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1 Singular solutions of Laplace’s equation;

fundamental solution

Consider Laplace’s equation ∆u = 0 for a function u ∈ C∞(Rn) with n ≥ 3. One can
look for radial solutions having the form u(x) = φ(|x|) for some function φ : [0,∞) →
R, and one finds and ODE for φ leading to the unique solutions

u(x) = constant.

These are not very interesting solutions, but in the process one does see that the
ODE for φ = φ(r) has a (nonconstant) solution defined for r > 0. That solution, up
to additive and multiplicative constants is

φ(r) =
1

rn−2
.

I’m going to start the discussion of Green’s function(s) here with a discussion of the
interesting solution Φ : Rn\{0} → R of Laplace’s equation given by

Φ(x) =
C

|x|n−2

where C is a multiplicative constant. First of all, let’s take the constant C to be
positive, but otherwise arbitrary, and see what we can find. Notice Φ is a solution on
punctured Euclidean space Rn\{0} instead of the entire space. There is a singularity
at the puncture x = 0 and assuming C > 0, we can say

lim
x→0

Φ(x) = +∞.
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In two dimensions, one can draw the graph of such a function, but you’ll note that
we’re only considering this solution for n ≥ 3 and the formula just gives a constant
for n = 2, so perhaps something different happens when n = 2. In fact, I suggest it
might be instructive for you to follow along with the discussion I give here and try
to see what actually happens when n = 2 at each step of the way.

Exercise 1 Look for a radial solution Φ of Laplace’s equation on the punctured plane
R2\{0}. You should find essentially one interesting solution Φ(x) = φ(|x|) up to a
multiplicative constant. Restrict the sign of the constant so that

lim
x→0

Φ(x) = +∞.

Returning to the singularity of my function with

Φ(x) =
C

|x|n−2

when n ≥ 3, I’d like to know about the integrability at the singularity. The function
Φ is everywhere positive, so the integral

∫

Rn

Φ

should make sense, though the value may be +∞. I’m going to introduce a kind of
change of variable to evaluate this integral, and it may be one with which you are not
familiar...and even of a kind with which you are not familiar. Don’t worry if what I
am about to present is a little confusing. I will go back later and discuss integration
and the techniques I’m using in more detail. I am hopeful you will find what happens
here so compelling that you’ll be excited to figure out what is going on.

Okay, I’m going to think of Rn as the image of a mapping on an n-dimensional
curved space, but a relatively simple one. That space is the product of an interval
with a sphere: (0,∞)× S

n−1. Here

S
n−1 = {x ∈ R

n : |x| = 1},

and this is a hypersurface in R
n. This sphere has many interesting properties and

can be parameterized in various different ways, but I’ll try to avoid many of those
interesting details. I’m interested in the map ψ : (0,∞)× Sn−1 → Rn by

ψ(r,p) = rp.
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Notice that ψ gives a one-to-one correspondence between (0,∞)×Sn−1 and the punc-
tured Euclidean space Rn\{0}. Since only one point is missing, this is appropriate
for integration. That is to say, in calculating for example

∫

Rn

Φ

we can integrate via change of variables over (0,∞)× Sn−1. Here is how that goes:

∫

Rn

Φ =

∫

x∈Rn

Φ(x)

=

∫

(r,p)∈(0,∞)×Sn−1

Φ(ψ(r,p)) J (1)

=

∫ ∞

0

(∫

p∈Sn−1

Φ ◦ ψ(r,p) J
)

dr

=

∫ ∞

0

(
∫

p∈Sn−1

φ(r) J

)

dr

=

∫ ∞

0

φ(r) J

(∫

p∈Sn−1

1

)

dr

=

(
∫

p∈Sn−1

1

)
∫ ∞

0

CJ

rn−2
dr. (2)

Okay, let’s pause for a moment and look at some of what we have here. There is an
interesting constant

∫

p∈Sn−1

1 =

∫

Sn−1

1

in the last line (2). This constant, it will be noted, has nothing to do with the function
Φ. This is some interesting geometric constant. Were we in n = 2 dimensions, then
Sn−1 is a unit circle, and integrating the function 1 on the unit circle1 simply gives
the length of the unit circle:

∫

S1

1 = 2π.

You probably also know
∫

S2

1 = 4π,

1If this seems mysterious, you might want to have a look at the appendix on integration below.
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and this is the first case of interest when n ≥ 3 because S2 ⊂ R3. The numbers
∫

Sn−1

1,

the (n− 1) dimensional measures of the unit spheres in R
n when n > 3 (and also for

n = 1), are numbers you may not know. But these numbers might be interesting to
know. Let’s set the question of computing these numbers aside for the moment, and
just note that they are some numbers. Specifically,

∫

Sn−1

1

in (2) is just some constant that can be computed. Perhaps it is convenient to give
this constant a short(er) or snappy symbolic name. One possibility that is technically
rather nice is Hn−1(Sn−1) which stands for the (n−1) dimensional Hausdorff measure

of the unit sphere in Rn. This name, however, is not much shorter than just writing
out the integral. There is another traditional name that is rather shorter. That name
is nωn. Thus, we can write

∫

Sn−1

1 = Hn−1(Sn−1) = nωn.

I’ll explain a bit more about each of these two names below, but needless to say ωn

is some constant with a snappy name and

ωn =
1

n

∫

Sn−1

1.

The fact that Sn−1 has associated with it this measure is an interesting property we
are not going to avoid, but we will set aside the precise computation of that measure
for the moment.

Returning to (1) notice the function J which appeared here. This is sometimes
called a Jacobian scaling factor. We would get the wrong answer without it, and
we need to know its precise value. Let me try to draw inspiration from something
with which you are familiar: Say you want to integrate a function f : BR(0) → R on
a disk of radius R in the plane R2. For this, you might use polar coordinates writing

∫

BR(0)

f =

∫ R

0

(
∫ 2π

0

f(r cos θ, r sin θ) dθ

)

r dr. (3)
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In the background here is the polar coordinates map ψ0 : (0, R)× [0, 2π) → R2 by

ψ0(r, θ) = (r cos θ, r sin θ).

We can certainly extend ψ0 to the slightly larger domain [0, R) × [0, 2π), but then
we lose injectivity, that is, the map is no longer one-to-one. On the other hand,
the one-to-one correspondence we have is with the punctured disk. That is okay for
integration because the single point at the center doesn’t effect the integral. In fact,
this entire mapping is a bit funky when it comes to the intersection of the positive
x-axis with the disk. Notice the inverse mapping is not continuous along this line
segment. Of course, that doesn’t matter too much either because the two-dimensional
measure, i.e., the area with which we are doing the integration, gives zero value to
that segment, so omitting the positive x-axis from the disk doesn’t effect the integral
either. In any case, the mapping ψ0 has associated with it the Jacobian scaling factor

J = | detDψ0|

where Dψ0 is the 2 × 2 matrix of the first partials of ψ0 or what is called the total
derivative in this case. Specifically, we have

J =

∣

∣

∣

∣

det

(

cos θ −r sin θ
sin θ r cos θ

)∣

∣

∣

∣

= r.

The point here is that the composition f(r cos θ, r sin θ) gives the same values of
f at each point of the (punctured) disk, but assigned to points in the rectangle
(0, R)× (0, 2π). If we were to just integrate over the rectangle without the Jacobian
scaling factor r we would in effect be summing terms that look like

f ◦ ψ0(rj, θj) area(Aj)

where Aj is a small rectangle containing the point (rj, θj) in big rectangle (0, R) ×
(0, 2π). That is what integration means. This rectangle Aj has a rather different area
from the corresponding region ψ0(Aj) in the disk, so you would get the wrong answer.
The Jacobian scaling factor needs to be there due to the approximate relation

area(ψ0(Aj)) ≈ r area(Aj).

To expand on what is happening when you write (3) there are really two steps: First
the integral over BR(0) is written as an integral over the rectangle (0, R)× (0, 2π),

∫

BR(0)

f =

∫

(r,θ)∈(0,R)×(0,2π)

f ◦ ψ0(r, θ) r.
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This is the change of variables. Then the relation between an integral over a rectangle
and iterated integrals is used:

∫

(r,θ)∈(0,R)×(0,2π)

f ◦ ψ0(r, θ) r =

∫ R

0

(
∫ 2π

0

f ◦ ψ0(rθ) r

)

dr.

This relation is called Fubini’s theorem.
For application in higher dimensions, I want to approach this a little differently.

Instead of the rectangle (0, R)× [0, 2π), in this lower dimensional case I want to use
the cross product

(0, R)× S
1

which is a cylinder. I want to integrate on this cylinder. For the change of variables I
have ψ : (0, R)× S1 → BR(0) by ψ(r,p) = rp. In this way I can think of the scaling
factor in terms of the cross product directly with the unit circle S

1 mapping to the
circle ∂Br(0) for each r:

∫

BR(0)

f =

∫

(r,p)∈(0,R)×S1

f ◦ ψ(r,p) r

where we now have the precise relation length(ψ(Γ)) = r length(Γ) where Γ is a
subset of the circle S1 which is dilated by r onto the circle ∂Br(0). This is the key
point: In higher dimensions also, you can see the Jacobian scaling factor simply by
considering dilation of the spheres.

Continuing with the two-dimensional integration we can apply a generalization of
Fubini’s theorem to write the iterated integral

∫

(r,p)∈(0,R)×S1

f ◦ ψ(r,p) r =
∫

r∈(0,R)

(
∫

p∈S1
f ◦ ψ(r,p) r

)

=

∫ R

0

(
∫

p∈S1
f ◦ ψ(r,p) r

)

dr.

Together, we obtain the alternative expression

∫

BR(0)

f =

∫ R

0

(
∫

p∈S1
f ◦ ψ(r,p)

)

r dr

which is a little different from the formula you know, but you can then use any
technique of integration for integrating on the circle to get back the familiar formula
(3).

6



Hopefully this discussion makes more or less clear what happens in (1) when we
write

∫

Rn

Φ =

∫

(r,p)∈(0,∞)×Sn−1

Φ(ψ(r,p)) J.

Here, the Jacobian scaling factor should be the scaling factor for (n− 1) dimensional
measure under scaling by r from the unit sphere Sn−1. In general, as you might guess,
that scaling factor is rn−1. This has some nice consequences. For one thing, the value
of

Hn−1(∂Br(0)) = nωn r
n−1.

More immediately, we can continue from (2) and write

∫

Rn

Φ = nωn

∫ ∞

0

Crn−1

rn−2
dr = Cnωn

∫ ∞

0

r dr.

You may note right away that

∫ ∞

0

r dr = +∞

so Φ is not integrable globally. On the other hand, the source of the non-integrability
is from r = ∞ not from the singularity at r = 0. Very specifically, if we redo the
calculation integrating only on BR(0) ⊂ Rn we find

∫

BR(0)

Φ = Cnωn

∫ R

0

r dr =
Cnωn

2
R2 <∞.

Indeed the singularity is an integrable singularity. This opens up an interesting pos-
sibility.

2 Poisson’s equation

Having established the integrability of Φ at the singularity, the second thing I want
to do is consider the convolution of my radial solution(s) Φ : Rn\{0} → R with
n ≥ 3 with some function f : Rn → R. Such a convolution integral defines a new
function u : Rn → R given by

u(x) =

∫

ξ∈Rn

Φ(x− ξ)f(ξ). (4)
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For each fixed x, the integrand is constructed by translating the singularity in Φ to
x and then integrating against f . In some sense, the purpose of this section is to
investigate the consequences of that construction: What is the nature of this function
u constructed from f?

Before we get to that investigation, there are some preliminary considerations of
which we should take account. Obviously, we can’t take just any function f : Rn → R.
If we take f to be the constant function with f ≡ 1 for example, then u ≡ ∞ because
we know Φ is not integrable at ∞ ∈ R

n. Thus, we had better restrict f in some way.
We will make two restrictions both of which can be relaxed to some extent, but they
will make the discussion below simpler.

1. We assume f is three times continuously differentiable, that is f ∈ C3(Rn).

2. We assume f has compact support.

For functions defined on all of Rn, the property of compact support is very simple.
This just means there is some R > 0 for which

f(x) ≡ 0 for |x| > R.

If we have also f ∈ C0(Rn), and remember C3(Rn) ⊂ C0(Rn) so we we will have that
in this case, then f(x) = 0 for |x| = R as well. Okay then, under these assumptions
the values of u given in (4) will all be finite, so we have u : Rn → R. Incidentally,
there is a nice notation for the set of all functions satisfying the conditions 1 and
2 above. The collection of all three times continuously differentiable functions with
compact support in Rn is denoted C3

c (R
n). The subscript “c” indicates the restriction

to functions of compact support.

2.1 Continuity of the convolution with Φ

If we attempt to consider |u(x)−u(p)| with a view to showing u = Φ∗f is continuous
at p ∈ Rn, we might write down something like this:

|u(x)− u(p)| =
∣

∣

∣

∣

∫

ξ∈Rn

Φ(x− ξ)f(ξ)−
∫

ξ∈Rn

Φ(p− ξ)f(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ξ∈Rn

[Φ(x− ξ)− Φ(p− ξ)]f(ξ)

∣

∣

∣

∣

≤
∫

ξ∈Rn

|Φ(x− ξ)− Φ(p− ξ)| |f(ξ)|.
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Here, it turns out |f(ξ)| can be bounded uniformly by a constant. This assertion
follows from a result in calculus called the extreme value theorem:

Theorem 1 (extreme value theorem) If Ω is a bounded2 open subset of Rn and
f ∈ C0(Ω), then there exist points p,q ∈ Ω such that

f(p) = min
x∈Ω

f(x) and f(q) = max
x∈Ω

f(x).

Under our assumptions the function |f | is continuous on all of Rn and we know
f(x) ≡ 0 for |x| ≥ R. Thus, by the extreme value theorem the value

max
x∈BR(0)

|f(x)| <∞

providing the claimed bound. In this way, we can obtain an estimate

|u(x)− u(p)| ≤ max
η∈BR(0)

|f(η)|
∫

ξ∈Rn

|Φ(x− ξ)− Φ(p− ξ)|.

Unfortunately, at this point the situation for our efforts at estimation becomes diffi-
cult. The problem is that Φ is singular, so it is impossible to get a uniform bound on
the integrand |Φ(x− ξ)−Φ(p− ξ)| much less say the entire integral is small to show
continuity.

Fortunately, there is another important alternative. We change variables η = x−ξ:

u(x) =

∫

ξ∈Rn

Φ(x− ξ) f(ξ) =

∫

η∈Rn

Φ(η) f(x− η).

It will be noticed that the new expression for u has the same form as the original
convolution integral with the roles of Φ and f reversed. Thus, if we write

u(x) = Φ ∗ f(x) =
∫

ξ∈Rn

Φ(x− ξ) f(ξ),

then we can also write
Φ ∗ f(x) = f ∗ Φ(x).

2Starting here, I will use some notation and terminology from Appendix C.
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Thus, the convolution procedure is in this case commutative. Proceeding with the
continuity estimate using the alternative form f ∗ Φ, we have

|u(x)− u(p)| =
∣

∣

∣

∣

∫

η∈Rn

Φ(η)f(x− η)−
∫

η∈Rn

Φ(η)f(x− η)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

η∈Rn

Φ(η)[f(x− η)− f(p− η)]

∣

∣

∣

∣

≤
∫

η∈Rn

Φ(η)|f(x− η)− f(p− η)|. (5)

Since f is continuous at p − η, we know that for any ǫ > 0, there is some δ > 0 for
which

|ξ − (p− η)| < δ implies |f(ξ)− f(p− η)| < ǫ.

In particular, if |x− p| < δ, then |x− η − (p− η)| < δ, and

|f(x− η)− f(p− η)| < ǫ. (6)

Exercise 2 We know there is some R > 0 for which f(x) = 0 whenever |x| ≥ R.
Show that given p ∈ Rn and x with |x− p| < a, there is some M > 0 so that

f(x− η)− f(p− η) ≡ 0 whenever |η − p| > M.

In fact, obtain the stronger assertion

f(x− η) = f(p− η) ≡ 0 whenever |η − p| ≥ M.

Let us say we can use the estimate (6) in the integrand appearing in (5). Then
we conclude that for |x− p| < δ there holds

|u(x)− u(p)| ≤
∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)|

=

∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)| (7)

≤ ǫ

∫

η∈BM (p)

Φ(η).

Since
∫

η∈BM (p)

Φ(η) <∞,
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this looks very promising: If we can take ǫ > 0 as small as we like here, we can
seemingly make |u(x)− u(p)| as small as we like, and that gives the continuity of u.

You may have felt uneasy at some point in the argument above and if so, you
had good reason to be uneasy. Though it comes to the essentially correct conclusion
that the convolution integral u = Φ∗f is continuous, the argument above is seriously
flawed and basically incorrect. Do you see why?

The function f is indeed continuous at the point p− η, but the tolerance δ from
the definition of continuity used to get the estimate (6) must be assumed to depend
on the point p− η and the point η in particular. As a consequence, we do not really
have a single tolerance δ here, but rather an uncountably infinite collection of
tolerances δ = δη one for each η ∈ Rn. In order to make the argument above valid as
it stands, we would have to ensure there is one fixed positive number δ∗ > 0 satisfying

δ∗ ≤ δη for all η ∈ R
n.

Fortunately, there is a relatively easy way around this difficulty because f ∈
C3

c (R
n) has such nice regularity, and some continuous derivatives in particular. The

conclusion that the function u = Φ∗f is continuous is still true if f is only continuous,
but I’ve relegated the details of the proof in that case to Appendix A. There are quite
a few other potentially interesting and useful details in that appendix, so you might
want to at least scan it even if you are not interested in the subtle and sometimes
important topics of compact sets and uniform continuity.

The easy approach is along the following lines:

|f(x− η)− f(p− η)| =
∣

∣

∣

∣

∫ 1

0

d

dt
f((1− t)(p− η) + t(x− η)) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

Df((1− t)(p− η) + t(x− η)) · (x− p) dt

∣

∣

∣

∣

≤
∫ 1

0

|Df((1− t)(p− η) + t(x− η))| dt |x− p|

≤ max
ξ∈Rn

|Df(ξ)| |x− p|.

Here we have used the Cauchy-Schwarz inequality

|Df((1− t)(p− η) + t(x− η)) · (x− p)| ≤ |Df((1− t)(p− η) + t(x− η))| |x− p|

and the extreme value theorem applied to the (continuous) partial derivatives of f so
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that

max
ξ∈Rn

|Df(ξ)| = max
ξ∈BR(0)

√

√

√

√

n
∑

j=1

(

∂f

∂xj

)2

<∞

where f(ξ) ≡ 0 for |ξ| ≥ R so that Df(ξ) ≡ 0 for |ξ| > R as well.
In view of this estimate, we can take for any ǫ > 0 the value

δ =
ǫ

(1 + maxξ∈Rn |Df(ξ)|)
(

1 +
∫

BM (p)
Φ
) > 0

and if |x− p| < δ then

|f(x− η)− f(p− η)| ≤ max
ξ∈Rn

|Df(ξ)| |x− p| < ǫ

1 +
∫

BM (p)
Φ

and

|Φ ∗ f(x)− Φ ∗ f(p)| ≤
∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)| < ǫ.

2.2 Differentiability of Φ ∗ f
Consider a difference quotient

Φ ∗ f(p+ vej)− Φ ∗ f(p)
v

=
1

v

∫

η∈Rn

Φ(η)[f(p+ vej − η)− f(p− η)].

Writing

f(p+ vej − η)− f(p− η)

v

=
1

v

∫ 1

0

d

dt
f((1− t)(p− η) + t(p+ vej − η)) dt

=

∫ 1

0

Df((1− t)(p− η) + t(p+ vej − η)) · ej dt
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we have
∣

∣

∣

∣

Φ ∗ f(p+ vej)− Φ(p)

v
− Φ ∗ ∂f

∂xj
(p)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

η∈Rn

Φ(η)

(
∫ 1

0

Df((1− t)(p− η) + t(p+ vej − η)) · ej dt−
∂f

∂xj
(p− η)

)∣

∣

∣

∣

=

∣

∣

∣

∣

∫

η∈Rn

Φ(η)

∫ 1

0

(

Df((1− t)(p− η) + t(p+ vej − η)) · ej −
∂f

∂xj
(p− η)

)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

η∈Rn

Φ(η)

∫ 1

0

(

∂f

∂xj
((1− t)(p− η) + t(p+ vej − η))− ∂f

∂xj
(p− η)

)

dt

∣

∣

∣

∣

≤
∫

η∈Rn

Φ(η)

∫ 1

0

∣

∣

∣

∣

∂f

∂xj
((1− t)(p− η) + t(p+ vej − η))− ∂f

∂xj
(p− η)

∣

∣

∣

∣

dt. (8)

Now, let us consider g ∈ C2
c (R

n) with

g =
∂f

∂xj
.

The integrand of the inner integral becomes

∣

∣

∣

∣

∂f

∂xj
((1− t)(p− η) + t(p+ vej − η))− ∂f

∂xj
(p− η)

∣

∣

∣

∣

|g((1− t)(p− η) + t(p+ vej − η))− g(p− η)|
= |g(p− η + tvej)− g(p− η)|

=

∣

∣

∣

∣

∫ 1

0

d

ds
g((1− s)(p− η) + s(p− η + tvej)) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

tv

∫ 1

0

Dg((1− s)(p− η) + s(p− η + tvej)) · ej ds
∣

∣

∣

∣

= t|v|
∣

∣

∣

∣

∫ 1

0

∂2f

∂x2j
((1− s)(p− η) + s(p− η + tvej)) ds

∣

∣

∣

∣

≤ t|v|
∫ 1

0

max
ξ∈Rn

∣

∣

∣

∣

∂2f

∂x2j
(ξ)

∣

∣

∣

∣

ds

= t|v|max
ξ∈Rn

∣

∣

∣

∣

∂2f

∂x2j
(ξ)

∣

∣

∣

∣

.
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Continuing from (8)
∣

∣

∣

∣

Φ ∗ f(p+ vej)− Φ(p)

v
− Φ ∗ ∂f

∂xj
(p)

∣

∣

∣

∣

≤
∫

η∈Rn

Φ(η)

∫ 1

0

∣

∣

∣

∣

∂f

∂xj
((1− t)(p− η) + t(p+ vej − η))− ∂f

∂xj
(p− η)

∣

∣

∣

∣

dt

≤
∫

η∈Rn

Φ(η)

∫ 1

0

t|v|max
ξ∈Rn

∣

∣

∣

∣

∂2f

∂x2j
(ξ)

∣

∣

∣

∣

dt

=
|v|
2

max
ξ∈Rn

∣

∣

∣

∣

∂2f

∂x2j
(ξ)

∣

∣

∣

∣

∫

η∈Rn

Φ(η).

Notice that if for any ǫ > 0, we take

|v| < ǫ
(

1 + maxξ∈Rn

∣

∣

∣

∂2f
∂x2

j

(ξ)
∣

∣

∣

) (

1 +
∫

η∈Rn Φ(η)
)

then
∣

∣

∣

∣

Φ ∗ f(p+ vej)− Φ(p)

v
− Φ ∗ ∂f

∂xj
(p)

∣

∣

∣

∣

< ǫ.

This means Φ ∗ f has partial derivatives given by

∂

∂xj
Φ ∗ f = Φ ∗ ∂f

∂xj

for j = 1, 2, . . . , n. Notice that since ∂f/∂xj is continuous, the convolution Φ ∗
(∂f/∂xj) is also continuous (just as we showed for Φ∗f above) so Φ∗f ∈ C1(Rn). This
formula also illustrates that convolution with Φ commutes with taking a derivative
(of the function in the convolution which has a derivative if there is one).

Applying this last principle to the first derivatives of Φ ∗ f we see Φ ∗ f ∈ C2
c (R

n)
and

∂2

∂xi∂xj
Φ ∗ f = Φ ∗ ∂2f

∂xi∂xj
.

In particular, this means the Laplacian of Φ ∗ f is well-defined and

∆Φ ∗ f = Φ ∗∆f.
This seems like it may not tell us very much, since f was simply an arbitrary function
in C3

c (R
n). The Laplacian of f could be, more or less, anything.

But there is more to say. We have not yet used in any serious way the proper-
ties/form of the function Φ. We have only used that Φ has an integrable singularity.
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2.3 The Laplacian of Φ ∗ f
We have shown

∆Φ ∗ f(x) = Φ ∗∆f(x) =
∫

ξ∈Rn

Φ(x− ξ)∆f(ξ).

We have not used the particular form of Φ and the form of the singularity in Φ in
particular. We have only used the fact that the singularity in Φ at the origin is
integrable. Now, we will need to use the detailed properties of Φ.

Before we begin to examine the value of Φ ∗ ∆f carefully, let me note that we
used the regularity of f to get the derivatives “inside” the convolution integral onto
f . One might imagine one could accomplish the same kind of differentiation putting
the derivatives on the function Φ and arrive at

(∆Φ) ∗ f(x) =
∫

ξ∈Rn

∆Φ(x− ξ)f(ξ) ≡ 0

so that we obtain by the formula u = Φ ∗ f some new solutions of Laplace’s equation
on all of Rn. This cannot be accomplished, and this is not a correct conclusion.

In order to obtain a correct conclusion, we observe first that the Laplace operator
is a divergence form operator in the sense the

∆f = divDf (9)

where the divergence of the gradient field may be understood in the simple sense of
the formula for the divergnece of a vector field v = (v1, v2, . . . , vn) ∈ C1(Ω → Rn) in
rectangular coordinates:

div v =
n

∑

j=1

∂vj
∂xj

.

Here Ω is an open subset of Rn, so that (9) is valid whenever f ∈ C2(Ω).
We will use also the product formula for the divergence of a scaled vector field

div(gv) = Dg · v + g div v (10)

where v ∈ C1(Rn → Rn) and g ∈ C1(Rn).
Finally, we will use the divergence theorem in the following form:

Theorem 2 (divergence theorem) If Ω is a bounded open subset of Rn with ∂Ω a
smooth hypersurface in Rn admitting a continuous outward unit normal field n ∈
C0(∂Ω → Rn) and v ∈ C1(Ω), then

∫

Ω

div v =

∫

∂Ω

v · n. (11)
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A discussion of the divergence operator in a more general context along with a sketch
of the proof of the divergence theorem is given in Appendix D.

With this handful of tools in hand, we start by isolating the singularity in Φ:
Recall that x is fixed in this argument, and we are looking to determine ∆Φ ∗ f(x).
First take M > 0 so that

f(x− η) ≡ 0 for η ∈ R
n\BM(0).

Consider r > 0 with r < M . Then

∆Φ ∗ f(x) =
∫

η∈Br(0)

Φ(η)∆f(x− η) +

∫

η∈Rn\Br(0)

Φ(η)∆f(x− η)

=

∫

η∈Br(0)

Φ(η)∆f(x− η) +

∫

η∈BM (0)\Br(0)

Φ(η)∆f(x− η).

Recall that by the extreme value theorem

max
ξ∈Rn

|∆f(ξ)| = max
ξ∈BR(0)

|∆f(ξ)| <∞.

Therefore,
∣

∣

∣

∣

∫

η∈Br(0)

Φ(η)∆f(x− η)

∣

∣

∣

∣

≤ max
ξ∈Rn

|∆f(ξ)|
∫

η∈Br(0)

Φ(η).

Note that
∫

η∈Br(0)

Φ(η) = C

∫ r

0

(
∫

∂Bt(0)
1

tn−2

)

dt

= C

∫ r

0

1

tn−2

(
∫

∂Bt(0)1

)

dt

= C

∫ r

0

1

tn−2
nωnt

n−1 dt

= Cnωn

∫ r

0

t dt

=
Cnωn

2
r2.

This means

lim
rց0

∣

∣

∣

∣

∫

η∈Br(0)

Φ(η)∆f(x− η)

∣

∣

∣

∣

= 0
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and so

lim
rց0

∫

η∈Br(0)

Φ(η)∆f(x− η) = 0.

Here we have used the specific form of the fundamental solution Φ, though really we
have only used the basic integrability again. Consider however, the other integral

∫

η∈BM (0)\Br(0)

Φ(η)∆f(x− η).

The Laplacian here is taken directly of f , but in order to apply the divergence theorem,
we need a divergence with respect to the variable of integration. Thus we note

divηDf(x− η) = −∆f(x− η).

Moreover if we consider the scaled field ΦDf(x− β), then the product formula gives

divη[Φ(η)Df(x− η)] = Dφ(η) ·Df(x− η)− Φ(η)∆f(x− η).

It follows that
∫

η∈BM (0)\Br(0)

Φ(η)∆f(x− η) =

∫

η∈BM (0)\Br(0)

Dφ(η) ·Df(x− η)

−
∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)].

Applying the divergence theorem to the last integral, we have

∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)] =

∫

η∈∂BM (0)

Φ(η)Df(x− η) · η
M

−
∫

η∈∂Br(0)

Φ(η)Df(x− η) · η
r

= −1

r

∫

η∈∂Br(0)

Φ(η)Df(x− η) · η

17



because f(x− η) ≡ 0 for η ∈ ∂BM (0). We conclude

∣

∣

∣

∣

∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)]

∣

∣

∣

∣

≤
∫

η∈∂Br(0)

Φ(η)|Df(x− η)|

≤ max
ξ∈BR(0)

|Df(ξ)|C
∫

η∈∂Br(0)

1

|η|n−2

=
C

rn−2
max

ξ∈BR(0)
|Df(ξ)|

∫

η∈∂Br(0)

1

=
C

rn−2
max

ξ∈BR(0)
|Df(ξ)|nωn r

n−1

= Cnωn max
ξ∈BR(0)

|Df(ξ)| r.

Therefore,

lim
rց0

∣

∣

∣

∣

∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)]

∣

∣

∣

∣

= 0

and

lim
rց0

∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)] = 0.

Let us summarize what we have found so far. We have written ∆Φ ∗ f(x) as a sum
of three integrals:

∆Φ ∗ f(x) =
∫

η∈Br(0)

Φ(η)∆f(x− η)

+

∫

η∈BM (0)\Br(0)

DΦ(η) ·Df(x− η)

−
∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)].

The first and last integrals satisfy

lim
rց0

∫

η∈Br(0)

Φ(η)∆f(x− η) = 0

and

lim
rց0

∫

η∈BM (0)\Br(0)

divη[Φ(η)Df(x− η)] = 0.
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It remains to consider the middle integral. Notice that this middle integral
∫

η∈BM (0)\Br(0)

DΦ(η) ·Df(x− η)

is over a region where Φ is nonsingular and ∆Φ ≡ 0. We again apply the product
formula for the divergence of a scaled field:

divη[f(x− η)DΦ(η)] = −Df(x− η) ·DΦ(η)+ f(x− η)∆Φ(η) = −Df(x− η) ·DΦ(η).

This means
∫

η∈BM (0)\Br(0)

DΦ(η) ·Df(x− η) = −
∫

η∈BM (0)\Br(0)

divη[f(x− η)DΦ(η)]

=

∫

η∈∂Br(0)

f(x− η)DΦ(η) · η
r

−
∫

η∈∂BM (0)

f(x− η)DΦ(η) · η
M

=
1

r

∫

η∈∂Br(0)

f(x− η)DΦ(η) · η. (12)

We need to compute the gradient of Φ. Remember

Φ(x) =
C

|x|n−2

where C is some positive constant and n ≥ 3. This means

∂Φ

∂xj
=

∂

∂xj
C(|x|2)−(n−2)/2 = −C(n− 2) xj (|x|2)−(n−2)/2−1 = −C(n− 2)

xj
|x|n .

That is,

DΦ(x) = −C(n− 2)
x

|x|n .

Substituting this value in (12) we have

∫

η∈BM (0)\Br(0)

DΦ(η) ·Df(x− η) = −C(n− 2)

r

∫

η∈∂Br(0)

f(x− η)
η

rn
· η

= −C(n− 2)

rn−1

∫

η∈∂Br(0)

f(x− η).
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This is a rather interesting value. Recall in particular that H(∂Br(0)) = nωnr
n−1,

and the power rn−1 matches the expression we have obtained. Specifically, we can
write

∫

η∈BM (0)\Br(0)

DΦ(η) ·Df(x− η) = −Cn(n− 2)ωn
1

nωnrn−1

∫

η∈∂Br(0)

f(x− η).

The constant Cn(n− 2)ωn is independent of r, and the expression

1

nωnrn−1

∫

η∈∂Br(0)

f(x− η) =
1

nωnrn−1

∫

ξ∈∂Br(x)

f(ξ)

is precisely the average of the function f over ∂Br(x). By continuity we should expect

lim
rց0

1

nωnrn−1

∫

ξ∈∂Br(x)

f(ξ) = f(x).

Here is a proof of this fact: By continuity, for any ǫ > 0, there exists some δ > 0 for
which

|ξ − x| < δ implies |f(ξ)− f(x)| < ǫ

2
.

Thus, for r < δ we have
∣

∣

∣

∣

1

nωnrn−1

∫

ξ∈∂Br(x)

f(ξ)− f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

nωnrn−1

∫

ξ∈∂Br(x)

[f(ξ)− f(x)]

∣

∣

∣

∣

≤ 1

nωnrn−1

∫

ξ∈∂Br(x)

|f(ξ)− f(x)|

≤ ǫ

2

1

nωnrn−1

∫

ξ∈∂Br(x)

1

=
ǫ

2
< ǫ.

Here is the limit result for the last/middle integral:

lim
rց0

∫

η∈BM (0)\Br(0)

DΦ(η) ·Df(x− η) = −Cn(n− 2)ωn f(x).

That is,
∆Φ ∗ f(x) = −Cn(n− 2)ωn f(x).
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I’ve been calling Φ ∈ C∞(Rn\{0} by

Φ(x) =
C

|x|n−2

for n ≥ 3 the “fundamental solution” of Laplace’s equation. That is not quite ac-
curate. The real fundamental solution for n ≥ 3 is the one with the constant C
taking the value

C =
1

n(n− 2)ωn
.

Then we have the striking result

∆Φ ∗ f(x) = −f(x) for all x ∈ R
n.

Thus, we have solved a somewhat different PDE than Laplace’s equation ∆u = 0,
but we know how to find a solution of what is called Poisson’s equation

∆u = −f

on all of Rn for any f ∈ C3
c (R

n).

2.4 The boundary value problem and
the boundary value swap

Remember the existence and uniqueness theorem for ODEs was based on the initial
value problem (IVP). We could try to directly generalize this approach for PDE.
The interval (a, b) initially considered as the domain on which the ODE is considered
would be replaced by some open set Ω on which we consider the PDE. The internal
point t0 ∈ (a, b) where the initial values are defined would “inflate” to a hypersurface
in N ⊂ Ω. On the hypersurface N we can consider what is called Cauchy data
which corresponds to the initial value x(t0) in the system of ODEs. There is a theorem
about such questions, but it applies only to a single PDE and not to every PDE. Still
it’s a nice theorem, especially for the time dependent PDEs like the heat equation
and the wave equation, and one of the “big theorems” in PDE. We will not cover
that theorem in this course, but it’s called the Cauchy-Kowalevski theorem, so
you’ll know to look for it when you take a more advanced course in partial differential
equations.
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The usual approach, and what we will focus on for Laplace’s equation, is to
consider a boundary value problem (BVP)

{

∆u = 0, x ∈ Ω
u∣
∣

∂Ω

= g. (13)

Typically, we seek a solution u ∈ C2(Ω) ∩ C0(Ω). If we try to specialize this back to
a single ODE, we get what is called the two point boundary value problem in
ODEs which might naturally look something like this:

{

y′′ = F (y′, y, t), t ∈ (a, b)
y(a) = c, y(b) = d.

(14)

Of course, you could try to rephrase this problem in terms of some kind of equivalent
first order system, but you would be in some trouble because notice that we haven’t
said anything about boundary values for the function y′. In fact, the theory for such
a problem is not so ideal in some ways. That is why there is an emphasis on the
initial value problem instead. Nevertheless, in certain contexts one must face the two
point boundary value problem in ODEs. This is something you can look forward to
when you take an advanced course on ODEs.

Exercise 3 Give an example of a two point boundary value problem as posed in (14)
with no solution. Give another example of a two point boundary value problem as
posed in (14) with more than one solution. Hint(s):

d2

dt2
sin t = − sin t and sin(0) = sin(π) = 0.

The reason things work out reasonably well when considering the boundary value
problem for PDE is that we only consider some very special PDEs like Laplace’s
equation and Poisson’s equation.

Aside from introducing the boundary value problem and suggesting that we’d like
to solve it, which is what the Green’s function for Laplacian can nominally do at least
in some cases, the main point of this section is the following observation:

Imagine you have a solution of the BVP (13) and it happens that the boundary
values g : ∂Ω → R are given by the restriction of some function f : Ω → R. In fact,
let us assume f ∈ C2(Ω) and

g(x) = f(x) for x ∈ ∂Ω.
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Then we can consider the function v ∈ C2(Ω) ∩C0(Ω) given by v = u− f where u is
a presumed solution of (13). Then notice that

∆v = ∆u−∆f = −∆f and v∣
∣

∂Ω

≡ 0.

Conversely, if we can solve the BVP

{

∆v = −∆f, x ∈ Ω
v∣
∣

∂Ω

≡ 0, (15)

then u = v + f solves (13).
The simple consequence of this discussion is that certain boundary values for the

Laplace equation can be solved in terms of (or swapped out with) certain boundary
value problems for Poisson’s equation with a homogeneous boundary condition

v∣
∣

∂Ω

≡ 0. (16)

We know how to find lots of solutions of Poisson’s equation in the form Φ∗f for various
functions f ∈ C3

c (R
n), and it is this homogeneous bondary condition (16) which plays

a key role in “souping up” the fundamental solution of Laplace’s equation to a Green’s
function which will allow us to solve some problems like (15) and consequently some
problems like (13) for Laplace’s equation.

Here are two nice problems to consider in this context:

{

∆u = 0, x ∈ Ω = (0, L)× (−M,M)
u∣
∣

x∈∂Ω

= x22.
(17)

In the BVP (17) Ω is a rectangular domain in R2. Here is another BVP:

{

∆u = 0, x ∈ Ω = B1(0) ⊂ R
n

u∣
∣

x∈∂Ω

= f(x) (18)

where f ∈ C2(Rn). Of course for the first problem one should (try to) use the
fundamental solution and Green’s function for R2. I will discuss the second problem
for n ≥ 3 in detail below.
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2.5 The boundary value problem for Poisson’s equation

In light of the discussion of the previous section, we start with consideration of the
BVP

{

∆v = −f, x ∈ Ω
v∣
∣

∂Ω

≡ 0, (19)

for a function v ∈ C2(Ω)∩C0(Ω). In some abstract sense, we know how to deal with
this problem when Ω = Rn, but now we focus on the case where Ω is some bounded
domain with ∂Ω a smooth hypersurface like ∂B1(0).

The foundational idea of the Green’s function for the Laplace equation is the
following: We know what the singularity of the fundamental solution can do for us.
Consequently, given ξ ∈ Ω we seek a solution of the particular problem

{

∆u = 0, x ∈ Ω\{ξ}
u∣
∣

∂Ω

≡ 0, (20)

but we also want the solution u to have a singularity like the fundamental solution
Φ(x− ξ) at the point ξ. Specifically, we use a boundary value swap and look to solve

{

∆uc = 0, x ∈ Ω
uc∣
∣

x∈∂Ω

≡ Φ(x− ξ). (21)

This is called the corrector problem, and you can see immediately that given a solution
uc of (21) the function u : Ω\{ξ} → R with

u(x) = G(x, ξ) = Φ(x− ξ)− uc(x)

has all the properties we want. This is the Green’s function. . . sort of. In reality, this is
a good way to start thinking about the Green’s function, but technically, the Green’s
function has an important depenence on twice as many variables and a number of
interesting properties. Specifically, G : Ω× Ω\D → R where

D = {(x,x) : x ∈ Ω}

is the diagonal in Ω×Ω. Also, you will note that the corrector function uc depends
also on ξ in a potentially complicated way. In any case, the corrector problem (21)
has a unique solution u ∈ C2(Ω) for each ξ ∈ Ω, and thus a Green’s function for a
given domain Ω will always exist.
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I’d like to do two things here. First, I’d like to derive some of the main properties
of the Green’s function. Chief amongst these, I’d like to calculate

∆x

∫

ξ∈Ω

G(x, ξ)f(ξ)

which should remind you of the calculation

∆Φ ∗ f(x) = ∆x

∫

ξ∈Ω

Φ(x− ξ)f(ξ)

but with the inclusion of a corrector function. Second, I’d like to find the Green’s
function for the ball B1(0) ⊂ Rn. This construction will apply to n ≥ 2.
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A If f is only continuous

As mentioned above, if we only know f is continuous, say f ∈ C0
c (R

n) with n ≥ 3
and we want to show u = Φ ∗ f is continuous we have to work harder. In particular,
given a tolerance ǫ > 0, if we want to use the continuity of f at a point p − η, then
we can assert

|f(ξ)− f(p− η)| < ǫ whenever |ξ − (p− η)| < δ

but in this case δ = δ(η) depens on the point η. We have to be more careful about
how we choose or deal with the tolerances δ(η) arising from the continuity of f at
p− η. In particular, we need to get some kind of uniformity which we haven’t been
careful enough to get so far. Let’s see if we can get some uniformity locally first.

We do know f is continuous at each point q ∈ Rn. Thus, taking a fixed point q
we have for any given ǫ > 0 a tolerance δ = δ(q) > 0 for which

|ξ − q| < δ implies |f(ξ)− f(q)| < ǫ

2
.

Now say we have points ξ1 and ξ2 with ξ1, ξ2 ∈ Bδ(q). Then

|ξ1 − q|, |ξ2 − q| < δ

so
|f(ξ2)− f(ξ1)| ≤ |f(ξ2)− f(q)|+ |f(q)− f(ξ1)| <

ǫ

2
+
ǫ

2
= ǫ.

Notice that this gives a kind of uniformity on Bδ/2(q). Let’s see what we can do with
this idea.

Let ǫ > 0. We wish to show there exists some δ > 0 so that if |x− p| < δ, then

|u(x)− u(p)| ≤
∫

η∈Rn

Φ(η)|f(x− η)− f(p− η)|

=

∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)|

< ǫ. (22)

Here M is some positive radius for which f(x − η) = 0 for every η ∈ Rn\BM(p).
Notice that f(p− η) = 0 for η ∈ Rn\BM(p) in particular. The value M comes from
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Exercise 2 above. Also, we should keep in mind that p is fixed. By the calculation
above, if we can assert

|f(x− η)− f(p− η)| < ǫ

1 +
∫

η∈BM (p)
Φ(η)

whenever |x−p| < δ, then we can get (22) and we will know u = Φ ∗ f is continuous
(at any arbitrary point p). Thus, let us take the new positive tolerance

ǫ1 =
ǫ

1 +
∫

η∈BM (p)
Φ(η)

and see what we can do.
For each η ∈ R

n, it is indeed true that f is continuous at p − η. Thus, there is
some δ(η) > 0 for which

|x− p| < δ(η) implies |x− η − (p− η)| < δ(η)

implies |f(x− η)− f(p− η)| < ǫ1
2
.

Now if we take any ξ1 ∈ Bδ(η)/2(p−η) then for every ξ with |ξ− ξ1| < δ(η)/2 we have

|ξ − (p− η)| ≤ |ξ − ξ1|+ |ξ1 − (p− η)| < δ(η)

so
|f(ξ)− f(ξ1)| ≤ |f(ξ)− f(p− η)|+ |f(p− η)− f(ξ1)| < ǫ1.

In this way, we have a uniform tolerance for continuity δ(η)/2 that can be used for
any point ξ1 ∈ Bδ(η)/2(p− η). Notice in particular that if η1 ∈ Bδ(η)/2(p− η), then

|f(x−η1)−f(p−η1)| < ǫ1 whenever |x−p| = |x−η1−(p−η1)| <
δ(η)

2
. (23)

This is because

|x−η1−(p−η)| ≤ |x−p|+|η1−η| < δ(η) and |p−η1−(p−η)| = |η1−η| < δ(η).

Now, notice that every point η1 ∈ Rn falls into some ball Bδ(η)/2(p − η) for some
η ∈ Rn. Thus (23) always holds, but notice this still does not give us a uniform
tolerance for |x− p|.
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In order to illustrate what I am saying here another way and change the notation
around a bit, imagine we had finitely many points η1, η2, . . . , ηk ∈ Rn and each one
has associated with it a tolerance δ(ηj) according to which

|ξ − (p− ηj)| < δ(ηj) implies |f(ξ)− f(p− ηj)| <
ǫ

2
.

Consider any η with

η ∈
k
⋃

j=1

Bδ(ηj)

where δ is the fixed positive tolerance given by

δ = min

{

δ(ηk)

2
,
δ(ηk)

2
, . . . ,

δ(ηk)

2
,

}

.

The key here is that because there are only finitely many points and consequently
finitely many positive numbers δ(ηj)/2 we still get a positive number when we
take the minimum. Now consider

|f(x− η)− f(p− η)|.

Since

η ∈
k
⋃

j=1

Bδ(ηj)

there is some particular j with

η ∈ Bδ(ηj) ⊂ Bδ(ηj )/2(ηj).

Also, if |x− p| < δ, then

|x− η − (p− ηj)| ≤ |x− p|+ |η − ηj | < δ(ηj).

Thus,

|f(x− η)− f(p− η)| ≤ |f(x− η)− f(p− ηj)|+ |f(p− η)− f(p− ηj)| < ǫ1.

We conclude

∫

η∈U

Φ(η)|f(x− η)− f(p− η)| ≤ ǫ1

∫

η∈U

Φ(η) =

∫

η∈U
Φ(η)

1 +
∫

η∈BM (p)
Φ(η)

ǫ (24)
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where

U =

k
⋃

j=1

Bδ(ηj).

This looks very promising, but there are still a few pesky details that need to be
ironed out.

Notice first of all that if we could somehow include enough points ηj so that

BM(p) ⊂ U =

k
⋃

j=1

Bδ(ηj , )

then we could start with the estimate in (7) and conclude

|u(x)− u(p)| ≤
∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)|

≤
∫

η∈BM (p)

Φ(η)ǫ1

=

∫

η∈BM (p)
Φ(η)

1 +
∫

η∈BM (p)
Φ(η)

ǫ

< ǫ.

In view of this calculation, consider the viability of the following proposition:

There are finitely many points η1, η2, . . . , ηk for which

BM (p) ⊂ U =

k
⋃

j=1

Bδ(ηj). (25)

Recall that for each ξ ∈ Rn there is some δ(ξ) for which

|x− p| < δ(ξ) implies |f(x− ξ)− f(p− ξ)| < ǫ1
2
.

This is a consequence of the continuity of f at the point p− ξ. We can also observe
that if we use infinitely many balls Bδ(ξ)/2(ξ), then we can have

BM(p) ⊂ V =
⋃

ξ∈BM (p)

Bδ(ξ)/2(ξ).
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The problem, of course, is that we still do not have uniformity over the radii of the
balls in the union. There are infinitely many points ξ ∈ BM(p), and it is very likely
that

min
ξ∈BM (p)

δ(ξ)

2
(26)

does not exist. The numbers δ(ξ)/2 are each positive, but they may be numbers
that get arbitrarily small so that the greatest lower bound of the set

{

δ(ξ)

2

}

ξ∈BM (p)

of positive numbers is 0. In this case, there is no single ξmin ∈ BM(p) for which
δ(ξmin) = 0. When we write a minimum as in (26) this is what we mean, so we have
no reason to believe the least upper bound is achieved, and this is what I mean by
saying the minimum may not exist.

We can still consider the greatest lower bound of this set of positive numbers and
write for example

a = g.l.b.

{

δ(ξ)

2

}

ξ∈BM (p)

.

If this number is positive, then we would probably be in pretty good shape. Inciden-
tally, the more common notation for the greatest lower bound in situations like this
is

a = inf

{

δ(ξ)

2

}

ξ∈BM (p)

,

and the number a (the greatest lower bound), which as far as we know is zero, is
called the infemum of the set. Please note the general principle(s): The infemum of
a finite collection of numbers is always the minimum of those numbers. The infemum
of any set of real numbers always exists. If the set A ⊂ R is bounded below in the
sense that there is some number a with a ≤ x for every x ∈ A, then the infemum inf A
is the greatest lower bound which is always well-defined and unique in this case. If
on the other hand the set A ⊂ R is not bounded below, then inf A is still well-defined
as an extended real number, and we write inf A = −∞. In our case with

A =

{

δ(ξ)

2

}

ξ∈BM (p)

we know the set is bounded below by zero, so we know inf A ≥ 0.
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Returning to the proposition associated with (25) let us contemplate the possibility
of throwing some of the points ξ ∈ BM(p) away. The set

{Bδ(ξ)/2(ξ)}ξ∈A

is an example of an open cover of A, that is a collection of open sets C for which

A ⊂
⋃

U∈C

U.

As mentioned in the appendix, there is a special name for sets having the property that
every open cover may be reduced to a finite subcover. These sets are called compact
sets. In R

n the compact sets are characterized by being closed and bounded. This
means, in particular, that every closed and bounded set in Rn is compact. An outline
of the proof of this fact is given at the end of Appendix C below.

Let us start again at the beginning and try to go through the details of successfully
estimating

|u(x)− u(p)| ≤
∫

η∈Rn

Φ(η)|f(x− η)− f(p− η)|.

As usual, we let ǫ > 0 be a given positive tolerance.
We have a positive number M so that f(x−η) = f(p−η) = 0 whenever |η−p| ≥

M and |x− p| < 1. See Exercise 2. Thus we write
∫

η∈Rn

Φ(η)|f(x− η)− f(p− η)| =
∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)|.

For each η in the compact set BM(p) there is some δ(η) > 0 for which

|f(ξ)− f(p− η)| < ǫ

2
(

1 +
∫

BM (p)
Φ
) whenever |ξ − (p− η)| < δ(η). (27)

Therefore {Bδ(η)/2(η)}η∈BM (p) is an open cover of the compact set BM(p). Therefore,
there exist finitely many points

η1, η2, . . . , ηk ∈ BM(p)

for which

BM(p) ⊂
k
⋃

j=1

Bδ(ηj )/2(ηj).
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Consider

δ = min

{

1,
δ(η1)

2
,
δ(η2)

2
, . . . ,

δ(ηk)

2

}

. (28)

This is a positive number. The number a = 1 is included to allow application of
Exercise 2 from which we obtain the important ball BM(p). Now if we take any
η ∈ BM(p), there is some point ηj and some open ball Bδ(ηj )/2(ηj) so that

η ∈ Bδ(ηj )/2(ηj).

Let us assume also that |x− p| < δ with δ given in (28). On the face of it, this has
nothing to do with η, but remember if we write

|x− p| = |x− η − (p− η)|

then we have

|x− η − (p− η)| < δ(ηj)

2
.

This gives

|x− η − (p− ηj)| ≤ |x− η − (p− η)|+ |p− η − (p− ηj)| < δ(ηj).

Then by continuity taking ξ = x− η and ξ = p− η in we have

|f(x−η)−f(p−η)| ≤ |f(x−η)−f(p−ηj)|+ |f(p−η)−f(p−ηj)| <
ǫ

1 +
∫

BM (p)
Φ
.

This is an estimate we can use uniformly in application to the integrand in Φ ∗ f : If
|x− p| < δ, then

|u(x)− u(p)| ≤
∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)|

≤ ǫ

1 +
∫

BM (p)
Φ

∫

η∈BM (p)

Φ(η)

< ǫ.

So showing continuity of Φ ∗ f when f ∈ C0
c (R

n) and Φ is the fundamental solution
is a simple as that!

Actually, I’m being a little sarcastic. I have drawn out many of the complicated
details in the discussion above to illustrate the subtle and difficult aspects of this
assertion. There is a way to get this assertion more simply, and it is perhaps worth
describing this phrasing. It starts with a definition:
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Definition 1 A function g ∈ C0(A) where A is any subset of Rn is said to be
uniformly continuous on A if for any ǫ > 0, there exists some δ > 0 for which

|g(x)− g(p)| < ǫ whenever |x− q| < δ.

Here it is understood of course that the points x and p satisfy x,p ∈ A.

Notice the difference between the definition of uniform continuity and what it means
for g to be continuous at p ∈ A.

With this definition one can state a nice theorem:

Theorem 3 If K is compact and g ∈ C0(K), then g is uniformly continuous on K.

The essential elements of the proof of this theorem are contained in the discussion
above.

To apply the theorem to the continuity of u = Φ ∗ f at p ∈ Rn where Φ is the
fundamental solution of Laplace’s equation, n ≥ 3 and f ∈ C0

c (R
n), let ǫ > 0 and

observe that the restriction of f to K is uniformly continuous on the compact set

K = U where U = BM+1(p).

Therefore, there exists some δ > 0 for which
{

ξ1, ξ2 ∈ K,
|ξ1 − ξ2| < δ

implies |f(ξ1)− f(ξ2)| <
ǫ

1 +
∫

K
Φ
.

We may also assume δ < 1 and recall the condition

|x− p| < 1 implies f(x− η) = f(p− η) = 0 for η ∈ BM(p)

from Exercise 2.
Now, if |x− p| < δ, then for any η ∈ BM(p) we have

|x− η| ≤ |x− p|+ |p− η| < M + 1,

|p− η| < M,

and
|x− η − (p− η)| ≤ |x− p| < δ.

Therefore, for η ∈ BM(p)

|f(x− η)− f(p− η)| < ǫ

1 +
∫

K
Φ
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and

|Φ ∗ f(x)− Φ ∗ f(p)| ≤
∫

η∈BM (p)

Φ(η)|f(x− η)− f(p− η)|

≤ ǫ

1 +
∫

K
Φ

∫

η∈BM (p)

Φ(η)

< ǫ.

The function Φ ∗ f is continuous at p.

B Integration

The integration used above may be somewhat unfamiliar both in concept and nota-
tion. The basic concept is really just a natural generalization of the integration you
learned about in calculus. If you’re really honest, you might call this the integration
you probably didn’t really understand when you took calculus. But don’t worry, you
have an opportunity to understand it now.

Integration starts with a set and a function. Let’s call the set I. The function
should, at least under most circumsaances, be real valued:

f : I → R.

We often use the symbol I to denote an interval, but that is not the case here, though
certainly an interval will work, and you should keep that example in mind. As in most
cases, it is required that the set have some structure. In this case, let us describe the
structure required for the set I by saying we want I to be a domain of integration.
I could go through an axiomatic description of what it means to be a domain of
integration, but I will postpone that discussion in detail and just give some informal
description of certain properties we need the set I to possess and give some examples.

Informally, the basic property required of a domain of integration is that it can
be “cut up” into finitely many “pieces,” these pieces need to (be able to) get small
in two ways. We call the pieces P = {I1, I2, . . . , Ik} a partition of the domain of
integration I, and it is roughly required that

I = ∪k
j=1Ij and Ij ∩ Iℓ = φ for j 6= ℓ. (29)

One way the partition pieces need to be able to get small is in diameter. In particular,
we call the number

max{diam(I1), diam(I2), . . . , diam(Ik)}
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the “norm” of the partitition and write

‖P‖ = max{diam(I1), diam(I2), . . . , diam(Ik)}.
The other way, is somewhat more central to the overall process of integration. This is
called measure. It is very important to understand in some way that one integrates
with respect to a measure. You know many examples of measures, but you may very
well have never considered a measure as a mathematical object in its own right. One
example is length or length measure. If our domain of integration happens to be
an interval, then it is very likely we will want to integrate with respect to length
measure. In the elementary version of integration in calculus, this use of length
measure is tacitly indicated by tacking the differential symbol “dx” onto the back
of the integral notation. In any case, a measure is a function defined on subsets of
the domain of integration. For simplicity, let us assume it is possible to measure all
subsets of I. The collection of all subsets of I is called the power set of I and is
denoted by ℘(I). This gives the domain of the measure

µ : ℘(I) → [0,∞).

Thus, for each subset A of I, µ(A) is the measure of A. If we can understand the
length of a subset A of an interval, say R, then the length measure might be denoted
by length(A). It is a curious fact that it is not possible to understand the length
measure of every subset of an interval in the real line R, but this is a disturbing detail
we will set aside for the moment.

In summary, we have a domain of integration I and two functions

diam : ℘(I) → [0,∞) and µ : ℘(I) → [0,∞)

which we can think of as defined on all subsets of I called diameter and measure.
Describing all the precise properties and limitations of these functions and their in-
teraction with partition pieces is what is necessary to give an axiomatic discussion
of domains of integration. Even more informally, you can simply think of a domain
of integration as a set upon which you can integrate a real valued function
f : I → R.

Any time you have a domain of integration I and a partition P = {Ij}kj=1, you
can choose a point x∗j in each partition piece Ij , assuming the piece is not empty and
has at least one point in it—which I imagine it is reasonable for us to assume—and
form a Riemann sum

k
∑

j=1

f(x∗j ) µ(Ij).

35



The points x∗1, x
∗
2, . . . , x

∗
k are called evaluation points. Thus, we multiply the mea-

sure of a partition piece µ(Ij) times the “height” f(x∗j ) determined by some point in
the piece, and add up the results. Please compare this sum to the Reimann sum

k−1
∑

j=0

f(xj) (xj+1 − xj) =

k−1
∑

j=0

f(xj) length(xj , xj+1)

from calculus I where f : (a, b) → R and the partition is determined by

a = x0 < x1 < · · · < xk = b.

Here the measure of an interval is its length (and the diameter also happens to be
the same as the measure, but we haven’t explicitly brought diameter into the picture
yet). Also, the numbering is a little bit different.

With Riemann sums in hand, we are ready to try to integrate...at least in theory.
We say a number L is the integral of f over the domain of integration I and write

L =

∫

I

f

if

L = lim
‖P‖→0

k
∑

j=1

f(x∗j ) µ(Ij).

This is a touch of a complicated construction, but let me try to put into words some
of what is going on (and you may want to try to understand and internalize if you
want to understand integration). For any ǫ > 0, there is some δ > 0 so that given

1. any partition P = {Ij}kj=1 with ‖P‖ < δ and

2. any evaluation points x∗j ∈ Ij for j = 1, 2, . . . , k

there holds
∣

∣

∣

∣

∣

k
∑

j=1

f(x∗j) µ(Ij) − L

∣

∣

∣

∣

∣

< ǫ.

Notice that condition 1 is where the diameter of the partition pieces comes in.
From some point of view, the kind of integration I have described above is pretty

useful and necessary to understand in much of the analysis of physical problems. We
can see that more when we get into, for example, the derivation of the heat equation.

36



Of course, there is the whole matter of calculating values of integrals, and
the whole concept of what the integral actually is as described above is often not
immediately useful for that. Going in that direction, one usually wants to reduce
everything, in some way or another, back to some integral or integrals over an interval
of the kind you learned about in Calculus I. There definitely are some ways in which
the basic understanding above can be pretty useful. Let’s start with some simple
examples.

Say you want to integrate on a sphere ∂Br(p) ⊂ R
n, and you want to change

variables to integrate instead on a unit sphere. This activity assumes there is a real
valued function f : ∂Br(p) → R defined on the sphere. Thus, we start with the
integral

∫

∂Br(p)

f or

∫

x∈∂Br(p)

f(x)

and we consider the map/change of variables ψ : Sn−1 → ∂Br(p) ⊂ Rn by

ψ(x) = p+ rx. (30)

The j-th entry of ψ is
ψj = pj + rxj . (31)

At this point, we have to be a little careful. Notice carefully the domain (and
codomain) of the mapping ψ. Looking at the formula (30) one sees another change
of variables on a different domain, namely Ψ : Rn → Rn by the same formula. The
components are the same for this “larger” map, and one can compute a traditional
total derivative. Specifically,

∂ψj

∂xk
= rδjk =

{

r, j = k
0, j 6= k

and the total derivative is given by

DΨ =

(

∂ψj

∂xk

)

=











r 0 · · · 0
0 r 0
...

. . .

0 · · · r











.

The Jacobian scaling factor for Ψ : Rn → R
n is given by the absolute value of the

determinant of this total derivative matrix and has value J = rn. But this is not
the correct Jacobian scaling factor for the change of variables between hypersurfaces.
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Intuitively, one can say simply that one of the dimensions in the dilation given by
Ψ : Rn → Rn “doesn’t count” when one restricts to the hypersurface Sn−1. Similarly,
one may simply “see” intuitively that dilation of a hypersphere of dimension n−1 by
a factor r imposes an (n− 1) dimensional measure scaling of rn−1. These suggestions
do lead to the correct value J = rn−1, but it would be more useful to have a specific
formula of more general applicability. Say we had a change of variables ψ : T → S
where S and T are two general hypersurfaces, and we want to find

∫

S

f =

∫

T

f ◦ ψ J. (32)

What is the Jacobian scaling factor in this case?
In order to describe how to find a formula that applies to such a mapping of

hypersurfaces, it is perhaps helpful to consider two other special cases. One has
already been mentioned: If ψ : Ω → U is a mapping of full dimension open subsets
Ω and U in Rn, then the associated n-dimensional measure scaling is

J = | detDψ|. (33)

If ψ : Ω → Rm where Ω ⊂ Rn and n < m, then Dψ is an m× n matrix which is not
square, so certainly the formula (33) doesn’t make sense. The correct formula in this
case is

J =
√

det(DψT Dψ).

Notice that DψT Dψ is an n× n matrix. This matrix is also symmetric and positive
definite. As a consequence det(DψT Dψ) > 0. This second formula is typically what
one uses for integration on a (hyper)surface. Say, S ⊂ Rm is parameterized by a
mapping X : U → Rm with U ⊂ Rn, then

∫

S

f =

∫

U

f ◦X
√

det(DXT DX).

Now, returning to the situation involving ψ : T → S, say we have S ⊂ Rm is
parametrized by X : U → Rm and T ⊂ Rn is parameterized by Y : V → Rn with U
and V both open subsets of Rℓ so that S and T are both ℓ dimensional submanifolds3

of their respective ambient spaces. Then noting that S = X(U) and T = Y (V ), the
scaling factor from U to S is

√

det(DXT DX) (34)

3The special case of hypersurfaces here would be when we have m = n and ℓ = n− 1.
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and the scaling factor from V to T is
√

det(DY T DY ).

Letting J denote the scaling factor from T to S determined by ψ, we should not be
surprised to see the scaling factor associated with the compositionX−1◦ψ◦Y : V → U
is given by

√

det(DY T DY )
√

det(DXT DX)
J.

This composition however is a mapping of full dimension open subsets of Rℓ. Thus,
we have

√

det(DY T DY )
√

det(DXT DX)
J = detD(X−1 ◦ ψ ◦ Y )

or

J =

√

det(DXT DX)
√

det(DY T DY )
detD(X−1 ◦ ψ ◦ Y ). (35)

So this is a formula which can be used in (32) and adapted to obtain
∫

q∈∂Br(p)

f(q) =

∫

x∈Sn−1

f(p+ rx) J

=

∫

x∈Sn−1

f(p+ rx) rn−1

= rn−1

∫

x∈Sn−1

f(p+ rx).

To see this, let X : U → Rn parameterize ∂Br(p). The reason (34) works to give the
scaling factor associated with this map is that if one takes a small cube Cǫ of side
length ǫ centered at a point u ∈ U , then the (n− 1) dimensional measure of Cǫ is

µn−1(Cǫ) = ǫn−1

and the measure of the image X(Cǫ) is

Hn−1(X(Cǫ)) ≈ ǫn
√

det(DX(u)T DX(u)).

Note that µn−1 is a full-dimension measure in U ⊂ R
n−1, and Hn−1 is (n− 1) dimen-

sional Hausdorff measure in Rn. Also, the formula

ǫn
√

det(DX(u)T DX(u))
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gives precisely the measure of dXu(Cǫ) where dXu : Rn−1 → Rn is the differential map
at u which is a linear map with matrix having column vectors dXu(ej) = DX(u)ej
for j = 1, 2, . . . , n− 1, and

ǫn
√

det(DX(u)T DX(u))

is the volume of the parallelopiped spanned by the vectors

{ǫDX(u)e1 = dXu(ǫe1), ǫDX(u)e2 = dXu(ǫe2), . . . , ǫDX(u)en−1 = dXu(ǫen−1).

More precisely,

lim
ǫց0

ǫn
√

det(DX(u)T DX(u))

Hn−1(X(Cǫ))
= 1.

One last point before we make the crucial observation is perhaps worth making: When
we say X : U → Rn parameterizes ∂Br(p), we can’t expect to parameterize the entire
hypersurface. Nevertheless, we can parameterize a neighborhood around a particular
point X(u) ∈ Rn, and this is good enough to determine the Jacobian scaling factor
for integration on S = ∂Br(p).

In this case, we do not need to know precisely the scaling for X , but simply
that such a scaling is determined. Once we have X , we can find a parameterization
Y : U → Sn−1 for Sn−1 near the corresponding point ψ−1 ◦X(u). Specifically,

Y =
1

r
(X − p).

This is just a composition of the affine map A : Rn → R
n by A(x) = (x − p)/r and

the parameterization X . If we want to know the scaling factor for Y , we can look at
the vectors

dYu(e1), dYu(e2), . . . , dYu(en−1).

These vectors are
1

r
dXu(e1),

1

r
dXu(e2), . . . ,

1

r
dXu(en−1),

and the volume of the parallelopiped they span is clearly

1

rn−1

√

det(DX(u)T DX(u)).

We conclude
√

det(DX(u)T DX(u)) = rn−1
√

det(DY (u)T DY (u)).
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This puts us in a position to use formula (35) which gives

J = rn−1 detD(X−1 ◦ ψ ◦ Y ).

Remember that ψ was a map from S1 to ∂Br(p) given by ψ(x) = p+ rx. Also, ψ was
the restriction of the map Ψ : Rn → Rn given by the same formula. We are interested
here in the map

X−1 ◦ ψ ◦ Y : U → U.

Since Y = A ◦X and ψ ◦ A is the identity, we can write

X−1 ◦ ψ ◦ Y = X−1 ◦ ψ ◦ A ◦X = X−1 ◦X = idU .

The identity on U is of course just the restriction of the identity (linear) map on Rn−1

and the associated scaling factor is

detD(X−1 ◦ ψ ◦ Y ) ≡ 1.

At length, we have established J ≡ rn−1 with a formula though we have never written
down anything explicity for the parameterizations X or Y of the spheres. This could
be done, but we didn’t do it, and we didn’t really need to do it.

B.1 n volume of the n ball

As another kind of example, let us consider the integral with respect to the full-
dimension measure over B1(0) of the constant function f ≡ 1, that is, the n dimen-
sional volume of the ball B1(0) ⊂ Rn. I mentioned earlier the use of Fubini’s theorem.
A generalized version of Fubini’s theorem gives

∫

B1(0)

1 =

∫ 1

0

(
∫

∂Br(0)

1

)

dr =

∫ 1

0

(
∫

∂B1(0)

rn−1

)

dr.

Notice the Jacobian scaling factor rn−1 associated with the change of variables ψ :
S1 → ∂Br(0) by ψ(x) = rx. Continuing we have

∫

B1(0)

1 =

∫ 1

0

rn−1

(
∫

S1

1

)

dr.

remembering our enigmatic name nωn for the (n−1) dimensional measure of the unit
sphere, we can write

∫

B1(0)

1 = nωn

∫ 1

0

rn−1 dr = ωn.
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This makes the name much less enigmatic. We can start instead with the definition

ωn =

∫

B1(0)

1

as the n dimensional measure of the unit ball B1(0) ⊂ Rn and then calculate the
(n− 1) dimensional measure

Hn−1(Sn−1)

of the (n− 1) sphere ∂B1(0) = Sn−1 to find the formula

Hn−1(Sn−1) =

∫

Sn−1

1 = nωn.

C Open sets, closed sets, closure and compactness

A metric space is a set X accompanied by a distance function, that is a function
d : X ×X → [0,∞) satisfying

M1 (symmetric) d(x, y) = d(y, x) for all x, y ∈ X .

M2 (positive definite) d(x, x) = 0 for all x ∈ X and if d(x, y) = 0, then x = y.

M3 (triangle inequality) For all x, y, z ∈ X , there holds

d(x, y) ≤ d(x, z) + d(z, y).

C.1 Examples and abstract structure

The real numbers R is a metric space with d(x, y) = |x − y| (the absolute value of
the difference). The real numbers R admits a great deal of additional “structure.”
Algebraically, R is a group under addition, a ring and a field under (addition and)
multiplication, and a vector space under multiplication and addition. I will not
define all these algebraic terms here. You are should be familiar with all of these
structures, though you may not know the names. The properties involved in formally
defining the abstract structures listed here are known to you as “arithmetic.”

The real numbers also have analytic structure. Analytically R is Archimedian
as a field, ordered, Dedekind complete, and complete or Cauchy complete
as a metric space and has the Heine-Borel property. You probably know most of
these properties, though you may not know the names or the technical details. You
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may not know very well about metric or Cauchy completeness, and there is another
analytic property we may discuss a bit further later: R is a measure space with a
specified collection M of subsets called the measurable sets in which the measure of
an interval with endpoints a and b is its length |b− a|.

Returning to metric space structure, the set

R
n = {x = (x1, x2, . . . , xn) : xj ∈ R}

is a metric space with

d(x,y) = |x− y| =

√

√

√

√

n
∑

j=1

(xj − yj)2.

Any subset of a metric space is a metric space with the restriction metric.

C.2 Open sets in a metric space

Given r > 0 and a point x in a metric space X one may define the special set called
a ball of radius r and center x by

Br(x) = {ξ ∈ X : d(ξ, x) < r}.

A subset U ⊂ X in a metric space X is open if for each point x ∈ U , there is
some r > 0 so that Br(x) ⊂ U .

A subset A ⊂ X in a metric space X is closed if the complement Ac = X\A is
open.

Exercise 4 Prove the following:

(a) The ball Br(x) is open.

(b) The entire metric space X is open.

(c) The empty set is open.

(d) Any union of open sets is open: Let {Uα}α∈Γ where Γ is an indexing set by a
collection of open sets in X , then

⋃

α∈Γ

Uα = {x ∈ X : x ∈ Uα for some α ∈ Γ}

is open.
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(e) A finite intersection of open sets is open: If k ∈ N and U1, U2, . . . , Uk are open
sets, then

k
⋂

j=1

Uj = {x ∈ X : x ∈ Uj for every j = 1, 2, . . . , k

is open

(f) The entire metrix space X is closed.

(g) The empty set is closed.

(h) Any intersection of closed sets is closed.

(i) A finite union of closed sets is closed.

(j) Given x ∈ X and r > 0 the set

{ξ ∈ X : d(ξ, x) ≤ r} (36)

is closed.

Note: The set Br(x) is often called an open ball, but one does not need to know
about open sets to define such a set. This is important because we used this special
kind of set to define what it means to be open. The set defined in (36) is often called
a closed ball. It is also the closure of the open ball as we will discuss presently.

Exercise 5 (counterexamples)

(a) Find a collection of open subsets of R with intersection that is not open.

(b) Find a collection of closed subsets of R with union that is not closed.

C.3 Closure

We have already defined what it means for a set to be closed in a metric space X .
Given any set A ⊂ X , there is a unique smallest closed subset of X containing A.
This set is

⋂

C closed
C⊃A

C,

that is, the intersection of all closed sets containing A. This set is called the closure
of A and is denoted by A.

Exercise 6 Show
Br(x) = {ξ ∈ X : d(ξ, x) ≤ r}.
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C.4 Compact sets

A collection {Uα}α∈Γ of open sets is said to be an open cover of a set A if

A ⊂
⋃

α∈Γ

Uα.

A compact set is a set K with the following property: Given any open cover {Uα}α∈Γ
of K, there exist finitely many sets

Uα1
, Uα2

, . . . , Uαk

in the given open cover for which

K ⊂
k
⋃

j=1

Uαj
.

That is, there may be any (infinite) number of sets in the original open cover, but
only finitely many of them are required to cover the set K.

In the set of real numbers R and in the Euclidean spaces Rn the compact sets are
characterized by being closed and bounded.

A set A in a metric space X is bounded if there is some R > 0 and some x ∈ X
for which

A ⊂ BR(x).

Exercise 7 Show that every compact set in a metric space is closed and bounded.

It is not true in general that a closed and bounded set in a metric space must be
compact.

Exercise 8 Give an example of a metric space and a closed and bounded subset of
that metric space which is not compact.

A space in which the compact sets are characterized by being closed and bounded
is said to have the Heine-Borel property. The assertion that every closed and
bounded subset of Rn is compact is called the Heine-Borel theorem.
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C.5 Metric completeness

A sequence {xj}∞j=1 is said to be Cauchy or to be a Cauchy sequence if for any
ǫ > 0, there is some N > 0 such that

j, k > N implies d(xj , xk) < ǫ.

Note that this definition says nothing about the existence of a limit for the sequence.

Exercise 9 Show that every sequence which converges to a limit L ∈ X in the sense
that for any ǫ > 0 there is some N > 0 such that

j > N implies d(xj , L) < ǫ

is a Cauchy sequence.

Exercise 10 Give an example of a metric space X and a sequence {xj}∞j=1 ⊂ X for
which the sequence is Cauchy but does not converge to an element L ∈ X .

A space in which every Cauchy sequence converges is said to be (metrically)
complete. The space Rn is complete.

C.6 The Heine-Borel property for Rn

Here is a sketch of the proof that a closed and bounded subset of Rn is compact. One
can first assert that some specific closed cubes4 is compact. Consider for R > 0 the
closed cube

C = [−R,R]n

=

n
∏

j=1

[−R,R]

= [−R,R]× [−R,R]× · · · × [−R,R]
= {x = (x1, x2, . . . , xj) : |xj | < R, j = 1, 2, . . . , n}.

To see such a set is compact we argue by contradiction:

4The same argument given here can be adapated to any closed rectangular solid given as the

cross product of any closed intervals. I’ve chosen this particular cube primarily so the notation is a

bit simpler, and the argument is a bit easier to type.
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Assume there is an open cover {Uα}α∈Γ of the cube C with the property
that

C 6⊂
⋃

α∈F

Uα whenever F is a finite subset of Γ. (37)

Another way to say the condition of “not a subset” in (37) is

C

∖

⋃

α∈F

Uα 6= φ.

Note that the closed cube C can be written as the union of finitely many closed
cubes with all sidelengths half those of the original cube. More precisely denoting
by I = [−R, 0] the first half of [−R,R] and by J = [0, R] the second half, every
x = (x1, x2, . . . , xn) ∈ C satisfies xj ∈ I or xj ∈ J for each j = 1, 2, . . . , n; letting

Kj =

{

I, if xj ∈ I
J, if xj ∈ J

we have

x ∈
n
∏

j=1

Kj = K1 ×K2 × · · · ×Kn

where eachKj is a closed interval half as long as [−R,R]. There are finitely many such
smaller cubes. In fact, since there are two choices for each factor interval Kj, there
are precisely 2n such smaller cubes. Denoting the smaller cubes by C1, C2, . . . , C2n

we have for each j = 1, 2, . . . , 2n

Ci ⊂ C ⊂
⋃

α∈Γ

Uα.

That is, {Uα}α∈Γ is an open cover of each of the smaller cubes.
If each Cj for j = 1, 2, . . . , 2n admits a finite subcover Fj ⊂ {Uα}α∈Γ, then we can

union these finite subcovers
F = ∪2n

j=1Fj

and get a finite cover of the original cube C contradicting (37). This means at least
one of the smaller cubes has the same property (37) we started with for the bigger
cube C. Note that the cube gets smaller here, but the open cover is the same open
cover. Repeating this process we find that for this particular open cover {Uα}α∈Γ
there exists a sequence of cubes

C1, C2, C3, . . .
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satisfying the following four properties:

(i) The cubes are nested:
C1 ⊃ C2 ⊃ C3 ⊃ · · ·

(ii) The cubes are small in the sense that if x,y ∈ Cm, then

|y− x| < R
√
n

2m−1
.

This condition has a name. We say the diameter of the cube Cm is smaller
than or equal to R

√
n/2m−1.

(iii) Each cube Cm has the fixed collection {Uα}α∈Γ as an open cover:

Cm ⊂
⋃

α∈Γ

Uα,

but

(iv) Each cube Cm does not admit a finite subcover from {Uα}α∈Γ:

Cm\
⋃

α∈F

Uα 6= φ whenever F is a finite subset of Γ. (38)

At this point, we need a lemma:

Lemma 1 If A1, A2, A3, . . . is a sequence of nonempty nested closed sets in Rn sat-
isfying

A1 ⊃ A2 ⊃ A3 ⊃ · · ·
and

lim
m→∞

diam(Am) = 0

then the following hold:

(a) Any sequence of points {xm}∞m=1 with xm ∈ Am is a Cauchy sequence.

(b) By completeness, any sequence {xm}∞m=1 as in (a) has a limit

p = lim
m→∞

xm.
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(c) The limit p is the same in each case independent of the particular sequence, and

(d) The intersection of the sets A1, A2, A3, . . . is nonempty and is given by

∞
⋂

m=1

Aj = {p}.

Applying the lemma to the sequence of shrinking cubes {Cm}∞m=1, we conclude

∞
⋂

m=1

Cm = {p}

for some unique point p ∈ C. There exists some set U∗ ∈ {Uα}α∈Γ with p ∈ U∗, and
there is some r > 0 for which

Br(p) ⊂ U∗.

It follows that for m large enough the entire cube Cm with diameter smaller than
or equal to R

√
n/2m−1 and containing p lies entirely in Br(p) ⊂ U∗. This is a

contradiction because no finite subcover of {Uα}α∈Γ covers Cm, and yet we have
shown Cm lies in a single open set U∗ ∈ {Uα}α∈Γ.

We conclude the closed cube C = [−R,R]n is compact. Returning to the original
question about a closed and bounded set A ⊂ Rn, we can take R > 0 large enough
so that A ⊂ [−R,R] and apply the following result:

Lemma 2 IfK is a compact set and A is a closed set with A ⊂ K, then A is compact.

Since A ⊂ [−R,R]n and A is closed, it follows that A must be compact.

D Divergence

The divergence is an operator on vector fields v ∈ C1(I → Rn) where I is a domain
of integration with some particular properties. One simple example of a domain
of integration on which the divergence is well-defined is given by taking I to be a
bounded open subset Ω of Rn. Then

div : C1(Ω → R
n) → C0(Ω)

assigns a continuous real valued function div v ∈ C0(Ω) to the vector field v. I could
start with a familiar formula for the divergence in rectangular coordinates in this
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special case of I = Ω ⊂ Rn, but that would have rather limited application. Instead,
I will start with a general principle upon which the concept of divergence is based,
and then we can evaluate the definition in various special cases to get coordinate
expressions.

In all cases. the domain of integration I should allow the consideration of vector
fields v : I → V where V is some suitable vector space containing all possible values
of the vector field. For example, if I = S is a surface in Rn, then Rn provides a
suitable codomain for a vector field on S. Notice that I have been a little cavalier
about the dimension of S compared to the dimension n here. The usual assumption
would be that S is a two dimensional surface and n ≥ 3 or at least n ≥ 2. However
one could also assume, and sometimes this is what some authors might mean, S is a
hyper surface in Rn so the dimension of S is n − 1. In fact, we can take as domain
of integration many subminifolds M of arbitrary dimension m ≤ n in R

n and talk
about vector fields v :M → Rn. The discussion below will apply to all these cases.

The general principle has two parts:

1. The divergence is based on flux integrals, and

2. The value of the divergence divv(p) captures (or attempts to capture) a mea-
sure of the “outward flow” infinitesimally at a point p ∈ I.

Thus, we start with a subdomain of integration J ⊂ I with p ∈ J . We must be
able to make sense of the boundary ∂J within I and along ∂J we need a well-defined
outward unit normal field n : I → V . With this in mind, we want to consider a
“nice enough” domain of integration J so that ∂J is also a domain of integration and
given any v ∈ C0(I → V ) the integral

∫

∂J

〈v,n〉

makes sense.
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