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A friend of mine Ed Bueler has called the book Fourier Analysis by T.W. K orner
the “best math book ever written.” In view of such an accolade it perhaps makes
sense to express some devotional thoughts about Korner’s exposition in the manner
not unlike a theologian might write about a passage in the bible. I've chosen for
various reasons to focus on Lemma 53.2 in Korner’s Chapter 53. Rather than discuss
Korner’s presentation specifically, I will just attempt to express what he has written
in my own words and from my own point of view.

This lemma concerns complex valued functions, and I will start with a brief review
of some definitions and properties of complex functions. I will assume some things
about continuity and differentiability especially for real valued functions. Each com-
plex valued function f : R — C has associated with it two real valued functions with
values given by the real and imaginary parts of f. Let us use the notation f = f;+ifs
with fi = Re(f) and fo = Im(f).

Differentiability for a complex valued function of this sort means simply that
the derivatives of f; and f, exist and there is a well-defined complex function of the
same sort with values at each x € R given by f|(z) + ifi(x), and we denote this
function by f': R — C and write

f'=fi+if

Integrability extends pretty much the same way: If f; and f, are continuous and
a,b € R with a < b, then

/abf(x)dx:/abfl(x)d:c+i/abf2(x)dx_

The notion of continuity of course makes sense for f : R — C directly, and it is easy
to check that f is continuous if and only if the real and imaginary parts f; and f; are
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continuous. We denote the collection of all continuous real valued functions on R by
C°(R) and more generally the collection of all continuous real valued functions with
domain any subset A C R by C°(R). You may recall the definition of continuity at a
point for a function g : A — R is the following: For any zy € A and any € > 0, there
is some ¢ > 0 for which

lg(x) — g(zo)| <€  whenever reA and |xr— x| <.

Similarly, we denote the collection of all continuous complex valued functions on any
set A C R by C°%A — C). In the case where A is all of R or more generally when
U is an open subset of R, we denote the collection of all differentiable functions
f:U — Cwith f/ € C°%(U — R) by C*(U — C).

Note that the various classes of functions f : R — C are very different from the
functions f : C — C comprising the main objects of study in complex analysis. In
particular the notion of complex differentiability for a function f : U — C where
U is an open subset of C is quite distinct from the definition of C'(U — C) where U
is an open subset of R.

The fundamental theorem of calculus holds for complex valued functions in
the sense that the following hold:

(definite integral version) If a,b € R with a < b and f € C*(R — C) then

b
/ f(@) de = F(b) - f(a).

and
(indefinite integral version) If a,b € R with a < b and g € C°([a,b] — C) then
f: (a,b) — C with values given by

satisfies f € C'((a,b) — C) with f’(z) = g(z) for each z € (a,b).

These assertions are also easy to check using the corresponding assertions for real
valued functions.

With these preliminaries out of the way, I think I am in a position to address some
of the preliminaries of Korner’s lemma: We begin with a sequence of functions

{fi}i2 c R = ©),



and we start with the assumption that for each x € R the sequence of complex

numbers
{fi(@)}52,

converges to some value defining a function f : R — C by
= lim f;(x).
£(@) = lim £(2)

The idea is that, at the moment, we do not know anything whatsoever about the con-
tinuity or differentiability of the function f. We only know that the so-called point-
wise limit of the functions f; exists. We assume also, however, that the derivatives
converge pointwise to some function g : R — C so that

(@) = lim fj(a)

and we assume furthermore that this pointwise convergence of the derivatives is uni-
form on compact subsets. One simple way to say this is, as Korner says it, that
for any a,b € R with a < b, the pointwise convergence is uniform on the interval [a, b].
Explicitly, for any € > 0, there exists some N > 0 so that

|fi(x) —g(z)| <e forallj>Nanda <z <0

We make two preliminary assertions based on this assumption.! The first is g €
C°(R — C), that is, g is continuous. To see this, fix some 2y € R and any € > 0.
By the uniform convergence of f; to g on the compact interval [xg — 1,2 + 1] there
exists some N > 0 for which

(O 9@ <3 whenever &€ [ry— L+ 1]

We know also that the function fj is continuous and continuous at z, in particular
so that there is some ¢ satisfying 0 < 6 < 1 with

|fn(x) — fy(zo)| < % whenever |z — o] < 6.
Thus, if |z — zo| < 6, then

l9(x) — g(z0)| = lg(=) — fiy(@) + fy(x) — fi(zo) + fis(@o) — g(20)|
< |g(5€) fn(@)| + £ (@) = (o)l + 1 fx(w0) — g(ao)]
< +§
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I'Korner states a somewhat more general result, his Theorem 53.3, along with some kind of
supposedly sage remark labeled as a “proof.”



This is what it means for g to be continuous at xy and hence to have g € C°(R — C).

The second preliminary assertion is about the convergence of integrals. Without
giving the general assertion of Korner’s Theorem 53.3, let us start with the specific
observation that for each x > 0

in | e de = / g6 de. 1)

J/'o0
This has most of the content we will need. This limiting assertion follows from the

uniform convergence of f; to g. Specifically, remembering that x > 0 is fixed here we
have for any € > 0, some N for which

;&) —g(&)] < i whenever 7> N and 0<¢<u.

Therefore,

/Oxf]‘(&)dﬁ—/oxg(f)df‘: /Oxf;(f)—g(f)df‘

< /:|f;-<s> (o)) de

€
< —d
_/0ng

€
S 2
< €.

With these preliminaries out of the way, Korner’s Lemma 53.2 makes the inter-
esting and useful assertion(s) f € CY(R — C) and f' = g. In view of our first
preliminary assertion that ¢ is continuous, it is enough to show the derivative f'(z)
exists at every fixed x € R and f’(2) = ¢g(z). To this end observe that by the definite
integral version of the fundamental theorem of calculus

3
5@ = [ fiOd+ 50 for every ¢ >0 )

Thinking of ¢ as fixed for a moment, we can take the limit as j * co in (2) using the
preliminary assertion concerning the convergence of the integral above (or Korner’s
Theorem 53.3) to find

3
£(6) = /0 o(8)di + F(0)
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Taking this as an identity and applying the indefinite integral version of the funda-
mental theorem of calculus we conclude

f'(€) = g(&) for each &€ > 0.

In particular, we have shown that for every fixed x > 0 the function f is differentiable
at  and f'(x) = g(x). This looks very much like what we said we needed to prove.
The only deficiency is that our argument is restricted to = > 0. Thus, what we have
really shown is
1 d
f} € C((0,00) = C) and %f‘ = g‘

(0,00) (0,00) (0,00)

Perhaps the simplest way to handle showing f'(x) exists and f'(z) = g(z) when
x < 0, is to show (1) holds under this more general assumption. One also needs
to adapt the statement of the fundamental theorem of calculus above, specifically
the indefinite integral version, to situations in which the upper limit of integration x
happens to be lower than the lower limit of integration, that is

with < a. The basic meaning of such an integral is already well-known and/or easy

to define: N "
/ g(€) dé = — / 9(€) de

/aago:) ae =0,

but notice the argument above justifying (1) uses prominently the (positive) tolerance
€/(2x), so clearly some different argument needs to be made when x < 0. Rather
than attempting a more general phrasing of my commentary above, I will finish with
an exercise someone will hopefully find interesting enough to undertake.

and of course,

Exercise 1 Show carefully and in detail that f’(z) exists and f'(z) = g(x) when
x < 0 by considering two cases z = 0 and = < 0.



