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I want to paint for you a picture of gradient flow in infinite dimensions. In order for you to discern
that picture you will, first of all, need to know what to look for. To prepare our eyes, let us consider
the “players” or components in finite dimensional gradient flow where things are clear—and even in the
simplest of examples.

We are first given a set U ⊂ R
n. In our simplest example we take U = R

2. We postpone any lengthy
discussion of characteristics or properties of the flow domain U , but let us certainly assume U is open.
This means there is enough structure to make sense of open sets. We know one minimal such structure is
that of a metric space, and R

n is certainly a metric space.
Perhaps the next player to consider is the function which drives the flow. In finite dimensions this is a

real valued function u : U → R defined on the flow domain. For our simplest example, we take u : R2 → R

by

u(x) = u(x, y) =
1

4
(x2 + y2) + 1.

At this point we can introduce some subsidiary pictures to illustrate these players in the finite dimensional
case; see Figure 1.

Figure 1: The domain for a gradient flow (left) and the graph of the function which drives the flow with
its gradient.

It should be no surprise that subsidiary pictures like these will not be available, strictly speaking, in
the infinite dimensional case. The illustration of the graph on the right in Figure 1, for example, already
has no comparable version when n = 3. (Try to draw the graph of u : R3 → R by u(x, y, z) = x2+y2+z2.)
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Nevertheless, for what they illustrate these subsidiary pictures are helpful, and one would do well to pay
close attention to them.

Let us give names to the three players introduced so far:

(b) The background (vector) space R
n.

(c) The domain of the flow U ⊂ R
n.

(d) The driving function(al) u : U → R.

Perhaps the next player to introduce is

(e) The equation of the flow:
d

dt
x = −Du(x). (1)

This equation involves two additional players worth note on their own:

(f) The moving point x : I → U .

(g) The gradient field Du : U → R
n.

In our simplest example, the interval I may be taken to be R. For gradient flow in finite dimensions,
the interval I is most often taken to be of the form [0, T ) where T is some right extremity for existence;
see (3) below. In some cases, as in our simplest example, T = ∞. It is also usual to assume the
function x can be extended (uniquely) according to (1) to an interval of the form (−ǫ, ǫ) for some
ǫ > 0, and this may be considered a kind of minimal form for I. In point of fact, the actual value
x(0) for 0 ∈ I is entirely a matter of convention, and the interval of definition for x can always be
shifted to an (open) interval of the form (t0 − ǫ, t0 + ǫ).

The most important thing to note about the moving point x, which moves as specified by the flow
equation (1), is that the domain of x is an interval in R, interpreted as a “time” interval, identifying
x fundamentally as an object from the study of ODEs and, in the finite dimensional case, precisely
the object of study in elementary ODEs, namely a solution of an initial value problem for a system of
ordinary differential equations. In particular, the standard interpretation of x as the parameterization
of a curve in the domain of the flow and having a well-defined tangent velocity vector

x′ =
d

dt
x : I → R

n (2)

applies. Figure 2 supplies some additional subsidiary pictures intended to aid in visualization of the
moving point x. Having recognized x in the gradient flow equation as the solution of an autonomous
ODE, it is natural to introduce

(h) The initial point x0 ∈ U

and recognize U as a phase space for the gradient flow. Thus, we are led to the initial value problem
(IVP)

{

x′ = −Du(x)
x(0) = x0.

(3)

Let us now return to discuss the centrally important component of the gradient flow equation, namely,

(g) The gradient field Du : U → R
n of the driving function.
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Figure 2: The mapping x : I → U and its tangent mapping bx′ : I → R
n.

The central problem, or at least one of the central problems, in defining a gradient flow in infinite dimen-
sions is the identification of the gradient. In finite dimensions we do not have this problem due to
the existence of readily available coordinates. In the finite dimensional case, for example, there are stan-
dard coordinate directions e1, e2, . . . , en in the background space R

n for which the associated directional
derivatives are partial derivatives and

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

. (4)

In our infinite dimensional setting, we will have a kind of directional derivative, but no specific coordinate
directions to use to find a gradient. To highlight this difficulty and emphasize the need for a gradient field
independent of coordinates, let us introduce the notation

gradu : U → R
n

for the gradient field (without coordinates). This designation is used especially to denote a gradient when
coordinates are not specified. The initial contemplation of such a possibility may seem a strange or difficult
(or unnecessary) abstraction to the student of elementary calculus. How else might one think of a gradient
other than (4)? We are about to see, and we are about to see the necessity of such a thing as well.

We have essentially completed out list of active characters participating in gradient flow, but we will
add one more playing a kind of supporting role:

(i) The inequality on directional derivatives:

Dvu(x) ≥ −| gradu(x)| with equality for v = −
gradu(x)

| gradu(x)|
. (5)

Note that the equality condition is degenerate (and not well-defined) when grad u = 0. Indeed one role
played by the inequality is to highlight the hope (and objective) of finding a critical point x∗ ∈ U for
the driving function u, and perhaps even a minimizer as a limit

x∗ = lim
tրT

x(t).
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In the degenerate case gradu = gradu(x0) = 0 we have evidently already found/started at a critical
point. Indeed the ODE (1), as mentioned above, is autonomous and a point x∗ for which Du(x∗) = 0 is,
by definition, an equilibrium point in phase space. Thus, the inequality (5) identifies gradient flow as
specifying a motion/evolution of the moving point x = x(t) in the direction of maximum decrease of the
function(al) u and with speed |x′| = |Du(x)| the magnitude of the gradient.

1 A coordinate free gradient in finite dimensions

The discussion of the inequality (5) above suggests one immediate coordinate free definition of the gradient
of a function u : U → R where U ⊂ R

n. Namely, we can consider the values of the directional derivative
(restricted to the unit sphere/circle ∂B1(0) ⊂ R

n.
Before we discuss briefly the details of this approach to defining the gradient, let us attempt to put

a little more notational difference between the gradient and the directional derivative. It is usual in
calculus to denote the gradient and the directional derivative, as we have done above, by Du and Dvu
respectively. While these notations look very similar, the objects denoted by them are quite different. We
have (ex)changed the notation for the gradient field Du : U → R

n by writing

grad u : U → R
n.

Let us also introduce an alternative (though quite standard) notation for the directional derivative function.
A directional derivative at a point is most naturally thought of as a (linear) function on vectors (or even
unit vectors) in the background space R

n. That is, for each x ∈ U we have a linear functional

dux : Rn → R by dux(v) = Dvu(x).

Hopefully, this notation creates a clear and strong distinction between the gradient vector gradu(x) and
a directional derivative dux(v) at x ∈ U .

Returning to the idea of defining the gradient by maximizing the directional derivative, if there is a
unique unit vector u for which

dux(u) = max
v∈∂B1(0)

|dux(v)|, (6)

then u gives us a good candidate for the gradient direction, and we can define

gradu(x) = |dux(u)|u.

This approach works and is relatively easy in the finite dimensional case. Unfortunately, the minimization
problem (6) can be difficult in infinite dimensions, and we will use a different definition.

Another possible approach in the finite dimensional case, which we will use in the infinite dimensional
case, is to define the gradient to be the unique vector w for which the directional derivative is given by an
inner product in the form

dux(v) = w · v for every v ∈ R
n.

Then we set gradu(x) = w. This does not, in principle, require coordinates. In general writing a linear
functional in terms of an inner product with a fixed vector like this is called Riesz representation. In
the finite dimensional case, we can obtain existence by simply writing down the vector w = Du(x) in
coordinates and using the chain rule. It should be noted that whenever one has a representation like this,
uniqueness and the inequality always hold. Let me briefly explain why. First of all, whenever you have a
fixed vector w ∈ X where X is an inner product space, then L : X → R by

Lx = 〈w, x〉 (7)

defines a linear functional. The
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Morever, this functional defined by (7) determines the vector w uniquely because if

〈w, x〉 = 〈w̃, x〉 for all x ∈ X ,

then by the (bi)linearity of the inner product

〈w − w̃, x〉 = 0.

Now we can take x = w − w̃ to conclude ‖w − w̃‖2 = 0. Thus, w̃ = w because the inner product is also
positive definite.

Such a functional also satisfies a kind of Lipschitz continuity estimate which is called “boundedness”
by the Cauchy-Schwarz inequality:

|Lx| = |〈w, x〉| ≤ ‖w‖ ‖x‖.

In this estimate, think of ‖w‖ as a non-negative constant.
Finally, for the maximizing property, just imagine ‖x‖ = 1. Then

|Lx| ≤ ‖w‖.

But also, if w 6= 0, then v = w/‖w‖ is a unit vector and

Lv = 〈w,w/‖w‖〉 = 〈w,w〉/‖w‖ = ‖w‖2/‖w‖.

Thus, we know the maximizing direction is in the direction w.
In infinite dimensions, one theorem giving existence is called the Riesz representation theorem. In

our situation, we will be able to obtain the representation directly without coordinates.
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2 Infinite Dimensional Gradient Flow

Let us begin by recording the players listed above:

(b) The background (vector) space R
n.

(c) The domain of the flow U ⊂ R
n.

(d) The driving function(al) u : U → R.

(e) The equation of the flow:
d

dt
x = −Du(x).

(f) The moving point x : I → U .

(g) The gradient field Du : U → R
n.

(h) The initial point x0 ∈ U .

(i) The inequality on directional derivatives:

Dvu ≥ −| gradu|

In the infinite dimensional case, we start with the driving function. This will be a Lagrangian integral
functional

F : A → R

defined on an admissible class A. This choice should bring to mind the framework of the calculus of
variations and the objective of finding a minimizer (or extremal) u∗ ∈ A for F . In particular, we can start
to fill in a preliminary version of the list above for the infinite dimensional case:

(a) The background space for admissible functions in A.

(b) The background space for perturbations in V.

(c) The domain of the flow A.

(d) The driving functional F : A → R.

(e) The equation of the flow (?)

(f) The moving function (??)

(g) The gradient field gradF(u) (???)

(h) The initial function u0 ∈ A.

(i) The inequality on directional derivatives:

δFu[φ] ≥ −| gradF|
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Many blanks need to be filled in, and our preliminary players will require some modification as well.
Nevertheless, this is a good start with a solid framework involving a functional F : A → R from the
calculus of variations with a well-defined notion of directional derivative given from the first variation
δF : C∞

c (U) → R.
Perhaps one of the first and easiest topics to address is that of the moving function. It should be

natural to contemplate a parameterized curve of functions u : I → A. If each such function u = u(t) is
a function of several variables x ∈ U ⊂ R

n, then it is also quite natural to introduce the dependence on
x directly into an argument in u and consider U : U × I → R. This brings up certain issues of regularity
with respect to the spatial variables x versus the time variable t, but we will mostly set these aside
for this discussion.

The important idea is that our gradient flow equation in this case will be a PDE of the form

∂U

∂t
= − gradF [u]

where U = U(x, t) and u : U → R on the right is defined by u(x) = U(x, t) for t fixed, so u is a function on
which the gradient can make sense. This is, on the face of it, quite different from the ODE x′ = −Du(x),
but the generalization is rather natural. One big question, of course, is

What is gradF?

As mentioned above, we will get at gradF using an inner product. The choice of this inner product is
not entirely obvious, but it should be an inner product on functions, and this suggests (perhaps) the choice
of L2(U) as the background space for the perturbations V. The space L2(U) consists of those functions
v : U → R which are square integrable:

∫

U

|v|2 < ∞.

On this space

〈v, w〉L2 =

∫

U

vw

defines an inner product. We also have

C∞
c (U) ⊂ V ⊂ L2(U).

With this choice, we can ask the question:

Is there a particular vector w ∈ L2(U) for which δFu[φ] = 〈w, φ〉L2 =

∫

U

wφ ?

We do know a viable candidate.
Recall that for the functional F : A → R by

F [u] =

∫

U

F (x, u,Du)

where

A =

{

u ∈ C1(U) : u∣
∣

∂U

= g

}

we have

δFu[φ] =

∫

U

(

n
∑

j=1

∂F

∂pj

∂φ

∂xj

+
∂F

∂z

)

.
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For u ∈ C2(U) we can obtain the Euler-Lagrange operator

gradF [u] = −
n
∑

j=1

∂

∂xj

(

∂F

∂pj

)

+
∂F

∂z

which, at least nominally, looks like it does what we want. We know that for this operator to make sense
classically, we need some additional regularity, and there is another minor problem as well. We will make
an attempt to smooth these difficulties over below, but we can write down our flow equation at this point.
This is (a big part of) what gradient flow in infinite dimensions looks like:

∂U

∂t
= − gradF [u] =

n
∑

j=1

∂

∂xj

(

∂F

∂pj
(x, U,DU)

)

−
∂F

∂z
(x, U,DU)

where it is understood that

DU =

(

∂U

∂x1
,
∂U

∂x2
, . . . ,

∂U

∂xn

)

.

This is called the spatial gradient. Note there is no partial derivative with respect to t.
In the special case of Dirichlet energy, this gives

Ut = ∆U (the heat equation)

where ∆ is the spatial Laplacian given by

∆U =
n
∑

j=1

∂2U

∂x2
j

.

Thus, the heat equation is not properly variational in our previously discussed sense, but it is (part of) a
gradient flow driven by the Dirichlet energy.

3 More Details

Let us specialize to Dirichlet energy for this discussion.
Recall that functions in our admissible class A have fixed boundary values given by a function g. This

function g may be defined only on ∂U with g : ∂U → R, but it must have enough regularity to allow it
to be the boundary values of a C1 function in A. The main point, however, is that if we are going have
a flow of functions U = U(x, t) with u ∈ A where u : U → R by u(x) = U(x, t) for each fixed t, then we
must have

∂U

∂t
∣

∣

x∈∂U

≡ 0.

If it is the case that u ∈ C2(U), then this means we must also have ∆u = 0 on ∂U . It turns out that gradient
flow (the heat equation) in this case, does allow for this condition, but to make everything classically viable,
it’s easiest to introduce a good deal of regularity.

To this end, let us introduce the smooth admissible class

A∞ =

{

u ∈ C∞(U) : u∣
∣

∂U

= g

}

and the restricted admissible class

A∞
0 =

{

u ∈ C∞(U) : u∣
∣

∂U

= g and ∆u∣
∣

∂U

≡ 0

}

.
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We also impose the following restriction on the boundary values: There exists a function u ∈ C2(U) with

u∣
∣

∂U

= g and ∆u∣
∣

∂U

≡ 0.

With these restrictions, we can fill in our list of players a little more properly and completely (at least
for Dirichlet energy):

(a) The background space for admissible functions in A∞
0 : C∞(U).

(b) The background space for perturbations in V: L2(U).

(c) The domain of the flow A∞
0 .

(d) The driving functional F : A∞
0 → R.

(e) The equation of the flow:
Ut = ∆U on U × [0,∞).

(f) The moving function U : U × [0,∞).

(g) The gradient field gradF [U ] = −∆U .

(h) The initial function u0 ∈ A∞
0 and the boundary function g ∈ C∞(∂U).

(i) The inequality on directional derivatives:

δFu[φ] ≥ −‖ gradF(u)‖L2 = −‖∆u‖L2.

We finish this discussion with the associated initial/boundary value problem corresponding to (3):

{

Ut = ∆U on U × [0,∞),
U∣
∣

U×{0}

= u0, U∣
∣

∂U×[0,∞)

= g.

In practice much much less regularity is required for, say having a well-defined heat flow, than is used
in our discussion above. But if one wants purely classical solutions, probably something like the very
restrictive hypotheses above are necessary (or at least convenient). At least we have illustrated how the
heat equation can arise from a gradient flow in infinite dimensions. Similar considerations are at the
foundation of constructions like mean curvature flow, but very few books even mention this, much less give
a treatment with any details.
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