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The ultimate goal of this course is to present an introduction to elementary aspects
of partial differential equations (PDEs). The hope is that this introduction will put
the student in a position to have some background to tackle much harder questions
concerning the study of very complicated systems of partial differential equations like
the Navier-Stokes equations, about which very little is known. While very little is
known about the Navier-Stokes equations, from a mathematical or theoretical point
of view, there is a great industry in studying these equations numerically, and many
engineers have a pretty deep understanding of the behavior of solutions which are
presumed (though not mathematically proven) to exist. The perceived (though not
mathematically proven) properties of solutions of these equations are usually based
on or motivated by an understanding of solutions of simpler PDEs which we do know
things about. There are various lists of these simpler equations all of which include
the following:

1. Laplace’s equation,

2. the heat equation, and

3. the wave equation.

The list in our textbookMathematical Methods in the Physical Sciences by Mary Boas
is somewhat longer including Poisson’s equation, the Helmholtz equation, and the
Schrödinger equation. I have always been somewhat disappointed by the introductory
material intended to motivate the study of partial differential equations found in
textbooks on the subject. The best, it seems, anyone can come up with is to give
such a list, which I guess is okay. At any rate, others have tried other approaches,
especially involving derivations of certain PDE, but I can’t say that I have found the
effort to be any real improvement over a list.
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Elliptic, Parabolic, and Hyperbolic

Before I make some attempt at my own approach to an introduction, let me men-
tion something that all accounts of elementary PDE should include which will (at
least eventually) serve as a framework for what one can really realistically expect
to understand about partial differential equations: The three equations listed above,
Laplace’s equation, the heat equation, and the wave equation are all equations that
are second order, that are linear, and that have constant coefficients. These
are terms of classification for PDEs which will be explained in more detail later. For
now, it’s adequate to simply remember the classifying words:

Linear, second order, constant coefficient PDEs

Every linear, second order, constant coefficent PDE has associated with it a “type”
determined by the coefficients. Again, if you don’t know at the moment how to
identify the “coefficients,” don’t worry about that, it will be explained later. The
important thing to note is that there is a reasonably large class of PDEs called
linear, second order, constant coefficient PDEs, and these PDEs are of three
well-defined types called elliptic, parabolic, and hyperbolic. The three PDEs on
our list are representative of the three types:

Laplace’s equation is elliptic.

The heat equation is parabolic.

The wave equation is hyperbolic.

Associated with every type, there is a list of properties of solutions, but those lists are
very different for each type. So that is your framework for this course, and from it
you may compose a list of objectives:

1. Learn how to recognize a linear, second order, constant coefficient PDE.

2. Learn how to determine the type (elliptic, parabolic, or hyperbolic) of such a
PDE.

3. Learn some basic properties of, and know what to expect of, solutions of each
of these types.

We will also include/learn some other things along the way, including most notably
how to find some solutions of such PDE in relatively special cases, and how to prove
some of the properties, or understand more deeply why those properties hold.
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ODEs

Let me now back up, and try to offer some motivation for how to think about PDEs
from the very beginning. I’ll start with ordinary differential equations (ODEs) about
which students in this course should already know something. Let’s start with a real
valued function of one variable defined by

f(x) = x2. (1)

If we write y = f(x), as is customary in calculus, then we can compute derivatives
y′ = 2x and y′′ = 2. Thus, we have arrived at an ODE:

y′′ = 2. (2)

At some level, the simplest way to view the subject of ODEs is as the process of
reversing this process of differentiation. That is, we forget about (1), start with (2),
and ask the question: What can we say about a function f(x) with the property that
y′′ = 2 when y = f(x)? Of course, it’s somewhat interesting that one does not get
back to (1), or at least one does not get back there directly.

Exercise 1 If f(x) = ex and y = f(x), then y′′ = ex and y′′ = y. Find the solutions
of these two ODEs.

These kind of exercises lead one to ask what happens if one writes down anything of
the form

y′′ = F (y′, y, x) (3)

that looks ”reasonable.” It doesn’t take too long to realize that not every reasonable
looking ODE is one you would find easily by starting with a well-known function
y = f(x) and differentiating. For example,

y′′ = sin(x2) and y′′ = e−x2

. (4)

Exercise 2 While the ODEs given in (4) may be viewed as having no well-known
function as a solution, show that if one is willing to consider the following functions
as ”well-known,” then they can certainly be solved:

f1(x) =

∫ x

0

∫ ξ

0

sin(t2) dtdξ.

f2(x) =

∫ x

0

∫ ξ

0

e−t2 dtdξ.
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Exercise 3 Use mathematical software (e.g., Matlab or Mathematica) to plot the
functions y = f1(x) and y = f2(x) given in the previous exercise as well as their
derivatives y′ = f ′

1(x) and y′ = f ′

2(x).

Exercise 4 Consider y′ = f ′

1(x) given by

f ′

1(x) =

∫ x

0

sin(t2) dt.

Show the following:

1. f ′

1 is an odd function.

2. f ′

1(0) = f ′

1(
√
π) = f ′

1(
√
2π) = 0.

3. f ′

1 is increasing for 0 < x <
√
π and decreasing for

√
π < x <

√
2π.

4. 0 < f ′

1(
√
2π) < f ′

1(
√
π).

If you can show these things, you can show that f ′

1(x) > 0 for x > 0, and it can also
be shown that

lim
x→∞

f ′

1(x) =

∫

∞

0

sin(t2) dt =

√
2π

4
≈ 0.6267.

Exercise 5 Show that y = f1(x) satisfies the following:

1. f1 is an even function.

2. f1 is increasing for 0 < x <
√
3π.

Exercise 6 Consider y′ = f ′

2(x) given by

f ′

2(x) =

∫ x

0

e−t2 dt.

Show the following:

1. f ′

2 is an odd function.

2. f ′

2(0) = 1.

3. f ′

2 is increasing for 0 < x with 0 < f ′

2(x) < 1.
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4. f ′

2 is bounded above and

lim
x→∞

f ′

2(x) =

∫

∞

0

e−t2 dt =

√
π

2
≈ 0.8862.

Exercise 7 Show that y = f2(x) satisfies the following:

1. f2 is an even function.

2. f2 is increasing for 0 < x.

If one continues to study these “reasonable” ODEs, one accumulates some other
useful facts and distinctions. Among these one distinguishes linear ODEs, which are
those involving a linear operator1 L having the form

L[y] = an(x)y
(n) + an−1(x)y

(n−1) + a1y
′ + a0y.

The operator is said to be of n-th order and nonsingular at a point x = x0 if
an(x0) 6= 0. The n-th order linear ODE then has the form

L[y] = f(x)

where the function f is called the inhomogeneity, and there is a nice theory of
solutions which includes the following assertion:

Theorem 1 If (a, b) is any open interval on which the coefficients an, an−1, . . . , a1, a0
and the function f are continuous and the leading coefficient an does not vanish, then
there exists a particular solution yp (which is n times continuously differentiable and
for which Lyp = f), and every other solution of the equation has the form

y = yp(x) + yh(x) (5)

where yh is in the n-dimensional vector space of n times continuously differentiable
functions Yh = {y : L[y] = 0}. In fact, given any x0 ∈ (a, b) and any values

y0, y
′

0, . . . , y
(n−1)
0 , there exists a unique solution y = y(x) of the form (5) such

that
y(x0) = y0, y′(x0) = y′0, . . . , y(n−1)(x0) = y

(n−1)
0 .

1A linear ordinary differential operator to be exact.
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This is called the existence and uniqueness theorem for linear ODE. There is
a generalization of it called the general existence and uniqueness theorem for
ODEs, but it is easier to state and understand in terms of equivalent systems.

Theorem 2 Assuming F is a continuous function of n+1 variables, the solution set
of the n-th order ODE

y(n) = F (y(n−1), . . . , y′, y, x),

namely the set of all n times continuously differentiable functions Y = {y : y(n) =
F (y(n−1), . . . , y′, y, x)}, is in one-to-one correspondence with the solution set of a cer-
tain system of n first order ordinary differential equations having the form

x′

1(t) = φ1(x1, . . . , xn, t)

x′

2(t) = φ2(x1, . . . , xn, t)

...

x′

n(t) = φn(x1, . . . , xn, t).

Such a system may be understood to have solution a single vector valued function
x = x(t) with x = (x1, . . . , xn). Thus, the system may be written as

x′ = Φ(x, t)

where Φ = (φ1, φ2, . . . , φn) is a given vector valued function of n variables, and the
solution set is as set of once continuously differentiable vector valued functions Σ =
{x : x′ = Φ(x, t)}.

Exercise 8 What is the first order system equivalent to the ODE

y(n) = F (y(n−1), . . . , y′, y, x)?

Fully justify your answer.

In these terms, we can state the general existence and uniqueness theorem for ODEs:

Theorem 3 If Φ is continuous on some open set containing the point

(x0
1, x

0
2, . . . , x

0
n, t0) ∈ R

n+1

and each of the first partial derivatives of the coordinate functions φ1, φ2, . . . , φn of Φ
are likewise continuous on the same open set, then there exists some number ǫ > 0
and there exists a unique solution x ∈ Σ defined on the interval (t0 − ǫ, t0 + ǫ)
and satisfying x(t0) = (x0

1, x
0
2, . . . , x

0
n).
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Exercise 9 In view of the correspondence from the previous exercise, what is required
of the function F in the ODE y′′ = F (y′, y, y, x) in order to apply the general existence
and uniqueness theorem to the equivalent system? What conclusion can be drawn
about existence and uniqueness in Y = {y : y′′ = F (y′, y, y, x)}?

Exercise 10 Notice that the size of ǫ is not easily related to the set on which Φ and
the original equations are well-defined (and regular). Consider the equation y′ = y2

with initial condition y(t0) = y0. What is the function Φ and on what set is Φ
continuous? What can you say about the value of ǫ given by the thorem?

Exercise 11 Consider the equation y′ = y1/3. Does the general existence and unique-
ness theorem apply to this ODE? What can you say about the existence and uniqueness
of solutions?

Of course, there are many other aspects of ODE which may be studied, but these
three,

1. existence and uniqueness for linear ODE,

2. equivalence of n-th order ODE with first order systems, and

3. general existence and uniqueness

are generally representative of how one should think about ODE when starting to
study PDE. The overall conclusion is that if one writes down a “reasonable” ODE,
especially a linear one, then it should have solutions—solutions should exist (at least
locally), and under some natural conditions solutions should be unique.

Exercise 12 What can you say about the existence and uniqueness of solutions for
the singular first order ODE xy′ = y?

The point of Exercise 11 and Exercise 12 is to suggest that the hypotheses in the
general existence and uniqueness theorem are mostly needed for uniqueness. It is
much easier to get existence, and it is really true that most ODEs you (can) write
down and/or have solutions.

Before we make an attempt to say something about PDEs, let me point out
two final related aspects of the existence and uniqueness theorem for ODEs. We
didn’t necessarily emphasize it, but the vector field Φ = (φ1, φ2, . . . , φn) is required
to be (only) continuous, and the solution x = (x1, x2, . . . , xn) will be continuously
differentiable. This means each of the functions x1, x2, . . .xn will be differentiable
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and the derivative will be continuous. In fact, we would want the solution components
x1, x2, . . .xn to be differentiable so that it makes sense to even substitute x into the
ODE. On the other hand, we do not actually need to assume the functions x1, x2,
. . .xn have derivatives that are continuous.

Exercise 13 Find a function which is differentiable, say at every point on the interval
(−1, 1), but the derivative is not a continuous function.

In the case of an ODE yn = F (y(n−1), . . . , y, t), there is only one “top order,” i.e.,
highest order, derivative of the function y, so it is natural to write the equation in a
form where that derivative is given in terms of lower order derivatives. Similarly, for
a system, it is natural to assume that each derivative x′

j is given in terms of the other
unknown components (without derivatives):

x′

j = φj(x1, x2, . . . , xn, t).

In these cases, because the existence of a derivative does imply continuity of the func-
tion itself (though not immediately the continuity of the derivative) we can conclude
the continuity of the derivative, i.e., the continuous differentiability, of the solution
from the equation itself. This is called an issue of regularity. Let me repeat how
regularity works for ODEs:

In the case of a single equation, yn = F (y(n−1), . . . , y, t), if you have a solution y
with n well-defined derivatives, then the lower order derivatives y(n−1), y(n−2), . . . y′,
and y are all continuous. Furthermore, the n-th derivative of y is also continuous
because the equation says

yn = F (y(n−1), . . . , y, t),

and the right side is known to be continuous (because it’s a composition of continuous
functions).

In the case of a system x′ = Φ(x, t), if you have a differentiable solution x, then
x must be contiuous and, therefore,

x′

j = φj(x, t)

must be continous as well for each j = 1, 2, . . . , n. Again, the equation says x′

j is a
composition of a continuous function φ with the continuous functions in x. Thus,
with ODEs you get regularity for free.

Exercise 14 In a previous exercise you found a differentiable function whose deriva-
tive was not continuous. Notice that such a function y can’t be a solution of an ode
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y′ = f(x) with f a continuous function. If you have a twice differentiable function y
for which y′′ = 0, what can you say about the continuity of y′′?

A weak formulation of the equation y′′ = 0 is as follows: A continuous real
valued function f defined on the interval (0, 1) is said to be a weak solution if

∫ 1

0

f(x)g′′(x) dx = 0 (6)

for every twice differentiable real valued function g defined on (0, 1) and vanishing
near x = 0 and x = 1. In other words, for each twice differentiable g : (0, 1) → R

for which there is some ǫ > 0 such that g(x) = 0 when x < ǫ or x > 1 − ǫ, we know
that the integral condition (6) holds. What can you say (and prove) about such a
continuous function f?

In summary, regularity is not emphasized in the study of ODEs, but it’s there and
can be added to the list of basic topics in ODE given above. Regularity is much more
important and central in the study of PDEs for reasons we’ll touch on below.

PDEs

For PDE, I would like to write down some well-known functions from calculus (just
as we did for ODEs) and take some partial derivatives of them. Let’s start with

u(x, y) = x2 + y2 and v(x, y) = x2 − y2. (7)

The homogeneous second partials of the first function are

uxx = 2 and uyy = 2.

Therefore,
∂2u

∂x2
=

∂2u

∂y2
, (8)

and this is a PDE. So, it’s natural to ask: Can you start with the PDE in (8) and,
forgetting about (7), get back to the function u given in (7)? Likewise,

vxx + vyy = 0,

and this is Laplace’s equation in two dimensions. What can we say about it and its
solutions?
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Exercise 15 Show that
(

∂

∂x
+

∂

∂y

)(

∂u

∂x
− ∂u

∂y

)

=
∂

∂x

(

∂u

∂x
− ∂u

∂y

)

+
∂

∂y

(

∂u

∂x
− ∂u

∂y

)

=
∂2u

∂x2
− ∂2u

∂y2
.

Exercise 16 The previous exercise suggests we look at the first order PDE

∂w

∂x
+

∂w

∂y
= 0. (9)

Do you see why? Imagine we restrict a function w = w(x, y) of two variables to a
line y = x− x0 of slope 1 and passing through the point (x0, 0). Compute

d

dx
w(x, x− x0).

What does this computation tell you if (9) holds for w?

Exercise 17 If w(x, 0) = w0(x) is a given (continuously differentiable) function of
one variable, and w satisfies (9), then find w in terms of w0.

Exercise 18 Let’s, for a moment, remember u(x, y) = x2+y2 from which we got the
PDE uxx − uyy = (ux − uy)x + (ux − uy)y = 0. Which choice of the function w0 gives
the solution w(x, y) = 2(x− y) of (9)?

The last two exercises bring out an interesting point. If you have a linear first order
homogeneous ODE y′+ ay = 0, then you expect a one-parameter family of solutions,
namely,

Yh = {ce−α : c ∈ R} where α(x) =

∫ x

x0

a(ξ) dξ. (10)

At least for the first order homogeneous linear constant coefficient PDE wx +wy = 0
instead of a one-parameter family of solutions determined by a single constant c, we
get a solution corresponding to every function of one variable:

W = {w0(x− y) : w0 ∈ C1(R)}.

Here C1(R) denotes the set of all continuously differentiable functions of one variable
defined on the real line R.

Exercise 19 Show that the set of functions Yh given in (10) is a vector space in the
sense that
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1. There is an element Z ∈ Yh such that y + Z = y for every y ∈ Yh.

2. Given any two elements y1 and y2 in Yh, there is a sum y1 + y2, and this sum
is also in Yh.

3. Given any element y ∈ Yh and any scalar λ ∈ R, there is a scaling λy, and this
scaling is also in Yh.

There are some other properties of a vector space, but since we are dealing with a
set of real valued functions, we really only need the second two listed above. For
example, we need to know that for each y ∈ Yh, there is an element −y ∈ Yh such
that y + (−y) = Z (the existence of additive inverses), but this follows from closure
under addition and scaling when one is talking about a set of real valued functions.
The other properties follow similarly simply from the vector space properties of R.

What is the dimension of Yh as a vector space?

Exercise 20 Show that the solution set W for our PDE is also a vector space. What
is the dimension of this vector space?

Exercise 21 Solve the PDE uxx − uyy = 0. Hint: Fix a point (x0, 0) and consider
the line y = x0−x of slope −1 passing through (x0, 0). Solve an ODE for y = f(x) =
u(x, x0 − x).

Exercise 22 Assuming you have found all solutions of uxx − uyy = 0 defined on all
of R2, explain how to obtain u(x, y) = x2 + y2 as an element of your solution set.

Unfortunately, the approach we have used involving factoring the operator

∂2

∂x2
− ∂2

∂y2
=

(

∂

∂x
+

∂

∂y

)(

∂

∂x
− ∂

∂y

)

Doesn’t really work for the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
,

but as we shall see later, the Laplace operator and the solutions of Laplace’s equation
satisfy some nice properties.

Exercise 23 Show

∆ =

(

∂

∂x
+ i

∂

∂y

)(

∂

∂x
− i

∂

∂y

)

.
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In fact, the Laplace operator and Laplace’s equation plays a very important—even
central—role in complex analysis.

Now that we have a little experience with how PDEs work, let me get to the point
of this introduction, which is to try to compare PDEs to ODEs. One would like to
know about existence and uniqueness (for PDEs). As with ODEs, it’s not hard to
reduce any PDE to some kind of first order system of PDEs. For example, setting
w1 = vx and w2 = vy, Laplace’s equation for v = v(x, y) is equivalent to the system

vx = w1

vy = w2

∂w1

∂x
+

∂w2

∂y
= 0.

Exercise 24 Find a system of first order equations equivalent to the hyperbolic PDE

∂2u

∂x2
− ∂2u

∂y2
= 0.

Notice that there is very often more than one “top order” derivative appearing in a
system of PDEs. Because we have derivatives (partial derivatives) with respect to
more than one variable, this is very natural and to be expected. This is a fundamental
difference between PDE and ODE, and it is one of the reasons regularity plays a much
more important role in PDE. Before we give an example where the regularity story
works out nicely, let me formulate what we might expect as a general existence
theorem for PDEs.

In the general case, we can expect to have a number of unknown functions w1,
w2, . . .wk each of which is a function of several variables x = (x1, x2, . . . , xn) in some
(open) set in Rn. Recall that the gradient of such a function is just the vector
containing the partial derivatives:

Dwi =

(

∂wi

∂x1
,
∂wi

∂xn
, . . . ,

∂wi

∂xn

)

.

Sometimes this gradient vector is denoted ∇wi, but we will use Dwi here. We would
expect to have at least one PDE for each unknown function wi, but we can’t expect to
be able to solve for any particular element of the gradient of any one of the unknown
functions. Therefore, a first try at what to expect might be something like this:

Conjecture 1 (General Existence for PDEs) If φ1, φ2, . . . , φℓ are continuous
functions of nk+k+n variables on an open region Rnk×Rk ×U where U is an open
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set in Rn containing a point x0 and ℓ ≥ k, then there exists some δ > 0 such that the
system of PDEs

φ1(Dw1, Dw2, . . . , Dwk, w1, w2, . . . , wk, x1, x2, . . . , xn) = 0,

φ2(Dw1, Dw2, . . . , Dwk, w1, w2, . . . , wk, x1, x2, . . . , xn) = 0,

...

φℓ(Dw1, Dw2, . . . , Dwk, w1, w2, . . . , wk, x1, x2, . . . , xn) = 0

has a solution (w1, w2, . . . , wk) defined on Bǫ(x0) = {x ∈ R
n : |x−x0| < ǫ} consisting

of continuously differentiable functions w1, w2, . . .wk.

The restriction ℓ ≥ k may be ignored because we could just add extra equations
reading 0 = 0. Put another way, having fewer equations can only make our task of
finding a solution easier, but based on the examples of first order systems of PDEs
above, the inequality ℓ ≥ k seems reasonable. On the other hand, as Fritz John points
out in his book on PDE, no such theorem can be proven or expected simply because we
have said nothing about the dependence on the top order derivatives Dw1, . . . , Dwk.
To be very explicit, we could include an impossible condition/equation like

e
∂w

∂x = 0.

We have said nothing to rule this out.2 Nevertheless, the conclusion of this theorem
does hold for many PDEs. The important thing to note is that those PDEs have
some reasonable structure, i.e., the functions φ1, . . . , φℓ are not just anything. As an
example, let’s consider briefly the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x
.

Here the functions u and v are functions of two variables x and y. We can, and should,
think of the pair (u, v) as determining a map from some region U in the x, y-plane
into the u, v-plane. The identity map works. That is, u(x, y) = x and v(x, y) = y give
two functions satisfying these equations. Also, a constant, i.e., mapping every single
point in the x, y-plane to a single point (u0, v0) gives a solution. These are not such
interesting solutions, but there are more interesting ones. Here is a way to construct
some of them:

2Of course, there are completely unreasonable ODEs too. There is no solution of ey
′

= 0.
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Think of any function for which you know a formula. Consider that func-
tion on the complex variable x+ iy. Then take the real part to be u and
the imaginary part to be v.

For example f(t) = t2 gives f(x + iy) = (x + iy)2 = x2 − y2 + 2ixy. This means
u(x, y) = x2 − y2 and v(x, y) = 2xy should solve the Cauchy-Riemann equations.
(And they do.) You can imagine that you get some relatively impressive looking
solutions by taking higher and higher powers. Here are a couple more nice examples:

f(t) = et leads to the complex exponential ex+iy = ex eiy = ex(cos y + i sin y).

Here we used Euler’s formula eiθ = cos θ+ i sin θ when θ is real. This means u(x, y) =
ex cos y and v(x, y) = ex sin y should satisfy the Cauchy-Riemann equations.

Exercise 25 Consider the complex sine function determined by f(t) = sin t, that is

sin(x+ iy) =
ei(x+iy) − e−i(x+iy)

2i
.

What solutions of the Cauchy-Riemann equations do you get out of this? Hint:
cosh y = (ey + e−y)/2 and sinh y = (ey − e−y)/2.

The Cauchy-Riemann equations capture the geometric condition that the mapping
from the x, y-plane to the u, v-plane is conformal. This means that the linearization
of the mapping at each point has the form

L

(

ξ
η

)

= λ

(

cos θ − sin θ
sin θ cos θ

)(

ξ
η

)

.

That is, (x, y) 7→ (u, v) behaves like a rotation (angles are preserved) with a scaling.
The angle of rotation θ depends on the point (x, y) and so does the scaling factor
λ, but at each point this is the infinitesimal behavior of such a map. In particular,
angles are always preserved. And the converse is true too. If a map of the plane looks
locally like a rotation with a homogeneous scaling at each point, then the mapping is
conformal and the component functions will satisfy the Cauchy-Riemann equations.

Exercise 26 I mentioned earlier that Laplace’s equation was related to complex anal-
ysis. Let u and v be solutions of the Cauchy-Riemann equations. Show u and v
are solutions of Laplace’s equation. Solutions of Laplace’s equation are called har-
monic functions, and pairs of solutions of Laplace’s equation satisfying the Cauchy-
Riemann equations are called conjugate harmonic functions.
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We have seen there are a lot of solutions of the Cauchy-Riemann equations. Here
is a nice result which everyone should probably know. It gives a lot of solutions of
the Cauchy-Riemann equations, and they are global solutions; note there is no “ǫ
neighborhood of a point” involved in the statement. It’s hard to prove.

Theorem 4 (Riemann mapping theorem) If U is a simply connected open set3

in the x, y-plane and U is a simply connected open set in the u, v-plane, then there is a
solution of the Cauchy-Riemann equations (u, v) defined on U such that the mapping
(x, y) 7→ (u, v) is one-to-one and onto the region U .

Exercise 27 Find the image of the unit disk U = {(x, y) : x2 + y2 < 1} under the
complex sine function considered in Exercise 25.

Exercise 28 Given a conformal mapping (u, v) of a simply connected open set U in
the plane to a second set U , a boundary limit is determined as follows: Given a
sequence p1, p2, p2, . . . in U converging to a boundary point p of U , we say a point q
in the boundary of U is the boundary limit of the sequence if

lim
j→∞

(u(pj), v(pj)) = q.

Assuming the Riemann mapping theorem, and given boundary limits q1 and q2 on the
boundary of U with q1 determined with respect to a conformal mapping (u1, v1) so that

lim
j→∞

(u1(pj), v1(pj)) → q1,

Prove there is a different conformal mapping (u2, v2) of U onto U with

lim
j→∞

(u2(pj), v2(pj)) → q2.

We will end this discussion by noting something about the regularity of the Cauchy-
Riemann equations. As mentioned above, an equation like

∂u

∂x
− ∂v

∂y
= 0 (11)

3We also need the sets U and U to be non-empty and “proper,” i.e., not the whole plane. The
condition simply connected means that any loop/closed curve in the set can be contracted to a
single point while always remaining in the set. The region between two concentric circles is not
simply connected because you can take a loop going around the excluded region inside the inner
circle; such a loop cannot be contracted to a point without entering that excluded region.
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does not express either first partial derivative as a function of lower order derivatives
or, in this case since we only have first order derivatives, in terms of the functions u
and v. Thus, we might imagine the possibility that u and v are both differentiable
but not continuously differentiable, so that the discontinuity in the derivatives cancels
out and the linear combination vanishes as required by the PDE (11). It turns out
that this can’t happen.

Theorem 5 (Regularity of solutions for the Cauchy-Riemann equations) If
u and v are differentiable functions satisfying the Cauchy-Riemann equations, then
not only are u and v continuously differentiable, but they have (partial) derivatives of
all orders; they are infinitely differentiable.

So, the Cauchy-Riemann equations are a system of PDEs where the existence and
regularity work out quite happily.

Let’s return to our proposed existence and regularity theorem above (see the
conjecture and recall the existence and uniqueness properties of ODEs) and introduce
some kind of structural condition giving something that we really might expect can
be true and proved. We say a system of first order partial differential equations for
the unknown functions w1, w2, . . .wk of n variables x = (x1, x2, . . . , xn) is linear if
it has the form

A



























Dw1

Dw2
...

Dwk

w1

w2
...
wk



























=











f1
f2
...
fℓ











(12)

where A = (aij) is a ℓ × (nk + k) matrix with components aij = aij(x) and the
functions fj = fj(x) are defined for x in some open set of Rn.

Conjecture 2 (Existence and Regularity for linear PDEs) If the coefficients
aij and fj are continuously differentiable on all of R

n, then given x0 ∈ R
n, there

is some ǫ > 0 such that the system (12) has a continuously differentiable solution on
Bǫ(x0) = {x ∈ Rn : |x− x0| < ǫ}.

In 1957 Hans Lewy published a paper in which he considered a very specific
example of a first order linear system of PDEs having the form (12). To be very
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precise, Lewy’s equation was for two functions of three variables,

u = u(x, y, z) and v = v(x, y, z)

and had the form

∂u

∂x
− ∂v

∂y
+ 2y

∂u

∂z
+ 2x

∂v

∂z
= f1(x, y, z)

(13)

∂v

∂x
+

∂u

∂y
+ 2y

∂v

∂z
− 2x

∂u

∂z
= f2(x, y, z).

Exercise 29 Lewy’s system above may be written in a form that is simpler than (12),
namely

A

(

Du
Dv

)

=

(

f1
f2

)

(14)

where

A =

(

1 0 2y 0 −1 2x
0 1 −2x 1 0 2y

)

. (15)

Exercise 30 Let w = u + iv and f = f1 + if2. Show Lewy’s system is equivalent to
the single PDE

∂w

∂x
+ i

∂w

∂y
− 2i(x+ iy)

∂w

∂z
= f

for the single complex valued function w = w(x, y, z).

Exercise 31 Show that the coefficients aij = aij(x, y, z) given in (15) have partial
derivatives of all orders (which are all continuous). Such functions are said to be
infinitely differentiable on all of R3, and we write aij ∈ C∞(R3).

This last exercise should suggest to you that Lewy’s equation is a very reasonable
equation. If the conjecture above is correct, then it should definitely apply to Lewy’s
equation. Before I state what Lewy proved about this equation, I need to discuss
a little more about the regularity of functions. The last exercise was about some
functions which were very regular C∞(R3). Let’s start at the other end with some
notation for concepts we’ve already considered. If a function u is simply continuous
on an open set U , then we write u ∈ C0(U). In other words, the set C0(U) is the set
of all continuous functions defined on the set U . For this discussion, you can think
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of U simply as an interval (a, b) in R1 and the derivatives we’re going to talk about
as ordinary derivatives. Of course, if U ⊂ Rn, then the derivatives will be partial
derivatives.

If u is continuously differentiable, then we say u ∈ C1(U). That is, C1(U) is
the set of functions with first order derivatives that are continuous. Now, let’s think
for a moment about the functions that are in C0(U) but not in C1(U). Examples
of such functions are given by differentiable functions with derivatives which are not
continuous as considered in Exercise 13. There are other functions that are continuous
but not even differentiable. For example, f(x) = |x| or g(x) = x1/3 which are both
in C0(R)\C1(R). There are special names to distinguish the level of continuity for
functions like these. In fact, if you plot both of them, you’ll see that f is somehow
“more regular” than g in the sense that any secant line connecting two points on the
graph of f has slope no more than 1. In symbols

|f(x2)− f(x1)| ≤ |x2 − x1| for every x1, x2 ∈ R.

More generally, a real valued function u for which there is a constant λ such that

|u(x2)− u(x1)| ≤ λ|x2 − x1| for all x1, x2 ∈ U

is said to be Lipschitz continuous. The constant λ is called the Lipschitz constant
for such a function.

Exercise 32 Show that g(x) = x1/3 has g ∈ C0(R), but g is not Lipschitz.

Nevertheless, g is better (more regular) than some other functions.

Exercise 33 Show there is a constant c such that g(x) = x1/3 satisfies

|g(x2)− g(x1)| ≤ c|x2 − x1|1/3 for every x1, x2 ∈ R.

Show that h(x) = x1/5 satisfies a similar inequality (with α = 1/5), and that g satisfies
that same inequality on any closed and bounded interval.

A function u ∈ C0(U) is said to be Hölder continuous with exponent α < 1 if there
is some constant c for which

|u(x2)− u(x1)| ≤ c|x2 − x1|α.

In this case we write u ∈ C0,α(U). Technically, we need to be a bit more careful
when we define the set C0,α(U) for various reasons, but we only need a very simple
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understanding of Hölder continuous functions here. Everything we have said is okay,
as long as U is a subset of a closed and bounded set like BR(0) = {x ∈ Rn : |x| ≤ R}.
In this case, to say a function u is Hölder continuous is to say there is some α with
0 < α < 1 for which u ∈ C0,α(U).

Just like the Hölder exponent “grades” the continuous functions between C0(U)
and the Lipschitz functions C0,1(U), we can consider the first derivatives of functions
in C1(U) and require a little bit more regularity of them by requiring those derivatives
to be Hölder continuous. Thus, we have the classes C1,α(U) consisting of continuously
differentiable functions with derivatives in the Hölder class C0,α. Now we are ready
for Lewy’s result.

Theorem 6 (Hans Lewy) There are functions f1 and f2 which are infinitely dif-
ferentiable on all of R3 (f1, f2 ∈ C∞(R3)) and for which the system of equations (13)
has no solution on any open set U ⊂ R3 consisting of functions u and v with
Hölder continuous partial derivatives.

Notice that the line between Lewy’s equation being a decisive counterexample to our
conjecture is very small. Our conjecture for linear PDE only asserts continuously
differentiable solutions. But if we require just a tiny bit more—namely continuity of
the partial derivatives and any (Hölder) continuity estimate whatsoever—then there
is a (very definitive) counterexample.

Lewy’s theorem is broadly interpreted to mean that there is no general ex-
istence theory for partial differential equations. This is the big difference
between PDE and ODE. There is a general theory of ODE (even nonlinear ODE).
The important (or at least most interesting) PDE are all nonlinear, and even for
linear PDE there is no known comprehensive existence theory. There probably can’t
be one. Heuristically speaking, if x = x(t) is a vector valued function of one variable
t ∈ R, then one can specify the derivative x′ = x′(t) in any manner that makes sense,
and there will be a function x (at least on some small interval (t0 − δ, t0 + δ), where
t0 ∈ R and δ > 0, which solves the associated ODE. If, on the other hand, one writes
down seemingly reasonable relations between the first order partial derivatives of even
a pair of functions u = u(x, y, z) and v = v(x, y, z) like the Hans Lewy sytstem, then
because of the way the partial derivatives fit together in space, it can be the space
that there is simply no pair of functions u and v for which the condition can hold on
any open set (assuming some nominal extra regularity).

Of course, a basic question at this point might be: Does there exist a solution
(u, v) ∈ C1(Bδ)× C1(Bδ) of Hans Lewy’s system of partial differential equations for
any ball B = Bδ(x0) = {x : |x − x0| < ǫ} where x0 ∈ R3 and ǫ > 0. In other
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words, is there a solution without the extra little bit of regularity. I don’t know the
answer to this question, and I don’t know if anyone really understands fundamentally
what is happening with the Hans Lewy system. I would say this: The Navier-Stokes
equations seem much more complicated than the Hans Lewy system, and if I wanted
to understand what could go wrong with the existence and uniqueness for the Navier-
Stokes equations, I would start by understanding what is going wrong with the Hans
Lewy system.

In any case, we are reduced to considering various special cases. In this course,
we will consider the second order linear PDE in the list above: Laplace’s equation,
the heat equation, and the wave equation. Quite a bit is known about each of these.

As a final note for this introductory material, when it comes to understanding PDE
it is usually quite important to have some kind of interpretation of what the PDE
“means.” A good example of this is with the Cauchy-Riemann equations. Those
equations encapsulate the geometric condition of having a conformal mapping.
This kind of interpretation can give, on the one hand, some intuition about what
to expect. Riemann stated the Riemann mapping theorem long before anyone could
prove it.4 So these interpretations can put you on the right track. Also, on the other
hand, a good interpretation can actually produce a proof sometimes. We’ll see this in
regard to energy considerations with both the heat equation and the wave equation.

4Statement in 1851. First correct proof in 1912 by Constantin Carathéodory.
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1 Comments and Solutions

In Exercise 4 it is mentioned that the value of
∫

∞

0

sin t2 dt

can be computed explicitly. Here is a way5 to do that using a little complex analysis.
We consider the function f : C → C by

f(z) = eiz
2

which is holomorphic on all of C, i.e., entire. It follows from Cauchy’s theorem that
the integral of f around any closed contour vanishes. In particular, if we take a
segment from z = 0 to z = R ∈ R and then traverse the circular arc

A = {Reit : 0 ≤ t ≤ π/4}

counterclockwise to w = (1 + i)R/
√
2 in the first quadrant, and then the segment

returning to the origin, we obtain by Cauchy’s theorem:

∫ R

0

(cos t2 + i sin t2) dt+

∫

A

f − 1 + i√
2

∫ R

0

e−t2 dt = 0.

The middle integral has the form

∫ π/4

0

iR exp[iR cos t− R sin t] eit dt.

This can be estimated as
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

≤ R

∫ π/4

0

e−R sin t dt.

We can write the interval [0, π/4] = [0, ǫ] ∪ [ǫ, π/4] where ǫ = ǫ(R) ց 0 as R ր ∞
and consider two integrals:

∫ ǫ

0

e−R sin t dt ≤ ǫ

5An alternative approach is given by Boas in Problem 41 of Section 7 in Chapter 14 of her book
Mathematical Methods in the Physical Sciences.
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and
∫ π/4

ǫ

e−R sin t dt ≤ π

4
e−R sin ǫ.

For an appropriate choice of ǫ = ǫ(R) both of these integrals tend to zero faster than
R. That is,

lim
R→∞

∫

A

f = 0.

This means
∫

∞

0

cos t2 dt+ i

∫

∞

0

sin t2 dt =
1 + i√

2

∫

∞

0

e−t2 dt.

The integral on the right has a well-known6 value obtained as follows:

(
∫

∞

0

e−t2 dt

)

=

(
∫

∞

0

e−x2

dx

)(
∫

∞

0

e−y2 dy

)

=

∫

∞

0

(
∫

∞

0

e−y2 dy

)

e−x2

dx

=

∫

∞

0

∫

∞

0

e−(x2+y2) dy dx

=

∫

[0,∞)×[0,∞)

e−(x2+y2)

=

∫

∞

0

∫ π/2

0

re−r2 dθ dr

=
π

4

∫

∞

0

e−u du

=
π

4
.

Therefore,
∫

∞

0

e−t2 dt =

√
π

2
.

Finally then

∫

∞

0

cos t2 dt+ i

∫

∞

0

sin t2 dt =
1 + i√

2

√
π

2
=

√
2π

4
+ i

√
2π

4
,

6See Gaussian distribution function
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and
∫

∞

0

cos t2 dt =

∫

∞

0

sin t2 dt =

√
2π

4

as claimed.
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