
Laplace’s Equation

The Fundamental Solution and Green’s Function

John McCuan

March 24, 2021

We have covered some elementary initial properties1 of harmonic functions, that is, functions satis-
fying Laplace’s PDE ∆u = 0. These mostly followed from the mean value properties and included the
(strong) maximum principle and higher (interior) regularity. Now we complement this discussion with some
observations about the natural boundary value problem, or Dirichlet problem, for Laplace’s equation:

{

∆u = 0 on U
u∣
∣

∂U

= g. (1)

Here the set U is an open (often bounded) subset of Rn, the operator is, of course, the Laplace operator

∆u =

n
∑

j=1

∂2u

∂x2

j

,

and ∂U is the boundary of the domain U defined by

∂U = U ∩ U c

as usual. We are looking, at least initially, for a classical solution u : U → R with

u ∈ C2(U) ∩ C0(U).

1 Boundary Values

We have no trouble making sense of continuous boundary values g : ∂U → R since ∂U is a metric
space with the inherited distance from the Euclidean space R

n containing U and ∂U . If we want higher
regularity, however, then generally we may want to impose additional regularity on the set ∂U requiring
∂U to be a differentiable or C1 curve of U ⊂ R

2, a smooth surface if U ⊂ R
3 and some kind of smooth

hypersurface if U ⊂ R
n for n > 3. One way to avoid all the technicalities of such a discussion (at least

in part) is to simply require the boundary values g to be defined with certain regularity on a larger (full
dimension) set containing ∂U . For example, we could consider g : Rn → R with g ∈ C1(Rn) or g ∈ C∞(Rn)
and then it is understood that the function g appearing in (1) is a restriction of such a boundary value
function g to ∂U . Thus, to make (1) properly stated we should write

u∣
∣

∂U

= g∣
∣

∂U

.

This is what we should do if we want to be careful and proper. In practice, this is almost never done,
though it is often understood that g is defined in a full dimension set containing ∂U .

In particular, one very important special instance of this is going to be considered below, so at least
we will have mentioned it, and you will know what’s going on.

1These may be found in the notes on “Integration and the Divergence.”
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2 Fundamental Solution

The function Φ : R2\{0} → R given by

Φ(x) = −
1

2π
ln |x|

is called the fundamental solution of Laplace’s equation for R2. Notice this function is not defined on
all of R2, but it has a singularity at the origin x = 0. In the punctured plane, however, it is easy to see
that

∆Φ(x) ≡ 0 for x 6= 0.

The function u(x) = Φ(x−w) is also harmonic in R\{w} with singularity (translated to) w.
Similarly, the function Φ : Rn\{0} → R by

Φ(x) =
1

n(n− 2)ωn

1

|x|n−2

is the fundamental solution for Laplace’s equation for n ≥ 3.
In all cases, Φ ∈ L1

loc(R
n), so given a function f ∈ C0

c (R
n) the convolution integral

v(x) =

∫

w∈Rn

f(w)Φ(x−w)

defines a function v ∈ C2(Rn). Of course, you have to prove the regularity of v, but it’s not so difficult,
and then you will find

−∆(f ∗ Φ) = f.

This is pretty nice: The fundamental solution of Laplace’s equation gives us a bunch2 of solutions of
Poisson’s equation. These solutions are not immediately connected to any particular boundary values in
any way, but we’ll make a connection in the next section.

3 The Boundary Value Problem for Laplace’s Equation

Now, say we have g ∈ C2(Rn), and we want to solve (1). A first observation is that if we could solve the
boundary value problem

{

−∆v = f on U
v∣
∣

∂U

≡ 0 (2)

for Poisson’s equation for all f ∈ C0(U), then we can solve (1). To see this, set

f = ∆g.

Since g ∈ C2(Rn), we know f ∈ C0(Rn) ⊂ C0(U). Thus if v is the solution of (2), for this choice of f , then
u = v + g satisfies

∆u = ∆v +∆g = −f + f = 0

and
u∣
∣

∂U

= v∣
∣

∂U

+ g∣
∣

∂U

= g.

The key observation associated with the Green’s function is that one does not need to be able to solve
(2) for every f ∈ C0(U), or equivalently, one does not need to be able to solve (1) for every g ∈ C2(Rn).

2Important technical term.
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4 Green’s Function

The Green’s function is a function associated with a particular domain U and depending on 2n
variables. More precisely, the Green’s function is a function G : U × U → R ∪ {∞} given by

G(x,w) = Φ(x−w)− φ(x,w) = Φ(x−w)− h(x)

where h(x) = φ(x,w) is a harmonic corrector function satisfying the boundary value problem

{

∆h = 0 on U
h(x) = Φ(x−w) for x ∈ ∂U .

(3)

The claim is: If you can solve the boundary values problems (3), then you can solve (1) for every
g ∈ C0(Rn). In fact, the formula for the solution is

u(x) = −

∫

w∈∂U

g(w) DG(x,w) · n (4)

where

DG =

(

∂G

∂x1

,
∂G

∂x2

, . . . ,
∂G

∂xn

)

and n is the outward unit normal to U along ∂U . Of course, this requires that ∂U be regular enough to
have a well-defined outward unit normal at least as a domain of integration (i.e., a set of measure zero
consisting of edges and corners and such is okay).

Notice the main point: If you can solve (1) for

g ∈ {Φ(x−w) : w ∈ U},

then you can solve (1) for all g ∈ C0(∂U).

Exercise 1 For what class of inhomogeneities f does one need to be able to solve (2) in order to construct
the Green’s function for a domain U?

Of course, it requires a (careful) computation to show the function u given in (4) performs the feat we
have ascribed to it, namely that by this formula we obtain a solution u ∈ C2(U) ∩ C0(U) of (1). Without
too much more work one can also prove the following generalization:

Theorem 1 (solution of the Dirichlet problem for Poisson’s equation) If U is an open bounded subset of
R

n with C2 boundary and

1. f ∈ C0(U), and

2. g ∈ C0(∂U),

then

v(x) = −

∫

w∈∂U

g(w) DG(x,w) · n−

∫

w∈U

f(w) G(x,w)

satisfies v ∈ C2(U) ∩ C0(U) and
{

−∆v = f on U
v∣
∣

∂U

= g. (5)
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