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Abstract

Given a planar curve Γ smoothly parameterized by arclength s on an open
interval I ⊂ R by a function γ : I → R

2 with twice continuously differen-
tiable component functions and an initial inclination angle θ0 ∈ R satisfying
γ̇(s0) = (cos θ0, sin θ0) for some s0 ∈ I, we show there exists a unique function
ψ ∈ C1(I) with γ̇(s) = (cosψ(s), sinψ(s)) for all s ∈ I and ψ(s0) = θ0. Topo-
logically, the result follows with ψ ∈ C0(I) from a familiar result concerning
the universal covering of the circle by the real line. From this point of view,
our construction is primarily of interest with regard to the regularity of the
inclination, its relation to a singular system of ordinary differential equations,
and its derivation from that system of differential equations in particular. We
give one other related example of a similar singular system of ordinary differen-
tial equations, and we strongly suspect the development of a general axiomatic
theory of such singular systems should be possible, though we are unaware of
such a development.

Let I be an open interval in R with s0 ∈ I. Let γ : I → R
2 have coordinate func-

tions γ = (γ1, γ2) with γj ∈ C2(I) for j = 1, 2 satisfying γ̇2
1
+ γ̇2

2
= 1 (parameterization

by arclength) where

γ̇j =
dγj
ds

for j = 1, 2.

We will prove the following:

Theorem 1 If θ0 ∈ R satisfies

{

cos θ0 = γ̇1(s0)
sin θ0 = γ̇2(s0),

(1)
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there exists a unique function ψ ∈ C1(I) satisfying






cosψ = γ̇1, s ∈ I
sinψ = γ̇2, s ∈ I
ψ(s0) = θ0.

(2)

Moreover, the relations (2) are equivalent to the singular system of ordinary differen-
tial equations







− sinψ ψ̇ = γ̈1, s ∈ I

cosψ ψ̇ = γ̈2, s ∈ I
ψ(s0) = θ0.

(3)

Having assumed γ is an arclength parameterization, we have for each s ∈ I that
γ̇(s) ∈ S

1 = {(x, y) ∈ R
2 : x2 + y2 = 1}. Each such point γ̇(s) and each a ∈ R

determine a unique angle θ in the interval [a, a+ 2π) ⊂ R for which
{

cos θ = γ̇1(s)
sin θ = γ̇2(s),

(4)

and a unique discrete collection of arguments {θ + 2πk : k ∈ {0,±1,±2,±3, . . .}}.
On the one hand, this restricts the possible choices of the initial angle θ0 appearing
in (1).

On the other hand, the projection p : [a, a + 2π) → S
1 by p(θ) = (cos θ, sin θ)

is one-to-one and onto, and the inverse p−1 : S1 → [a, a + 2π) is well-defined and
continuous except at p(a) = (cos(a), sin(a)) ∈ S

2. Thus, given any θ0 satisfying (1)
we can take a = θ0 − π to obtain some s1, s2 ∈ R with s1 < s0 < s2 and a function
ψ ∈ C0(s1, s2) given by

ψ(s) = p−1(γ̇(s))

satisfying p◦ψ(s) = (cosψ, sinψ) = γ̇(s) and ψ(s0) = θ0. The relation p◦ψ(s) = γ̇(s)
may be assumed to hold and determine ψ uniquely for s1 < s0 < s2 as long as
γ̇(s) ∈ {(cos θ, sin θ) ∈ S

1 : |θ − θ0| < π} for each arclength s in the same interval.
More generally, a continuous function v : I → S

1 with v(s0) = (cos θ0, sin θ0) gives
rise to a unique continuous lifting α : I → R for which

p ◦ α = v and α(s0) = θ0. (5)

Taking v = γ̇, we obtain a unique ψc ∈ C0(I) for which (2) holds. See Lemma 4.1
of [2]. Though γ̇1, γ̇2 ∈ C1(I) in (2), it does not immediately follow that ψc ∈ C1(I),
so we cannot immediately differentiate to obtain the singular ordinary differential
equations in (3).
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Remarks on the construction of plane curves

Associated with an arclength parameterization γ : I → R
2 as introduced above, the

function γ̇ : I → S
1 illustrated in Figure 1 is familiar from differential geometry. In

this context, the inclination angle is usually defined as the angle between the tangent

Figure 1: The inclination angle of a planar curve.

vector γ̇ and the positive horizontal direction. It is pointed out in most elementary
differential geometry texts, e.g., [1], that the signed curvature k of such a curve is
given by the formula

k =
dψ

ds
.

This assumes, of course, that the inclination angle is a well-defined differentiable
function of arclength.

This construction is very often turned around to obtain arclength parameteriza-
tions of particular planar curves using a system of the form







γ̇1 = cosψ, γ1(0) = x0
γ̇2 = sinψ, γ2(0) = y0
ψ̇ = f, ψ(0) = θ0

where the function f = f(γ, ψ, s) prescribes the signed curvature of the curve. All
such constructions again assume the curve one wishes to parameterize admits/determines
a differentiable inclination angle. Many examples can be given. Of note are the Euler
elastica for which the signed curvature is proportional to the height y = γ2 and the
meridians of axially symmetric surfaces of prescribed mean curvature, e.g., constant
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mean curvature or capillary surfaces with mean curvature an affine function of height.
In fact, in view of the structure theorem for planar curves which states that every
such curve is essentially determined by the value k(s) = f of the signed curvature
as a function of arclength along the curve, it can be said that every planar curve is
an example. The curve in Figure 1, incidentally, was numerically computed with the
signed curvature equal to the arclength along the curve.

I have used this approach for constructing various special curves numerous times
without reflecting either on the fact that the existence of a smooth inclination angle
was being assumed or the fact that I did not know a reference where that existence
was justified.

1 Topological lifting

The existence of the topological lifting asserted above is fairly standard. Technically,
however, we need a slight variant of a special case of Lemma 4.1 in [2] to justify our
assertion. Specifically it is important for us to allow I to be an open interval instead
of a closed (and compact) one. Taking this into account, as well as the facts that we
can (and will) prove a somewhat more general result and that the details of the proof
are relevant to the discussion to follow, we state and prove a topological lifting result
first. Let p : R → S

1 now denote the (universal) covering map of the circle given by
p(θ) = (cos θ, sin θ).

Lemma 1 If v = (v1, v2) : I → S
1 is continuous and there are values s0 ∈ I and

θ0 ∈ R with
{

cos θ0 = v1(s0)
sin θ0 = v2(s0),

(6)

then there exists a unique function α ∈ C0(I) such that

p ◦ α = v and α(s0) = θ0. (7)

The function α is called the continuous lifting of v to R.

Proof: By continuity, there exist (finite) arclengths s1 and s2 with s1 < s0 < s2 for
which I0 = (s1, s2) ⊂ I and

v(I0) ⊂ B1(v(s0)) = {x ∈ S
1 : ‖x− v(s0)‖ < 1}.
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Note that v(s0) = (cos θ0, sin θ0) and

p0 = p∣
∣

(θ0−π,θ0+π)

: (θ0 − π, θ0 + π) → S
1\{(− cos θ0,− sin θ0)}

is a homeomorphism, i.e., continuous bijection with continuous inverse. We claim,
furthermore, that

{x ∈ S
1 : ‖x− v(s0)‖ < 1} ⊂ S

1\{(− cos θ0,− sin θ0)}. (8)

This is immediate since

‖(− cos θ0,− sin θ0)− v(s0)‖ = ‖(− cos θ0,− sin θ0)− (cos θ0, sin θ0)‖ = 2.

We thus begin by defining α0 : I0 = (s1, s2) → R by

α0(s) = p−1

0
◦ v(s). (9)

This clearly gives α0 ∈ C0(s1, s2) with

p ◦ α0 = v∣
∣

(s0−δ,s0+δ)

and α0(s0) = p−1

0
◦ p(θ0) = θ0.

Note that the “endpoints” of the open interval I

inf I ∈ [−∞, s0) and sup I ∈ (s1,+∞]

exist as extended real numbers with I = (inf I, sup I). As a preliminary assertion let
us distinguish

Case 0.0 s1 = inf I and s2 = sup I.

In this case I0 = I and the unique lifting α = α0 of v satisfying (7) is defined in (9),
and the proof of the lemma is complete. Let us go further by elevating the reasoning
behind Case 0.0 to a formally stated result:

Corollary 1 If v : I → S
1 is continuous and there are values s ∈ I and θ ∈ R with

v(s) = p(θ) and

v(I) ⊂ {(cos(θ + t), sin(θ + t)) ∈ S
1 : −π < t < π}.

then there exists a unique continuous lifting α ∈ C0(I) such that

p ◦ α = v and α(s) = θ. (10)
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In order to see what happens in other cases in more detail, we begin by sharpening
the inclusion (8). There in fact holds

{x ∈ S
1 : ‖x−v(s0)‖ < 1} ⊂ {(cos(θ0+ t), sin(θ0+ t)) ∈ S

1 : −π/2 < t < π/2}. (11)

To see this consider (cos(θ0 + t), sin(θ0 + t)) with −π ≤ t ≤ −π/2 or π/2 ≤ t ≤ π.
For such points there holds

‖(cos(θ0 + t), sin(θ0 + t))− v(s0)‖2 = 2(1− cos t) ≥ 2.

Thus,
‖(cos(θ0 + t), sin(θ0 + t))− v(s0)‖ ≥

√
2 > 1.

If inf I < s1, then s1 ∈ I and

θ1 = lim
sցs1

α0(s) = lim
sցs1

p−1

0
◦ v(s) = p−1

0
◦ v(s1).

Notice the evaluation on the right is possible because

v(s1) ∈ v(I0)⊂⊂ S
1\{(− cos θ0,− sin θ0)}.

We have then v(s1) = (cos θ1, sin θ1), and we can repeat the argument starting at the
beginning of this proof with s1 and θ1 in place of s0 and θ0. In this way we obtain
some s3 < s1 for which I1 = (s3, 2s1 − s3) ⊂ I and

v(I1) ⊂ B1(v(s1)) = {x ∈ S
1 : ‖x− v(s1)‖ < 1}.

The argument continues by noting

p1 = p∣
∣

(θ1−π,θ1+π)

: (θ1 − π, θ1 + π) → S
1\{(− cos θ1,− sin θ1)}

is a homeomorphism, and

v(I1)⊂⊂{x ∈ S
1 : ‖x− v(s1)‖ <

√
2}

⊂ {(cos(θ1 + t), sin(θ1 + t)) ∈ S
1 : −π/2 < t < π/2}.

It may be that s3 = inf I. If this is the case, α1 : I1 ∪ I0 = (s3, s2) → R by

α1(s) =

{

α0(s) = p−1

0
◦ v(s), s ∈ I0

p−1

1
◦ v(s), s ∈ I1
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defines a continuous lifting of
w1 = v∣

∣

(s3,s2)

.

If α̃ : (s3, s2) → R were another lifting of w1, then p ◦ α̃ ≡ p ◦ α1, and clearly for
s ∈ I0 we have α̃(s) = p−1

0
◦ v(s) = α0(s) = α1(s). The same identity holds for

s ∈ I1 ∩ I0 = (s1, 2s1 − s3). Applying Corollary 1 to

v∣
∣

I1

at s = (3s1−s3)/2 with θ = α1(s), we conclude α̃(s) ≡ α1(s) for s ∈ I1 as well. Thus,
there is a unique lifting α1 : I1 ∪ I0 = (s3, s2) → R of

v∣
∣

(s3,s2)

.

The argument just given can be generalized in several ways. First of all, we
consider a second special case.

Case 0.1 inf I < s1 and s2 = sup I.

We let s∗
1
= inf U where

U =

{

s3 ∈ (inf I, s0) : v∣
∣

(s3,s2)

has a unique lifting α with α(s0) = θ0

}

.

In this case, we claim first that s∗
1
= inf I and second that the unique lifting of v is

defined by
α∗(s) = α(s)

for any lifting α ∈ C0(s3, s2) of

v∣
∣

(s3,s2)

with α(s0) = θ0

for some s3 ∈ U with s3 < s.
Were we to assume inf I < s∗

1
, then we would have s∗

1
∈ I, and a version of the

argument above may be repeated: There is some s3 > s∗
1
such that I∗

1
= (2s∗

1
−s3, s3) ⊂

I and
‖v(s)− v(s∗

1
)‖ < 1. (12)

Since s∗
1
= inf U , there are two more arclengths s∗∗

1
and s∗ such that

s∗
1
< s∗∗

1
< s∗ < s3 < s0 < s2
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and there is a unique lifting α∗
0
of

w = v∣
∣

I∗
0

where I∗
0
= (s∗∗

1
, s2)

with α∗
0
(s0) = θ0. Setting

θ∗ = α∗
0
(s∗)

Corollary 1 may be applied to

w∗ = v∣
∣

I∗

: I∗
1
→ S

1

taking s∗ ∈ I∗
1
and θ = θ∗. Specifically,

v(s∗) = p ◦ α∗
0
(s∗) = p(θ∗),

and if s ∈ I∗
1
, then

‖v(s)− v(s∗)‖ ≤ ‖v(s)− v(s∗
1
)‖+ ‖v(s∗

1
)− v(s∗)‖ < 2.

This last inequality means v(s) 6= −v(s∗) = −(cos θ∗, sin θ∗) because ‖−2v(s∗)‖ = 2,
and

v(s) ∈ {(cos(θ∗ + t), sin(θ∗ + t)) ∈ S
1 : −π < t < π}

as required by Corollary 1. We thus obtain a unique lifting α∗
1
∈ C0(I∗

1
) of w∗ with

α∗
1
(s∗) = θ∗. Since

α∗
1

∣

∣

I∗

and α∗
0

∣

∣

I∗

are both liftings of w∗ = v∣
∣

I∗

on
I∗ = I∗

1
∩ I∗

0
= (s∗∗

1
, s3)

with s∗ ∈ I∗ and
α∗
1

∣

∣

I∗

(s∗) = θ∗ = α∗
0

∣

∣

I∗

(s∗),

the hypotheses of Corollary 1 still hold on the smaller interval I∗ and

α∗
1
(s) ≡ α∗

0
(s) for s ∈ I∗.

We may thus define α1 ∈ C0(2s∗
1
− s3, s2) by

α1(s) =

{

α∗
0
(s), s∗∗

1
< s < s2

α∗
1
(s), 2s∗

1
− s3 < s < s3.
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This function ψ1 is a continuous lifting of

w1 = v∣
∣

(2s∗1−s3,s2)

with α1(s∗) = θ∗. It is also the case that α1(s0) = α∗
0
(s0) = θ0.

If α̃ ∈ C0(2s∗
1
− s3, s2) were any other lifting of w1 with α̃(s0) = θ0, then on the

one hand
α̃∗
0
= α̃∣

∣

I∗
0

is a lifting of v∣
∣

I∗
0

with α̃∗
0
(s0) = θ0 where we recall I∗

0
= (s∗∗

1
, s2). By the uniqueness of α∗

0
we have

α̃∗
0
= α∗

0
, and for each s satisfying s∗∗

1
< s < s2, i.e., s ∈ I∗

0
, there holds

α̃(s) = α̃∗
0
(s) = α∗

0
(s) = α1(s).

In particular, α̃(s∗) = θ∗.
On the other hand,

α̃∗
1
= α̃∣

∣

I∗
1

is a lifting of v∣
∣

I∗
1

with α̃∗
1
(s∗) = θ∗ where we recall I

∗
1
= (2s∗

1
− s3, s3). By the uniqueness of α∗

1
we have

α̃∗
1
= α∗

1
, and for each s satisfying 2s∗

1
− s3 < s < s3, i.e., s ∈ I∗

1
, there holds

α̃(s) = α̃∗
1
(s) = α∗

1
(s) = α1(s).

We have shown α1 is the unique lifting of w1 satisfying α1(s0) = θ0. Since 2s
∗
1
− s3 <

s∗
1
= inf U , this is a contradiction.
We have established our first claim: s∗

1
= inf I.

Next, for any s ∈ I, let s3 ∈ U with s3 < s and let α be the unique lifting of

v∣
∣

(s3,s2)

with α(s0) = θ0.

If s̃3 is any other arclength in U with s̃3 < s and corresponding unique lifting α̃ of

v∣
∣

(s̃3,s2)

with α̃(s0) = θ0,

Then s > σ = min{s3, s̃3} ∈ U and the restrictions of α and α̃ to (σ, s2), at least one
of which the same lifting, must agree on (σ, s2). In particular, α(s) = α̃(s), and our
construction of α∗ gives a well-defined function α∗ ∈ C0(I). The function α∗ is also
a lifting of v and satisfies α∗(s0) = θ0.

Essentially the same uniqueness argument just given applies to show α∗ is the
unique continuous lifting of v with α∗(s0) = θ1 in Case 0.1 as claimed.

Even when s2 < sup I, we have established the following:
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Corollary 2 If v : I → S
1 is continuous and there are values s ∈ I and θ ∈ R with

v(s) = p(θ) then there is some s2 ∈ I with s < s2 so that setting I1 = (inf I, s2), there
is a unique lifting α ∈ C0(I1) of

w = v∣
∣

I1

satisfying
p ◦ α = w and α(s) = θ. (13)

Finally, it is straightforward to generalize the argument(s) above to extend the
unique lifting of Corollary 2 obtained by taking θ = θ0 and s = s0 to get the unique
continuous lifting α∗ of v on I = (inf I, s∗

2
) = (inf I, sup I) satisfying α∗(s0) = θ0 as

asserted in Lemma 1. �

Remark: It is also straightforward to allow certain more general possibilities in the
argument(s) above. For example, if I is assumed to be a half-closed interval of the
form [min I, sup I) where min I ∈ R with s0 ∈ I∗ = (min I, sup I) and θ0 given as in
Lemma 1, then it can be shown that

lim
sցs∗1

ψc(s) = θ∗

exists where α∗ is the continuous lifting of

v∣
∣

I∗

and p ◦ (α∗) = v(θ∗). The situation when v(s0) = p(θ0) is specified at an endpoint
s0 = min I can also be considered separately in this case using a variant of the
argument above. As a consequence, we can state the following general version of
Lemma 1.

Lemma 2 Let I ⊂ R be any interval, open, closed, or half-open/closed. If v =
(v1, v2) : I → S

1 is continuous and there are values s0 ∈ I and θ0 ∈ R with
{

cos θ0 = v1(s0)
sin θ0 = v2(s0),

(14)

then there exists a unique function α ∈ C0(I) such that

p ◦ α = v and α(s0) = θ0. (15)

For convenience with regard to application in the next section, we state and prove
a final topological result.
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Corollary 3 Under the hypotheses of Lemma 1 according to which one obtains the
lifting α ∈ C0(I), if

(i) I1 is an open subinterval of I, and

(ii) there is some s1 ∈ I1 for which θ1 = ψc(s1) satisfies

{

cos θ1 = v1(s1)
sin θ1 = v2(s1),

(16)

then there is a function α1 ∈ C0(I1) for which

p ◦ α1 = v∣
∣

I1

and α1(s1) = α(s1)

and
α1 = α∣

∣

I1

.

Proof: We can simply apply Lemma 1 to the restriction

v∣
∣

I1

∈ C0(I1)

at s1 ∈ I1 and θ1 ∈ R. We thus obtain a unique lifting α1 ∈ C0(I1). However, the
restriction

α∣
∣

I1

of the global lifting α, in view of (16) and the condition θ1 = α(s1), is also the unique
lifting of

v∣
∣

I1

. �

In the proof of Theorem 1 below, we assume Lemma 1 has been applied with
v = γ̇ to obtain a continuous lifting α = ψc ∈ C0(I) with

γ̇ = p ◦ ψc and ψc(s0) = θ0.
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2 Analytic approach

If we know (or assume) ψ ∈ C1(I), then it is clear the relations (2) imply all the
ordinary differential equations of (3). More generally, if J is any open interval in I
and

{

cosψ = γ̇1, s ∈ J
sinψ = γ̇2, s ∈ J

(17)

holds for some ψ ∈ C1(J), then simply by differentiating we obtain the singular
system of ordinary differential equations

{

− sinψ ψ̇ = γ̈1, s ∈ J

cosψ ψ̇ = γ̈2, s ∈ J.
(18)

Roughly speaking, we will prove Theorem 1 by showing (3) has a unique solution
ψ ∈ C1(I). We will then show this solution satisfies (2) as well, and therefore must
be the same as the continuous solution ψc of (2) obtained via topological lifting.

We begin with a local version of Theorem 1 with arbitrary initial condition at the
point s1 ∈ I.

Lemma 3 If θ1 ∈ R satisfies
{

cos θ1 = γ̇1(s1)
sin θ1 = γ̇2(s1),

(19)

there exists some ǫ > 0 and a unique function ψ ∈ C1(J) where J = (s1 − ǫ, s1 + ǫ)
such that







cosψ = γ̇1, s ∈ J
sinψ = γ̇2, s ∈ J
ψ(s1) = θ1.

(20)

Moreover, the relations (20) are equivalent to the singular system of ordinary differ-
ential equations







− sinψ ψ̇ = γ̈1, s ∈ J

cosψ ψ̇ = γ̈2, s ∈ J
ψ(s1) = θ1.

(21)

Proof: As suggested above, we begin with the system of ordinary differential equations
(21). We know sin2 θ1+cos2 θ1 = 1, so either sin θ1 6= 0 or cos θ1 6= 0. Let us consider
the case where sin θ1 6= 0. In this case there is some ǫ1 > 0 for which

sin θ 6= 0 for θ1 − ǫ1 ≤ θ ≤ θ1 + ǫ1 (22)
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and the initial value problem
{

− sinψ ψ̇ = γ̈1
ψ(s1) = θ1

(23)

is nonsingular at (s1, θ1) ∈ (s1 − ǫ1, s1 + ǫ1)× (θ1 − ǫ1, θ1 + ǫ1). By the existence and
uniqueness theorem for ordinary differential equations, there is some ǫ > 0 with ǫ < ǫ1
for which (23) has a unique solution ψ ∈ C1(J) defined for s ∈ J = (s1−ǫ, s1+ǫ) ⊂ I.

This solution also satisfies the first relation of (20) because

cosψ(s) = cosψ(s1) +

∫ s

s1

(− sinψ(σ) ψ̇(σ)) dσ

= cos θ1 +

∫ s

s1

γ̈1(σ) dσ

= cos θ1 + γ̇1(s)− γ̇1(s1)

= γ̇1(s).

The second relation of (20) is somewhat more difficult to see. We know, however,
that

γ̇2
2
= 1− γ̇2

1
= 1− cos2 ψ = sin2 ψ.

This means

γ̇2(s) ∈ {− sinψ(s), sinψ(s)} for every s ∈ (s1 − ǫ1, s1 + ǫ1). (24)

We also have from (19) that sinψ(s1) = γ̇2(s1) and from (22) that − sinψ(s) 6=
sinψ(s) on the same interval (s1− ǫ1, s1+ ǫ1). In particular, γ̇2 cannot vanish on this
interval, and by continuity, e.g., the intermediate value theorem, there must hold

γ̇2(s) ≡ sinψ(s) for every s ∈ (s1 − ǫ1, s1 + ǫ1).

We have established (20) for a function ψ ∈ C1(J) and by differentiation (21) holds as
well. Uniqueness now follows from the fact that ψ : J → R is the unique topological
lifting α ∈ C0(J) of γ̇ : J → S

1, with α(s1) = θ1 since according to (20) p ◦ ψ = γ̇.
The case in which cos θ1 6= 0 may be treated much the same way. �

Proof of Theorem 1: We can apply Lemma 3 with s1 = s0 and θ1 = θ0 to obtain
some interval J0 = (s0 − ǫ1, s0 + ǫ1) for which







cosψ = γ̇1, s ∈ J0
sinψ = γ̇2, s ∈ J0
ψ(s0) = θ0.

(25)
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and






− sinψ ψ̇ = γ̈1, s ∈ J0
cosψ ψ̇ = γ̈2, s ∈ J0
ψ(s0) = θ0

(26)

are equivalent and have a unique solution ψ ∈ C1(J0) which is also the topological
lifting α0 of γ̇ : J0 → S

1, with α0(s0) = θ0.
By the uniqueness of the topological lifting ψc : I → R of γ̇ : I → S

1 we know any
union

I∗ =
⋃

β∈Γ

Jβ

of open intervals Jβ with s0 ∈ Jβ ⊂ I for which






cosψ = γ̇1, s ∈ Jβ
sinψ = γ̇2, s ∈ Jβ
ψ(s0) = θ0.

(27)

and






− sinψ ψ̇ = γ̈1, s ∈ Jβ
cosψ ψ̇ = γ̈2, s ∈ Jβ
ψ(s0) = θ0

(28)

are equivalent and have a unique solution ψ ∈ C1(Jβ) satisfies I∗ is an open interval
with s0 ∈ I∗ ⊂ I, as well as the condition that







cosψ = γ̇1, s ∈ I∗
sinψ = γ̇2, s ∈ I∗
ψ(s0) = θ0.

(29)

and






− sinψ ψ̇ = γ̈1, s ∈ I∗
cosψ ψ̇ = γ̈2, s ∈ I∗
ψ(s0) = θ0

(30)

are equivalent and have a unique solution ψ = ψ∗ ∈ C1(I∗). Consequently, we
may assume I∗ is a maximal open interval in I with this property. If we assume
inf I∗ > inf I, then a = inf I∗ ∈ I ⊂ R. Notice then that γ̇(a) is well-defined.
Furthermore, considering α∗ ∈ C0(I∗) as the unique topological lifting of γ̇ : I∗ → S

1

with , we know α∗ must be the restriction of ψc ∈ C0(I) to the interval I∗. By the
continuity of ψc, we know

θa = lim
sցa

α∗(s) = ψc(a) is well-defined
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and satisfies
{

cos θa = γ̇1(a)
sin θa = γ̇2(a).

(31)

Thus, we can apply Lemma 3 to obtain some ǫ > 0 and some ψa ∈ C1(a−ǫ, a+ǫ) which
also agrees with ψc on the interval (a− ǫ, a+ ǫ). We may also assume ǫ < sup I∗ − a
so that I∗ is a proper subinterval of J∗ = (a− ǫ, sup I∗). It follows that ψ2 : J∗ → R

by

ψ2(s) =

{

α∗(s), s ∈ I∗
ψa(s), s ∈ (a− ǫ, a+ ǫ)

is well-defined with ψ2 ∈ C1(J∗). Furthermore, s0 ⊂ J∗ ⊂ I and the problems






cosψ = γ̇1, s ∈ J∗
sinψ = γ̇2, s ∈ J∗
ψ(s0) = θ0.

(32)

and






− sinψ ψ̇ = γ̈1, s ∈ J∗
cosψ ψ̇ = γ̈2, s ∈ J∗
ψ(s0) = θ0

(33)

are equivalent with unique solution ψ = ψ2 ∈ C1(J∗). This contradicts the maximality
of I∗, and we conclude inf I∗ = inf I.

The assumption sup I∗ < sup I leads to a similar contradiction, so I = I∗ and the
assertion of Theorem 1 holds. �

3 Another singular system

Given γ ∈ C2(I → R
2) as above, a technically different singular system of ordinary

differential equations sharing the same singular/nonsingular character displayed by
(3) and indeed an alternative for analytically defining the inclination ψ ∈ C1(I)
determined by γ is







−γ̇2 ψ̇ = γ̈1, s ∈ I

γ̇1 ψ̇ = γ̈2, s ∈ I
ψ(s0) = θ0.

(34)

We make two simple observations about the system (34).
First, in view of the condition

γ̇2
1
+ γ̇2

2
= 1 (35)

15



at least one of the ordinary differential equations in (34) is nonsingular at each s ∈ I.
It will be recalled that this is a feature shared with the singular system (3). Proceeding
as with the system (3) we may consider the case γ̇2(s0) 6= 0 so that on some interval
the first equation in (34) determines a unique function ψ locally.

Letting ψ0 denote the solution of (3) given by Theorem 1, we can then write locally

d

ds
(ψ − ψ0) = − γ̈1

γ̇2
+

γ̈1
sinψ0

≡ 0,

since it was established that the second equation in (2) namely γ̇2 = sinψ0 holds
for ψ0. This implies the solution of (34) is locally identical to the solution of (3) as
expected, and this reasoning can clearly be extended to the global assertion ψ = ψ0.
As implied, the global existence of the solution ψ ∈ C1(I) and the fact that this
solution satisfies (2) may also be established along these lines.

Finally, we note the question of “consistency” for the system (34), that is for
example showing the second relation γ̇1 ψ̇ = γ̈2 of (34) holds on an interval where
the first relation −γ̇2 ψ̇ = γ̈1 holds and is nonsingular, is straightforward. This
is in contrast to the slightly delicate argument arising in the proof of Lemma 3 in
connection with (24) for the system (3). To see this, for example, we can differentiate
the relation (35) and use −γ̇2 ψ̇ = γ̈1 to obtain directly

0 = γ̇1 γ̈1 + γ̇2 γ̈2 = −γ̇1 γ̇2 ψ̇ + γ̇2 γ̈2

which implies γ̈2 = γ̇1 ψ̇.
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