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The mollifiction we will discuss! is based on the non-negative symmetric mollifier
(also sometimes called the standard bump function) 5: R — R by

5(@ _ { €_ﬁ, |[L’| <1

0, |z| > 1.

Using (3, we define p; : R — R by

_ B@)
pi(z) = fRﬁ

More generally, for 6 > 0, we define ps : R — R by

NARES

Given u € L}, .(R), the mollification of u is given by us*u: R — R by

s ¥ u(z) = /g RGeS

The function ps * u is called a convolution of ps and w.
The construction above may be generalized to higher dimensions as follows: We
start with 3 : R™ — R by

6(X) _ { 6_ﬁ, |X| <1

0, x| > 1.

Tn other contexts this may be called symmetric (or standard) mollification. The basic idea can
be extended to a general mollifier p € C2°(R) with [p = 1.
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11 : R" — R by
B(x)
i (x) = :
Jpn B
For 6 > 0, we define us : R™ — R by
1 X
it = o (3)

Given u € L} (R"), the mollification of u is given by us * u : R" — R by

s % u(x) = /ﬁ (€= 9)

1 Important Preliminary Observations

I will state these observations for n = 1 and leave the generalizations to R" as
exercises.

1.1 Regularity and Support
The standard bump function satisfies

g€ CX(R) with supp § = [—1,1].
The standard mollifier p; satisfies

€ C°(R) with supp p1 = [—1,1].

More generally
ps € CO(R) with  supp s = [0, 6].

All of these functions are non-negative and even. Furthermore,

/}Rm:l,
/Rw:%/m&ul (%)Z/&Rm(ﬁ)zl-

We have used the change of variables £ = x/0.
The mollification ps * u satisfies pus *x u € C*°(R). Also, if u has compact support
(or essential compact support), then s * u € C°(R).

In fact,
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Exercise 1 Determine the support of pus * u when u is non-negative. Consider also
the case u : R™ — R.

Note that
s % u(z) = / us(©pulz — €).
£eB;(0)

Also, the commutativity of the convolution is key to seeing the regularity of the
mollification:

s (@) = u () = / w(€) sl — €) = /5 BRG]

£eR

Exercise 2 Verify the commutativity of the convolution using the change of variables
n =z —&. Consider also the case when s, u : R — R.

The commutativity allows one to differentiate under the integral sign:

emsru=5 [ u@uste =€) = [ u@uite - = sy

dx £eR ¢eR

1.2 Approximation and Convergence

The integral functional associated with pus is M : C2°(R) — R by

Mslo] = [ o>
As distributions
lim M5 = 50
SN0

where §y is the Dirac delta distribution (or evaluation functional) given by do[¢] =

¢(0).
If u € C°(R), then

fim s e ue) =y | @tz =€) = ule) = ol

More generally, if u € C*(R), then for any compact set K C R

li — =0.
61{%”#6*“ ullorry =0

That is, 5 * u converges to (and approximates) u in C*(K).
For any u € L}, (R),

(lsi\r% s * u(x) = u(x) at every Lebesgue point = of w.



2 Some Elementary Computations

2.1 Mollification of a constant

If uw = ¢ is constant, then us x u = c.

2.2 Mollification of an affine function

If u(x) =z, then
poule) = [ (@=Ous©) = [ s [ uste) ==
¢eR
Notice that the symmetry of the mollifier us is required here to conclude

[ enste)=o.

Explicitly, using the change of variables n = —¢£, we have

[enstr= [ 2 E45(€) dé + /0 " epus(e) de = /5 s dn + /O " €us(e) de 0.

The symmetry leading to the generalization of this result to higher dimensions is
rather interesting.

2.3 DMollification of a quadratic function

If u(z) = 2%, then
s u(z) = /ﬁ = €fue) =t =2 / Es(€) + / Es(€) = % + ¢

where

c= /52,“6(5) > 0.

Exercise 3 Show that if u : R* — R by u(z,y) = 2° —y?, then ps*u(x,y) = 2% —y>.



Note that we have shown the mollification of every (classically) harmonic function
u: R — R satisfies 5 * u = u. Notice also that u(x,y) = 2? — 3? is harmonic on R2.
Furthermore, if u € C?(R) is harmonic, then we an differentiation under the integral
sign directly to see
Aps *u = g * Au =0,

so the mollification pus * u is also harmonic.

Exercise 4 Is it true that us * u = u for every harmonic function u € C?*(R?)?

3 Less elementary computations

We begin with the solution of the exercise just stated above.

3.1 Mollification of a harmonic function
Recall that a harmonic function u satisfies Au = 0 and also the mean value property:

1

= — u(§) for every r > 0.
2mr £€0B,(z)

u(z)
With this in mind, we compute using a poloar version of Fubini’s theorem

s * u(x) = /&R2 ps(z — &) u(§)

- / sl — €)u(©)
£€Bs(x)

- /0 5 ( /6 NS £)U(£)) dr.

It appears that the factor pus(x—¢) in the integrand, because it depends on £ € 0B,.(x),
cannot be taken out of the inside integral (as a constant independent of £). However,
recall the symmetry of us according to which if |x — &| = r, then

ps(r — &) = ps(|z — Eler) = ps(res)



is, in fact, independent of ¢ for & € OB, (z). Thus, we may continue:

v ule) = [ 6 ( / e e u©) ar
= [t ([, @) o

:/0 ws(rer) (2mru(x)) dr

= ul@) /05 (/geaBr(x) Mé(rel)) .
= ul) /o(S (/geaBr(x) ol = 5)) o
— u(x) /5 i)

=u(w) [ o)
= u(x). O

I guess that last computation has taken us out of the realm of “elementary.” It gives
us, however, a proof of a result called Weyl’s lemma which states that any classical
solution u € C*(R?) of Laplaces equation satisfies u € C*°(R?). I prefer to think
of the assertion of the exercise above as the fact that a harmonic function is left
inwvariant by mollification.

Exercise 5 Generalize the exercise above (and Weyl’s lemma) to higher dimensions
and to the case u € C*(U) for U an open subset of R™.

3.2 Mollification of weak derivatives

The following computation gives what is often called the fact that mollification com-
mutes with taking weak derivatives.? 1 have always found this description a bit opaque.
I prefer to say the following:

’Incidentally, I don’t think this clever observation is explicitly in the standard texts Partial
Differential Equations by Evans or Second Order Elliptic Partial Differential Equations by Gilbarg
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The mollification of a weak derivative is the classical deriviative of the
mollification:
D*(pus % u) = pgs * D%u.

Here we are taking a multi-index o« = (a,...,,) or order k and assuming u €
WHFP(R™) so that the derivative D% appearing on the right is a weak derivative of
order a. Of course, this one works in lower dimensions, but I'll give the proof in R".
We recall the defining condition for weak derivatives:

/UD% = (1)l /Dagbu for all ¢ € C°(R™). (1)

Recall also that the order of the derivative is k = || = a3 + -+ - + .

In the following computation, I will use the notation DS to distinguish the «
derivative with respect to x as opposed to Dg' denoting the same derivative but with
respect to the variable €.

D® (s # u)() = D° / sl — €)u(é)

¢ERn

= D3 s (v — &) u(§)

geRn

= [, 0Dz €y u(e)

= (—1)k! Dgps(z — &) u(é).

EeR™

Note that ¢(§) = ps(z — &) satisfies ¢ € C°(R™) so that the integrand now has the
form associated with the weak adjoint derivative operator in (1). Thus, we continue
the computation:

D (s * u)(z) = (=1) D¢(&) u(é)

EeR™

= (~DFl(=1) ¢(§) Du(E)

EER™
~ [ wsle =9 Du)
EERn
= us * D%u(x). O

and Trudinger, but both certainly use it implicitly. I first learned the explicit statement from Leon
Simon.



