Mollifiction (rough draft)

John McCuan

April 14, 2020

The mollification we will discuss¹ is based on the non-negative symmetric mollifier (also sometimes called the standard bump function) $\beta : \mathbb{R} \to \mathbb{R}$ by

$$\beta(x) = \begin{cases} e^{-\frac{1}{1-x^2}}, & |x| < 1\\ 0, & |x| \ge 1. \end{cases}$$

Using β , we define $\mu_1 : \mathbb{R} \to \mathbb{R}$ by

$$\mu_1(x) = \frac{\beta(x)}{\int_{\mathbb{R}} \beta}.$$

More generally, for $\delta > 0$, we define $\mu_{\delta} : \mathbb{R} \to \mathbb{R}$ by

$$\mu_{\delta}(x) = \frac{1}{\delta} \mu_1 \left(\frac{x}{\delta}\right).$$

Given $u \in L^1_{loc}(\mathbb{R})$, the **mollification** of u is given by $\mu_{\delta} * u : \mathbb{R} \to \mathbb{R}$ by

$$\mu_{\delta} * u(x) = \int_{\xi \in \mathbb{R}} \mu_{\delta}(\xi) u(x - \xi).$$

The function $\mu_{\delta} * u$ is called a **convolution** of μ_{δ} and u.

The construction above may be generalized to higher dimensions as follows: We start with $\beta: \mathbb{R}^n \to \mathbb{R}$ by

$$\beta(\mathbf{x}) = \begin{cases} e^{-\frac{1}{1-|\mathbf{x}|^2}}, & |\mathbf{x}| < 1\\ 0, & |\mathbf{x}| \ge 1. \end{cases}$$

¹In other contexts this may be called symmetric (or standard) mollification. The basic idea can be extended to a general mollifier $\mu \in C_c^{\infty}(\mathbb{R})$ with $\int \mu = 1$.

 $\mu_1: \mathbb{R}^n \to \mathbb{R}$ by

$$\mu_1(\mathbf{x}) = \frac{\beta(\mathbf{x})}{\int_{\mathbb{R}^n} \beta}.$$

For $\delta > 0$, we define $\mu_{\delta} : \mathbb{R}^n \to \mathbb{R}$ by

$$\mu_{\delta}(\mathbf{x}) = \frac{1}{\delta^n} \mu_1 \left(\frac{\mathbf{x}}{\delta} \right).$$

Given $u \in L^1_{loc}(\mathbb{R}^n)$, the **mollification** of u is given by $\mu_{\delta} * u : \mathbb{R}^n \to \mathbb{R}$ by

$$\mu_{\delta} * u(\mathbf{x}) = \int_{\xi \in \mathbb{R}} \mu_{\delta}(\xi) u(\mathbf{x} - \xi).$$

1 Important Preliminary Observations

I will state these observations for n=1 and leave the generalizations to \mathbb{R}^n as exercises.

1.1 Regularity and Support

The standard bump function satisfies

$$\beta \in C_c^{\infty}(\mathbb{R})$$
 with $\operatorname{supp} \beta = [-1, 1].$

The standard mollifier μ_1 satisfies

$$\mu_1 \in C_c^{\infty}(\mathbb{R})$$
 with supp $\mu_1 = [-1, 1]$.

More generally

$$\mu_{\delta} \in C_c^{\infty}(\mathbb{R})$$
 with $\sup \mu_{\delta} = [-\delta, \delta].$

All of these functions are non-negative and even. Furthermore,

$$\int_{\mathbb{R}} \mu_1 = 1.$$

In fact,

$$\int_{\mathbb{R}} \mu_{\delta} = \frac{1}{\delta} \int_{x \in \mathbb{R}} \mu_{1} \left(\frac{x}{\delta} \right) = \int_{\xi \in \mathbb{R}} \mu_{1} \left(\xi \right) = 1.$$

We have used the change of variables $\xi = x/\delta$.

The mollification $\mu_{\delta} * u$ satisfies $\mu_{\delta} * u \in C^{\infty}(\mathbb{R})$. Also, if u has compact support (or essential compact support), then $\mu_{\delta} * u \in C^{\infty}_{c}(\mathbb{R})$.

Exercise 1 Determine the support of $\mu_{\delta} * u$ when u is non-negative. Consider also the case $u : \mathbb{R}^n \to \mathbb{R}$.

Note that

$$\mu_{\delta} * u(x) = \int_{\xi \in B_{\delta}(0)} \mu_{\delta}(\xi) u(x - \xi).$$

Also, the commutativity of the convolution is key to seeing the regularity of the mollification:

$$\mu_{\delta} * u(x) = u * \mu_{\delta}(x) = \int_{\xi \in \mathbb{R}} u(\xi) \mu_{\delta}(x - \xi) = \int_{\xi \in B_{\delta}(x)} u(\xi) \mu_{\delta}(x - \xi).$$

Exercise 2 Verify the commutativity of the convolution using the change of variables $\eta = x - \xi$. Consider also the case when $\mu_{\delta}, u : \mathbb{R}^n \to \mathbb{R}$.

The commutativity allows one to differentiate under the integral sign:

$$\frac{d}{dx}\mu_{\delta} * u = \frac{d}{dx} \int_{\xi \in \mathbb{R}} u(\xi)\mu_{\delta}(x - \xi) = \int_{\xi \in \mathbb{R}} u(\xi)\mu_{\delta}'(x - \xi) = \mu_{\delta}' * u.$$

1.2 Approximation and Convergence

The integral functional associated with μ_{δ} is $M_{\delta}: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ by

$$M_{\delta}[\phi] = \int \mu_{\delta} \phi.$$

As distributions

$$\lim_{\delta \searrow 0} M_{\delta} = \delta_0$$

where δ_0 is the Dirac delta distribution (or evaluation functional) given by $\delta_0[\phi] = \phi(0)$.

If $u \in C^0(\mathbb{R})$, then

$$\lim_{\delta \searrow 0} \mu_{\delta} * u(x) = \lim_{\delta \searrow 0} \int_{\xi \in \mathbb{R}} \mu_{\delta}(\xi) u(x - \xi) = u(x) = \delta_{x}[u].$$

More generally, if $u \in C^k(\mathbb{R})$, then for any compact set $K \subset \mathbb{R}$

$$\lim_{\delta \searrow 0} \|\mu_{\delta} * u - u\|_{C^k(K)} = 0.$$

That is, $\mu_{\delta} * u$ converges to (and approximates) u in $C^{k}(K)$. For any $u \in L^{1}_{loc}(\mathbb{R})$,

$$\lim_{\delta \searrow 0} \mu_{\delta} * u(x) = u(x) \quad \text{at every Lebesgue point } x \text{ of } u.$$

2 Some Elementary Computations

2.1 Mollification of a constant

If $u \equiv c$ is constant, then $\mu_{\delta} * u \equiv c$.

2.2 Mollification of an affine function

If u(x) = x, then

$$\mu_{\delta} * u(x) = \int_{\xi \in \mathbb{R}} (x - \xi) \mu_{\delta}(\xi) = x \int \mu_{\delta} - \int \xi \mu_{\delta}(\xi) = x.$$

Notice that the symmetry of the mollifier μ_{δ} is required here to conclude

$$\int \xi \mu_{\delta}(\xi) = 0.$$

Explicitly, using the change of variables $\eta = -\xi$, we have

$$\int \xi \mu_{\delta}(\xi) = \int_{-\delta}^{0} \xi \mu_{\delta}(\xi) d\xi + \int_{0}^{\delta} \xi \mu_{\delta}(\xi) d\xi = \int_{\delta}^{0} \eta \mu_{\delta}(-\eta) d\eta + \int_{0}^{\delta} \xi \mu_{\delta}(\xi) d\xi = 0.$$

The symmetry leading to the generalization of this result to higher dimensions is rather interesting.

2.3 Mollification of a quadratic function

If $u(x) = x^2$, then

$$\mu_{\delta} * u(x) = \int_{\xi \in \mathbb{R}} (x - \xi)^2 \mu_{\delta}(\xi) = x^2 - 2x \int \xi \mu_{\delta}(\xi) + \int \xi^2 \mu_{\delta}(\xi) = x^2 + c$$

where

$$c = \int \xi^2 \mu_{\delta}(\xi) > 0.$$

Exercise 3 Show that if $u: \mathbb{R}^2 \to \mathbb{R}$ by $u(x,y) = x^2 - y^2$, then $\mu_{\delta} * u(x,y) = x^2 - y^2$.

Note that we have shown the mollification of every (classically) harmonic function $u: \mathbb{R} \to \mathbb{R}$ satisfies $\mu_{\delta} * u = u$. Notice also that $u(x,y) = x^2 - y^2$ is harmonic on \mathbb{R}^2 . Furthermore, if $u \in C^2(\mathbb{R})$ is harmonic, then we an differentiation under the integral sign directly to see

$$\Delta \mu_{\delta} * u = \mu_{\delta} * \Delta u = 0,$$

so the mollification $\mu_{\delta} * u$ is also harmonic.

Exercise 4 Is it true that $\mu_{\delta} * u = u$ for every harmonic function $u \in C^{2}(\mathbb{R}^{2})$?

3 Less elementary computations

We begin with the solution of the exercise just stated above.

3.1 Mollification of a harmonic function

Recall that a harmonic function u satisfies $\Delta u = 0$ and also the mean value property:

$$u(x) = \frac{1}{2\pi r} \int_{\xi \in \partial B_r(x)} u(\xi)$$
 for every $r > 0$.

With this in mind, we compute using a poloar version of Fubini's theorem

$$\mu_{\delta} * u(x) = \int_{\xi \in \mathbb{R}^2} \mu_{\delta}(x - \xi) u(\xi)$$

$$= \int_{\xi \in B_{\delta}(x)} \mu_{\delta}(x - \xi) u(\xi)$$

$$= \int_{0}^{\delta} \left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}(x - \xi) u(\xi) \right) dr.$$

It appears that the factor $\mu_{\delta}(x-\xi)$ in the integrand, because it depends on $\xi \in \partial B_r(x)$, cannot be taken out of the inside integral (as a constant independent of ξ). However, recall the symmetry of μ_{δ} according to which if $|x-\xi|=r$, then

$$\mu_{\delta}(x-\xi) = \mu_{\delta}(|x-\xi|\mathbf{e}_1) = \mu_{\delta}(r\mathbf{e}_1)$$

is, in fact, independent of ξ for $\xi \in \partial B_r(x)$. Thus, we may continue:

$$\mu_{\delta} * u(x) = \int_{0}^{\delta} \left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}(r\mathbf{e}_{1}) u(\xi) \right) dr$$

$$= \int_{0}^{\delta} \mu_{\delta}(r\mathbf{e}_{1}) \left(\int_{\xi \in \partial B_{r}(x)} u(\xi) \right) dr$$

$$= \int_{0}^{\delta} \mu_{\delta}(r\mathbf{e}_{1}) \left(2\pi r u(x) \right) dr$$

$$= u(x) \int_{0}^{\delta} \mu_{\delta}(r\mathbf{e}_{1}) \left(\int_{\xi \in \partial B_{r}(x)} 1 \right) dr$$

$$= u(x) \int_{0}^{\delta} \left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}(r\mathbf{e}_{1}) \right) dr$$

$$= u(x) \int_{0}^{\delta} \left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}(x - \xi) \right) dr$$

$$= u(x) \int_{\xi \in B_{\delta}(x)} \mu_{\delta}(x - \xi)$$

$$= u(x) \int_{\xi \in \mathbb{R}^{2}} \mu_{\delta}(x - \xi)$$

$$= u(x). \quad \Box$$

I guess that last computation has taken us out of the realm of "elementary." It gives us, however, a proof of a result called **Weyl's lemma** which states that any classical solution $u \in C^2(\mathbb{R}^2)$ of Laplaces equation satisfies $u \in C^{\infty}(\mathbb{R}^2)$. I prefer to think of the assertion of the exercise above as the fact that a harmonic function is left invariant by mollification.

Exercise 5 Generalize the exercise above (and Weyl's lemma) to higher dimensions and to the case $u \in C^2(U)$ for U an open subset of \mathbb{R}^n .

3.2 Mollification of weak derivatives

The following computation gives what is often called the fact that *mollification commutes with taking weak derivatives*.² I have always found this description a bit opaque. I prefer to say the following:

²Incidentally, I don't think this clever observation is explicitly in the standard texts *Partial Differential Equations* by Evans or *Second Order Elliptic Partial Differential Equations* by Gilbarg

The mollification of a weak derivative is the classical derivative of the mollification:

$$D^{\alpha}(\mu_{\delta} * u) = \mu_{\delta} * D^{\alpha}u.$$

Here we are taking a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ or order k and assuming $u \in W^{k,p}(\mathbb{R}^n)$ so that the derivative $D^{\alpha}u$ appearing on the right is a weak derivative of order α . Of course, this one works in lower dimensions, but I'll give the proof in \mathbb{R}^n . We recall the defining condition for weak derivatives:

$$\int u D^{\alpha} \phi = (-1)^{|\alpha|} \int D^{\alpha} \phi u \quad \text{for all } \phi \in C_c^{\infty}(\mathbb{R}^n).$$
 (1)

Recall also that the order of the derivative is $k = |\alpha| = \alpha_1 + \cdots + \alpha_n$.

In the following computation, I will use the notation D_x^{α} to distinguish the α derivative with respect to x as opposed to D_{ξ}^{α} denoting the same derivative but with respect to the variable ξ .

$$D^{\alpha}(\mu_{\delta} * u)(x) = D^{\alpha} \int_{\xi \in \mathbb{R}^{n}} \mu_{\delta}(x - \xi) u(\xi)$$

$$= \int_{\xi \in \mathbb{R}^{n}} D_{x}^{\alpha} \mu_{\delta}(x - \xi) u(\xi)$$

$$= \int_{\xi \in \mathbb{R}^{n}} (-1)^{|\alpha|} D_{\xi}^{\alpha} \mu_{\delta}(x - \xi) u(\xi)$$

$$= (-1)^{|\alpha|} \int_{\xi \in \mathbb{R}^{n}} D_{\xi}^{\alpha} \mu_{\delta}(x - \xi) u(\xi).$$

Note that $\phi(\xi) = \mu_{\delta}(x - \xi)$ satisfies $\phi \in C_c^{\infty}(\mathbb{R}^n)$ so that the integrand now has the form associated with the weak adjoint derivative operator in (1). Thus, we continue the computation:

$$D^{\alpha}(\mu_{\delta} * u)(x) = (-1)^{|\alpha|} \int_{\xi \in \mathbb{R}^n} D^{\alpha} \phi(\xi) u(\xi)$$
$$= (-1)^{|\alpha|} (-1)^{|\alpha|} \int_{\xi \in \mathbb{R}^n} \phi(\xi) D^{\alpha} u(\xi)$$
$$= \int_{\xi \in \mathbb{R}^n} \mu_{\delta}(x - \xi) D^{\alpha} u(\xi)$$
$$= \mu_{\delta} * D^{\alpha} u(x). \qquad \Box$$

and Trudinger, but both certainly use it implicitly. I first learned the explicit statement from Leon Simon.