj}∞j=1 ⊂ X which is convergent to an element x ∈ X

with respect to S2 but {xj}∞j=1 does not converge to x with respect to S1.

Problem 8 (Shur’s result(s)) Let X be a normed space and let X ′ = i(X → F )
denote the dual space ofX . Let {ω1, . . . , ωk} be a finite subset ofX ′ and let V1, . . . , Vk
be open sets in R. Assume

ωℓ(0) = 0 ∈ Vℓ for ℓ = 1, . . . , k.

Consider Φ : X → Rk by Φ(x) = (ω1(x), . . . , ωk(x)).

(a) Show Φ ∈ i(X → Rk).

(b) Show
N (ωℓ) = {x ∈ X : ωℓ(x) = 0} ⊂ ω−1(Vℓ).

(c) Show

N (Φ) = {x ∈ X : Φ(x) = 0 ∈ Rk} =
k
⋂

ℓ=1

N (ωℓ).

(d) Show that if dimX > k, then Φ is not injective.

(e) Conclude that if dimX > k, then no nonempty set of the form

W =
k
⋂

ℓ=1

ω−1
ℓ (Vℓ)

is contained in any open ball Br(0) ⊂ X .
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(f) Conclude that if dimX > k, then no nonempty open set in the weak topology
on X is a subset of any bounded set in X .

Problem 9 (topological vector spaces; cf. Yôsida Chapter 1, section 6, Lemma 1)
Let X be a vector space and let T be a topology of open subsets of X .

(a) (first lemma of topological vector spaces) Assume the addition mapping p : X ×
X → X given by p(x, y) = x+ y is continuous. Show

{x+ v : x ∈ U} is open in X (2)

for every (fixed) v ∈ X and every (fixed) open set U ⊂ X . The topology on a
vector space X is said to be translation invariant if the assertion of (2) holds.

(b) (second lemma of topological vector spaces) Assume X and Y are vector spaces
over the same field, and each has a translation invariant topology. Recall the
equivalent definitions of continuity for a linear function L : X → Y .

(i) (continuity at each point) For each x0 ∈ X and each open set V ⊂ Y with
Lx0 ∈ V , there is some open set U ⊂ X with x0 ∈ U and

LU = {Lx : x ∈ U} ⊂ V.

(ii) (topological continuity) For each open set V ⊂ Y , the set

L−1V = {x ∈ X : Lx ∈ V } is open in X .

Note: There is no (obvious) characterization of continuity in terms of an oper-
ator norm/Lipschitz continuity modulus in this case.

Show the linear function L : X → Y is continuous if and only if L is continuous
at 0 ∈ X .

Problem 10 (convergence of distributions) Let g : R → R denote the absolute value
function given by g(x) = |x|, let h : R → R denote the Heaviside function given by

h(x) =

{

0, x < 0
1, x ≥ 0

and let µδ denote the standard mollifier for δ > 0; recall your work on the mollifica-
tions µδ ∗ g and µδ ∗ h (perhaps from Problems 6 and 7 of Assignment 9 and/or from
section 1.5.2 of my notes).

We say a family of distributions {Mδ}δ>0 ⊂ [C∞
c (R)]′ converges strongly to a

distribution M ∈ [C∞
c (R)]′ as δ ց 0 if the following holds:
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For any ǫ > 0, any N > 0, and any open set V ⊂ [−N,N ] ⊂ R, there
exists some δ0 > 0 such that δ < δ0 implies

|Mδ(φ)−M(φ)| < ǫ uniformly for φ ∈ {ψ ∈ C∞

c (V ) : ‖ψ‖L1 < N}.

(a) Let Mδ ∈ [C∞
c (R)]′ denote the integral functional associated with the (classical)

derivative (µδ ∗ g)′, and show Mδ converges strongly to M : C∞
c (R) → R by

Mφ =

∫

R

(−1 + 2h)φ

as δ ց 0.

(b) Now let Mδ ∈ [C∞
c (R)]′ denote the integral functional associated with the (clas-

sical) derivative (µδ ∗ h)′, and show Mδ does not converge strongly to E :
C∞

c (R) → R by
Eφ = φ(0)

as δ ց 0.

(c) Show the distributional derivative of h is the evaluation function E mentioned in
part (b) above.

Different notions of weak convergence for distributions can be obtained in the fol-
lowing way: Let σ : C∞

c (R) → [0,∞) be a seminorm. We say a family of distributions
{Mδ}δ>0 ⊂ [C∞

c (R)]′ converges σ-weakly to a distribution M ∈ [C∞
c (R)]′ as δ ց 0

if the following holds:

For any ǫ > 0, any N > 0, and any open set V ⊂ [−N,N ] ⊂ R, there
exists some δ0 > 0 such that δ < δ0 implies

|Mδ(φ)−M(φ)| < ǫ uniformly for φ ∈ {ψ ∈ C∞

c (V ) : σ(ψ) < N}.

Note that taking the L1(V ) norm of (the restriction of) a function φ ∈ C∞
c (R) gives a

seminorm on C∞
c (R), and it is this choice of norm that gives the definition of strong

convergence of distributions.

(d) Determine a “natural” choice of seminorm σ : C∞
c (R) → [0,∞) for which the

family of distributions {Mδ}δ>0 of part (b) above does converge to the eval-
uation functional σ-weakly. If you have trouble with this, you may want to
consider part (e) below first.
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(e) Let σ0 : C∞
c (R) → [0,∞) be given by the C0/sup norm. Show that strong con-

vergence of any family {Mδ}δ>0 of distributions to a distribution M ∈ [C∞
c (R)]′

as δ ց 0 implies σ0-weak convergence of Mδ to M . Just to be clear, σ0-weak
convergence means the following:

For any ǫ > 0, any N > 0, and any open set V ⊂ [−N,N ] ⊂ R, there
exists some δ0 > 0 such that δ < δ0 implies

|Mδ(φ)−M(φ)| < ǫ uniformly for φ ∈ {ψ ∈ C∞

c (V ) : ‖ψ‖C0(V ) < N}.

What is being clarified here is the precise use/restriction of the seminorm. Of
course the C0 norm is actually a norm on C∞

c (R). Can you explain why one
would not (want to) use the much simpler condition

For any ǫ > 0 and any N > 0, there exists some δ0 > 0 such that
δ < δ0 implies

|Mδ(φ)−M(φ)| < ǫ uniformly for φ ∈ {ψ ∈ C∞

c (R) : ‖ψ‖C0(R) < N}

as a definition of C0-weak convergence of distributions?
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Problem 11 (Extra/Bonus: The third lemma of topological vector spaces, aka Yôsida
Theorem 1, Chapter 1, Section 6) Let X and Y be topological vector spaces (over the
same field) in which the operation mappings

pX : X ×X → X by pX(x, y) = x+ y,

pY : Y × Y → Y by pY (x, y) = x+ y,

τX : F ×X → X by τX(α, x) = αx, and

τY : F × Y → Y by τY (α, y) = αy

are continuous. Assume further that the topology on X is the topology generated by
a/the family of topologies {Tσ}σ∈A where each topology Tσ is the “seminorm ball”
topology associated with a seminorm σ : X → [0,∞). Recall that this means the
topology on X is the smallest topology containing all the open sets in ∪σTσ. Similarly,
assume the topology on Y is the topology generated by a/the family of topologies
{Sν}ν∈B where each topology Sν is the “seminorm ball” topology associated with a
seminorm ν : Y → [0,∞).

Show a linear operator L : X → Y is continuous if and only if for each seminorm
ν ∈ B, there exists a seminorm σ ∈ A and some c > 0 for which

ν(Lv) ≤ c σ(v) for all v ∈ X .

1 The Schwarz topology on C∞
c (R).

The construction of the Schwarz topology on X = C∞
c (R) uses the K topologies (or

the topologies of uniform convergence of derivatives on compact subsets). I will briefly
attempt to give the details here as I have adapted them from Chapter 6 of Rudin’s
book Functional Analysis (1973, first edition). One of the main differences is that
Rudin considers K seminorms on subspaces called (by Schwarz) DK where DK as a
vector space is C∞

c (K) and K is a compact set while I restrict to the situation where
K = V with V an open set and V compact. Also, Rudin considers K ⊂ Rn, and I
restrict attention to to V ⊂⊂R. Finally, Rudin considers a general subset Ω ⊂ Rn as
the primary domain of functions under consideration, and I restrict attention to the
special case where Ω = R. Some additional background material and discussion may
be found in my notes.

The starting point is with the K topology on all of C∞(R). Then the main tool
to construct the Schwarz topology is the topology on C∞

c (V ) or what Rudin would
call DV . Here is a quick review:
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The K topology on C∞(R) is the topology generated by the Ck norms

‖f‖Ck(V ) = max

{∣

∣

∣

∣

djf

dxj
(x)

∣

∣

∣

∣

: x ∈ V and 0 ≤ j ≤ k

}

considered as seminorms on C∞(R). These seminorms are actually norms on the
subspaces Ck(V ) as V ranges over open sets with V ⊂⊂R and k takes all values in
the set {0, 1, 2, 3, . . .} with k = 0 corresponding to the uniform C0 norm. Each of
these seminorms determines a topology Tk,V on C∞(R).

Precisely, the K topology on C∞(R) is the smallest topology T containing all the
topologies Tk,V or

⋃

{Tk,V : V is open in R with V ⊂⊂R and k ∈ {0, 1, 2, 3, . . .}}.

Recall that Y = C∞
c (R) is a subspace of C∞(R) with respect to the K topology.

For this construction, we back up and consider

C∞

c (V ) = {f ∈ C∞

c (R) : supp(f) ⊂ V }.

as a subspace of C∞(R) with respect to the K topology. Note this C∞
c (V ) is a proper

subspace of the space C∞
c (V ) which Rudin (and Schwarz) would call DV . Most

importantly, denote the K subspace topology on C∞
c (V ) by

SV = {U ∩ C∞

c (V ) : U ∈ K}.

Now we use the spaces C∞
c (V ) with theK subspace topology SV as follows: Denote

by X the vector space C∞
c (R). We define a local base B0 at 0 ∈ X , i.e., at the zero

function in X , by

B0 = {V ⊂ X : V is convex, centrally symmetric, and

V ∩ V ∈ SV for every V ⊂⊂R
}

.

A base for the Schwarz topology is then obtained by translating the sets in B0:

B = {{φ+ f : f ∈ V} : φ ∈ X = C∞

c (R) and V ∈ B0} .

The Schwarz topology S on C∞
c (R) is then the collection of arbitrary unions of these

basis elements:

S =

{

⋃

α∈Γ

Vα : {Vα}α∈Γ ⊂ B

}

.
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Problem 12 Let X = C∞
c (R) denote the topological vector space defined above with

respect to the Schwarz topology.

(a) Show S is a topology which is strictly finer than the K topology on Y = C∞
c (R),

that is K ( S.

(b) Show the sequence {φj}
∞
j=1 ⊂ C∞

c (R) with φj(x) = µ1(x − j) where µ1 is the

standard mollifier

(i) converges to the zero function in Y , and

(ii) does not converge to the zero function in X.

(c) Show that a sequence {fj}
∞
j=1 ⊂ X = C∞

c (R) converges to a function f ∈ X if

and only if there is a fixed compact set K ⊂ R for which

supp(fj) ⊂ K for all j = 1, 2, 3, . . . and lim
j→∞

‖fj−f‖Ck = 0 for all k = 0, 1, 2, 3, . . ..

(d) The integral functionals associated with L1
loc(R) functions as well as the evalua-

tion functionals are all in X ′, i.e., they are all continuous with respect to the

Schwarz topology on C∞
c (r). Hint: Continuity at the zero function 0 ∈ X =

C∞
c (R) implies continuity for a linear function G0 : X → R, even if there is no

norm. See part (b) of Problem 9 above.

(e) Your antiderivative functional G0 : X → R from Problem 5 above is continuous

with respect to the Schwarz topology.

(f) Consider the antiderivative operator Φ : X → X by

Φ(ψ) = φ with φ(x) =

∫ x

−∞

ψ(t) dt−

(
∫

R

ψ

)
∫ x

−∞

η(t) dt

where η ∈ X = C∞
c (R) is fixed with

∫

R
η = 1. Show Φ is continuous.
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