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We have studied extensively the Green’s function for the trivial ordinary differen-
tial equation —u” = f and the two point boundary value problem

{ —u" = f, z € (a,b)
u(a) =u(b) =0

with homogeneous boundary values in particular. In fact, I think (almost) the very
first homework assignment I gave in this class was to solve this equation for some
specific inhomogeneities f. Now, I’'m going to cast all our complicated manipulations
in one dimension into a less trivial setting, namely the setting of the Laplace operator

A: CX(T) — C°(T)

where U is a bounded open domain in R™ with smooth C? boundary.

1 Fundamental Solutions

For each n = 1,2,3,... there is a fundamental solution. Each is determined up
to an additive constant as a solution, satisfying certain symmetry and regularity
requirements, of the distributional partial differential equation “—A® = §y,” that is

/ O (—Agp) = ¢(0) for every ¢ € C2°(R").

The symmetry requirement is that ®(x) = @ (|x|) for some function ®; : (0,00) — R.
The regularity requirement is that ®; € C?(0,00). In one dimension, the symmetry
condition amounts to the requirement that ®, = ®y(z) is even, and we have seen
®(x) = —|z|/2. Each solution will be singular at the origin in R™.
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Figure 1: The fundamental solution in one dimension

Exercise 1 Show ®(x) = —|z|/2 is the unique fundamental solution (up to an addi-
tive constant) when n = 1.

In higher dimensions, the fundamental solutions associated with the Laplace op-
erator are these:

)= -, (n=2) )

1 1
n(n — 2w, |x|"=2’

d(x) = (n > 2). (2)
where w, is the “volume,” i.e., n dimensional Lebesgue measure, of the unit ball
Bi(0) = {x € R" : |x| < 1} in R™. You know w; = 2, wy = 7, and wy = 47/3.
You may not know that w, = 7"/2/I'(n/2 + 1) in general. But now you know. You
also may not have noticed that the n — 1 dimensional Hausdorff measure (this means
counting measure when n = 1, length when n = 2, area when n = 3 etc.) of the
boundary of the unit ball is nw,, but that is indeed the case, and now you know.
We'll use this below.  Up until this point, I've been using x to denote points in
R™. T'm not going to switch and use x, &, etc. We'll just have to remember that
x = (r1,%2,...,7,) has multiple components.

Now, we consider the function ®(z — &) where we translate the singularity to a
point & € U. This gives us some nice smooth boundary values to consider on oU
as indicated in Figure 4. In particular, we define w = w(x, &) as the solution of the
boundary value problem

Aw=0, ze€U
{ w = d(x - £). (3)

zeQ

This function w = w(x, ) may be called the corrector for the fundamental solution.
It is obvious from the symmetry that ®(x — &) = ®({ — x), but it is not obvious at
all that the corrector is symmetric. But it is true.
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Figure 2: The fundamental solution in two dimensions
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Figure 4: Boundary values obtained by translating the fundamental solution



Theorem 1 w(z,§) = w(&, x).

Consequently, the Green’s function

G, &) = (z — &) —w(z, ) (4)

shares the same symmetry. We will prove this symmetry property later.

Recall that the main expectation of a Green’s function is that it is an integral
kernel which can be used to write down a formula for a solution of a certain problem.
In this case, we claim

u(r) = f(§) G(x,¢) (5)
¢eU
solves
—Au=f ze€U
{u S ©)

In fact, we will show more. The usual approach to showing this result depends on
something called Green’s formula. We have discussed the divergence theorem

/diVV:/ vV-n
U aU

and the generalization arising from the product rule div(uv) = Du - v + udivv. In
particular, when v = Duv is the gradient of a function, then we obtain the identity

/uAv+/Du~Dv:/ uwDv - n.
U U U

Note the quantity D,v = Dv - n is called the outward normal derivative of v.
Green’s formula takes this one step further by switching the roles of v and v and then
subtracting:

/U (uAv — vAw) = / (uDv — v Du) . (7)

ouU
In order to apply Green’s formula, we replace U with U, = U\ B.(§) where B.({) cCCU
and we take v(z) = G(z, ). This yields

/é(uAG—GAu) — /aUE(uDG—GDu)-n. 8)

The first term on the left
/ uAG
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vanishes since both the fundamental solution ®(x — £) and the corrector w(z, ) are
harmonic in x for # € U.. Furthermore, if we assume u is a (classical) solution of (6),
then the second integral on the left becomes

(z) G(x, ).
zeU.
In view of the symmetry, this may also be written as
() G(&, x)
IeUe

matching our proposed formula for the solution value u(§) given in (5). More gener-
ally, assuming we have a function u € C?(U) satisfying —Au = f, we have

g f(I)G(f,JC):/aU (u DG — G Du) - n.

The boundary integrals on the right include integrals around OU as well as around
0B, (§) with the unit normal n = —(x — &) /|x — £| pointing into B.(£). For example,

/ uDG~n:/ uDG~n—|—/ u DG - n.
U ou 0Bc(§)

Decomposing G further as G(z,&) = ®(z — &) — w(x, ) the second integral on the
right may be written as

/ uDG~n:/ uDCD-n/ uDw - n.
0B (&) 0B (§) 0Bc(§)

The second of these integrals has bounded integrand v Du - n and, therefore, satisfies

lim uDw-n=0.
N0 JaB.(¢)

Calculating for n > 2, we see

DB(x) = 5 o3 (=2 (9)
B(x) = —mlun % (n>2). (10)



Consequently, the first integral becomes

1 — —
/ uD®-n = / U :E — 3 2 3
9B.(€) nwn Jop.e) € €

1 / U
nwy, 9B (€) En_l

o),
= — u.
HOB(&) Jop, ()

Notice this is an average value so that

lim uD®P-n=u(f).
N0 Jap.(¢) ©

We now consider the last term

—/ G Du-n
AU,

in (8). Since G =0 on 9U, we have here only

— GDu-n:/ wDu~n—/ ® Du - n.
U, OB(€) OBc(£)

The first integrand on the right is bounded, so

lim wDu-n=0.
N0 JaB.(¢)

The growth rate of the fundamental solution also gives

lim O Du-n=0.
N0 JaB.(¢)
In fact,

< sup | Du|®(€)nwpe™ .

/ O Du-n
0B (§)

Returning once again to the second term

() G(x, &) = flx) @(z =€) - () w(z, £)

zeU, zeU, zeUe



in (8) we may restrict to B,.(§) with € < r and ®(x — £) > 0 on B,(§) to calculate

hm/ O(z— &) < o0.

Consequently, combining these calculations in the limit, we have
f@)G(Ea) = [ DG n+ ule).
zeUe oUu

Exchanging the roles/names of z and &, we arrive at our final formula:

)= [ £ G - / u(€) DG(x.€) - n
£ele £eou

If w = 0 on OU, then the second integral on the right vanishes. If u takes other
boundary values, the formula we have still holds, so that we have a formula for
classical solutions v € C?(U) satisfying

Au=f zelU
{u —g, (11)

e

namely
uw) = [ FOGE@~ [ 9(©DG(w)n
Eel. £eoU

It remains to show the symmetry G(z,§) = G(§, x) of the Green’s function. To see
this, note that u(x) = G(z,£) is harmonic in U\{{} with a singularity at © = £ while
v(€) = G(&, x) is harmonic in U\{x} with a singularity at { = x. We may apply
Green’s formula integrating with respect to some variable other than z or &:

/ uAv—vAu):/ (uDv—vDu)-n
nev. U

using the approach above with U, = U\(B.(x) U B.(§)). We evidently get

0= / (G(n.€) DG(n, z) — G(n, ) DG(1.€)]
N€IBe(x)

" / (G (0, €) DG(n,z) — G(n, x) DG(n,€)].
nEOBe (&)

Taking the limit as € \ 0 as above, we see that exactly two limits do not vanish:

= G(ZL’,&) - G(gal')



