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1 Preview

I want to present to you a proof of the following existence and uniqueness theorem for
weak solutions of the homogeneous boundary value problem for Poisson’s equation:

Theorem 1 Given a bounded open subset U ⊂ R
n and any f ∈ L2(U), there exists

a unique weak solution u ∈ H1

0
(U) of

{

∆u = f on U ,
u∣

∣

∂U

≡ 0.

In order to understand the statement fully, you need to know what it means to be a
weak solution of the problem. In order to know that, you need basically two things:

1. The space of functions H1

0
(U).

2. Integration on U ⊂ R
n.

Both of these things are relatively easy and will be covered either elsewhere or below.
For now, if you don’t know one or both of them, do not worry. Let me go ahead and
give the formulation and make some comments. Again, all details that are not clear
should become clear at some point.

2 Weak Formulation

Definition 1 (weak formulation of the homogeneous boundary value problem for
Poisson’s PDE) Let U be an open subset of R

n and f ∈ L2(U). We say u ∈ H1

0
(U)
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is a weak solution of
{

∆u = f on U ,
u∣

∣

∂U

≡ 0.

if

−

∫

U

Du · Dφ =

∫

U

fφ for all φ ∈ C∞

c (U). (1)

Recall that L2(U) is an inner product space with inner product

〈u, v〉L2 =

∫

U

uv.

Therefore, the condition for a weak solution u given in (1) may be written as

B[u, φ] = −〈f, φ〉L2 for all φ ∈ C∞

c (U)

where B : H1

0
(U) × H1

0
(U) → R is the bilinear form given by

B[u, v] =

∫

U

Du · Dv. (2)

You may not know it yet, but the space H1

0
(U) is a subspace of the space W 1,2(U)

of L2 functions with first order weak derivatives in L2. In fact, W 1,2(U) is also called
H1(U) because W 1,2(U) is a Hilbert space. Again if you don’t know what it means
to be a Hilbert space, don’t worry. You will soon. Just think of it as a really really
nice function space based on integration. But the really important point here is that
functions in H1

0
(U), which is also called W

1,2
0

(U), have weak derivatives. This will
become more natural in time, but the derivatives appearing in (1) and (2) are weak

derivatives. Let me pause to remind you about how weak derivatives work:

3 Weak Derivatives

Definition 2 We say u ∈ W 1,2(U) = H1(U) has a weak derivative gj ∈ L2(U) for
some particular index j ∈ {1, 2, 3, . . . , n} (corresponding to a standard unit direction
ej) if

−

∫

U

uDjφ =

∫

U

gjφ = 〈gj, φ〉L2 for all φ ∈ C∞

c (U). (3)

A weak derivative gj ∈ L2(U), when it exists, is denoted by Dju. (Yes, this is the
same notation used for classical derivatives, but you’ll get used to it.)
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The definition is almost precisely the same in W 1,p(U):

Definition 3 We say u ∈ W 1,p(U) has a weak derivative gj ∈ Lp(U)

−

∫

U

uDjφ =

∫

U

gjφ = 〈gj, φ〉L2 for all φ ∈ C∞

c (U). (4)

We write gj = Dju.

Remember that the functional G : C∞

c (U) → R by G[φ] = 〈g, φ〉L2 is the “operator
version” of the function g.

Exercise 1 Remind yourself, using the fundamental lemma of the calculus of varia-
tions, that knowing g ∈ L1

loc(U) and knowing G : C∞

c (U) → R are the same thing.

What is happening on the left side in (3) and (4) is a touch complicated, so let’s
discuss that for a moment. You see the functional G : C∞

c (U) → R above which
gives an operator version of the function g : U → R. This kind of representation is
often/usually used somewhat informally, but for clarity, let’s be a little more formal
about it. Let us denote by F the collection (or maybe more properly some collec-
tion) of functionals F : C∞

c (U) → R. Remember C∞

c (U) represents the set of test

functions, the idea being that

Whatever F ∈ F is representing, you get that information from the values
of F on test functions.

This is a super important idea, and your main example is the one given above for
functions. I’ll repeat: If g ∈ L1

loc(U) is a real valued function, then g has a represen-
tative in F given by G ∈ F with G[φ] =

∫

gφ. This is called an integral functional.
In practice, if we want to nail things down, we need to specify a norm on the set of
test functions C∞

c (U). There are lots of different choices for this norm, but once we
choose a norm, then we can say more precisely that we want the functionals in F to
be those which are continuous with respect to that norm. We also want them to be
linear. In this way, the test functions C∞

c (U) become a normed space (usually a
subspace of some other normed space—think C∞

c (U) ⊂ L2(U)). Then, in summary,
F is the collection of continuous linear functionals on C∞

c (U), once we specify the
norm.

The integral functionals like G associated to functions g are essentially always
examples of continuous linear functionals in F, but the integral functionals corre-
sponding to functions are not the only kind of continuous linear functionals in F. In
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any case, with some formal notion of F in hand, let’s tackle the left sides of (3) and
(4):

The operator on the left Lj : L1

loc → F gives the value of a functional Dj ∈ F.
This operator Lj is the operator corresponding to weak differentiation. The form
used here is motivated by integration by parts,1 and this is sometimes called a weak

adjoint operator:

Dj[φ] = −

∫

U

uDjφ.

So this is a little complicated. Lj is “weak differentiation,” which means Lj [u] is
supposed to somehow represent differentiating u. Of course, u doesn’t have a classical
derivative, so the “differentiation” is expressed in terms of a functional (motivated
by integration by parts): Lju = Dj : C∞

c (U) → R with

Dj[φ] = −

∫

U

uDjφ (with Djφ appearing here being a classical derivative).

4 Weak Poisson’s Equation

For the weak formulation of ∆u = f , we can imagine multiplying by a smooth test
function φ and integrating by parts (again, this really means using the divergence
theorem):

∫

U

∆uφ =

∫

u

fφ.

That is,

−

∫

U

Du · Dφ = 〈f, φ〉L2 = F [φ]. (5)

The expression on the left now, if u has classical derivatives, has an integrand

Du · Dφ =

n
∑

j=1

DjuDjφ =

n
∑

j=1

(

∂u

∂xj

) (

∂φ

∂xj

)

.

1Actually, you may need to brush up on your multivariable calculus/integration to fully under-
stand this condition. It’s not quite just integration by parts as you know it from 1-D calculus. It’s
multivariable integration by parts using the divergence theorem, which we will review relatively
soon. But at least it looks like 1-D integration by parts.
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We observe that we could replace the classical derivatives of u with weak derivatives
gj = Dju ∈ L1

loc in this last expression. In fact, the expression

B[u, φ] =

∫

U

Du · Dφ

makes perfectly good sense for u ∈ W 1

loc(U). However, at this point, we’re going to
make two restrictions, or you can think of it as one restriction, to the space H1

0
(U).

The restrictions work together in sort of a complicated way, though they are essentially
easy to state:

1. We choose to work with the L2 norm. Essentially, we restrict u to H1(U) =
W 1,2(U). This gives us an inner product structure which is crucial for the proof.

2. We restrict further to the subspace H1

0
(U) = W

1,2
0

(U) which is the closure

with respect to the W 1,2 norm of the subspace C∞

c (U) ⊂ H1(U). This does two
things. First it takes care of the boundary condition, or at least we can think
of this restriction as imposing a weak version of the boundary condition

u∣

∣

∂U

≡ 0.

But second, and almost equally importantly for us, this condition turns out
to make the natural extension of our bilinear form B which started out as
B : H1

0
(U) × C∞

c (U) → R by

B[u, φ] = −
n

∑

j−1

Lj[Dju][φ] = −
n

∑

j−1

Djj[φ] =
n

∑

j−1

∫

U

DjuDjφ

and extends to B : H1

0
(U)× : H1

0
(U) → R by

B[u, v] =

∫

U

Du · Dv

into an inner product in its own right.

There are more than a few comments to make about this, and there are more than
a few questions for you to ask. We’ll get to those in due time. For now, I want to
point out that the difficult part is in what we’ve done above and in the details and
questions associated with it. Once we have chosen and understood the correct spaces,
framework, and operators, the proof is relatively easy. The proof is so “easy” that
I’m going to give it now.
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5 Proof of Theorem 1

There are three steps.

1. The bilinear form B : H1

0
(U)× : H1

0
(U) → R by

B[u, v] =

∫

U

Du · Dv

is an inner product. (We need to show this.)

2. The continuous linear functional F : C∞

c (U) → R by

F [φ] =

∫

U

fφ = 〈f, φ〉L2

extends to a continuous linear functional on H1

0
(U) by the same formula. This

is essentially obvious since H1

0
(U) ⊂ L2(U), though something does need to

be checked with the norms. Note that we’re using the W 1,2 norm on the test
functions and for the closure H1

0
(U). Let’s call this extension F0 : H1

0
(U) → R

by

F0[v] =

∫

U

fv = 〈f, v〉L2

and note that −F0 : H1

0
(U) → R is also a continuous linear functional, so that

our equation (i.e., weak formulation of the boundary value problem) now reads

B[u, φ] = −F0[φ] for all φ ∈ C∞

c (U).

3. The Riesz representation theorem (in this special case) says that given any
continuous linear functional −F0 : H1

0
(U) → R, there exists a unique u ∈ H1

0
(U)

such that
B[u, v] = −F0[v] for all v ∈ H1

0
(U).

In particular,

B[u, φ] = −F0[φ] for all φ ∈ C∞

c (U). �

There is a little bit to understand about continuous linear functionals and the
Riesz representation theorem, but that material is really easy (and fun).
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6 The Weak Laplace Operator

As a final note, let me mention that the expression appearing on the left in (5) and
generally associated with the bilinear form B[u, φ], or more properly −B[u, φ] given
by

∆w[φ] = −

∫

U

DjuDjφ

may be considered a weak Laplace operator. Precisely, we consider L : H1(U) → F

by L[u] = ∆w with ∆w[φ] given above. This is what it “means” to take the Laplacian
of a function u ∈ H1(U), or this is how we think about the Laplacian for these
functions. Basically, u ∈ H1(U) does not have even two weak derivatives; this function
u certainly does not have a classical Laplacian. It only has one weak derivative (or
more properly weak derivatives of order one). But, as the theorem illustrates, it is
still sometimes useful to try to talk about the Laplacian of such a function.

Exercise 2 What is the domain and codomain of ∆w above?

Exercise 3 Consider the general second order linear partial differential operator L :
C2(U) → C0(U) given in divergence form by

L[u] =

n
∑

j=1

Dj[aijDju] +

n
∑

j=1

bjDju + cu

where the coefficients satisfy aij ∈ C1(U) and bj , c ∈ C0(U). Formulate a weak version
of this operator for functions u ∈ H1(U). What (relaxed) regularity may be assumed
on the coefficients?

7 Regularity

Theorem 2 (regularity) If f ∈ C∞(U) and U is a bounded open subset of R
2 with

C∞ boundary, then the weak solution u ∈ H1

0
(U) given by Theorem 1 has

u ∈ C∞(U).
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