
Math 6702, Exam 2 Name and section:

1. (linear partial differential operators and Laplace’s equation on a rectangle) Solve the
following boundary value problem for u ∈ C2([0, 1] × [0, 2]):

{

∆u = 0,
u(x, 0) = 0, u(1, y) = sinh π sin πy, u(x, 2) = sinh 6π sin 3πx, u(0, y) = 0.

(1)

Hint: Consider two separate boundary value problems with homogeneous boundary
conditions on three of the four boundary segments of the rectangle. Solve each of
these problems using separation of variables. Then use the linearity of the Laplace
operator.

Solution: Consider
{

∆u1 = 0,
u1(x, 0) = 0, u1(1, y) = sinh π sin πy, u1(x, 2) = 0, u1(0, y) = 0.

(2)

This has solution
u1(x, y) = sinh πx sin πy.

Consider also
{

∆u2 = 0,
u2(x, 0) = 0, u2(1, y) = 0, u2(x, 2) = sinh 6π sin 3πx, u2(0, y) = 0.

(3)

This has solution
u2(x, y) = sin 3πx sinh 3πy.

The solution of the original problem is

u(x, y) = u1(x, y) + u2(x, y) = sinh πx sin πy + sin 3πx sinh 3πy.
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2. (first order linear PDE; method of characteristics) Solve the PDE

xux − yuy + (x2 + y2)u = x2 − y2 on U = {(x, y) ∈ R
2 : x, y > 0}.

“Solve” here means “Find all possible C1 solutions.” Your solution should depend on
an arbitrary function which you will need to introduce. Knowing how to do that is part
of the problem. (This is like if someone says: Solve x′′ = 0. Then you know x = at + b
with two arbitrary constants a and b.)

Hint(s): Consider the characteristic field v = (x,−y) on the first quadrant U . Plot it
with numerical software if necessary. Choose an appropriate non-characteristic curve.

Solution:

The characteristic field points down and to the right in the first quadrant U as
indicated in the figure. Thus, y = x is a natural choice for a non-characteristic
curve. Thus, fixing a point (ξ, ξ) as an initial starting point, we seek a characteristic
curve r = (x, y) satisfying

x′ = x
y′ = −y.

Thus, x = ξet and y = ξe−t. Substituting into the PDE we obtain a first order linear
nonhomogeneous ODE for u = u(x(t), y(t)):

d

dt
u + ξ2(e2t + e−2t) u = ξ2(e2t − e−2t).

This can be written as

d

dt
u + 2ξ2 cosh(2t) u = 2ξ2 sinh(2t).

There is an integrating factor
µ = eξ2 sinh(2t),
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and we get
(µu)′ = 2ξ2µ sinh(2t) = 2ξ2 sinh(2t)eξ2 sinh(2t).

Integrating gives:

eξ2 sinh(2t) u − u0 = 2ξ2

∫ t

0

sinh(2τ)eξ2 sinh(2τ) dτ.

Thus,

u(x(t), y(t)) = e−ξ2 sinh(2t)

{

u0(ξ) + 2ξ2

∫ t

0

sinh(2τ)eξ2 sinh(2τ) dτ

}

where we have specified the value u(ξ, ξ) = u0(ξ) by an arbitrary function u0 ∈
C1(0,∞). It remains to determine ξ (and t) in terms of a point (x, y) ∈ U according
to

x = ξet

y = ξe−t.

Multiplying the equations t is eliminated: ξ2 = xy. Thus, ξ =
√

xy. Dividing the

equations ξ is eliminated: e2t = x/y. Thus, 2t = ln(x/y) and t = ln
√

x/y. It is also
possible to subtract the equations to obtain

2
√

xy sinh t = x − y so that t = sinh−1 1

2

(
√

x

y
−

√

y

x

)

.

In any case,

u(x, y) = e−[xy sinh(ln(x/y))]

{

u0(
√

xy) + 2xy

∫ ln
√

x/y

0

sinh(2τ)exy sinh(2τ) dτ

}

.

This may also be written as

u(x, y) = e−xy(x/y−y/x)/2

{

u0(
√

xy) + 2xy

∫ ln
√

x/y

0

sinh(2τ)exy sinh(2τ) dτ

}

= e(y2−x2)/2

{

u0(
√

xy) + 2xy

∫ ln
√

x/y

0

sinh(2τ)exy sinh(2τ) dτ

}

.
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3. (one dimensional wave equation) Solve the initial value problem for the wave equation:






utt = uxx on R × [0,∞)
u(x, 0) = u0(x)
ut(x, 0) = v0(x)

(4)

where u0 ∈ C2(R) and v0 ∈ C1(R) to obtain d’Alembert’s solution:

u(x, t) =
1

2
[u0(x + t) + u0(x − t)] +

1

2

∫ x+t

x−t

v0(ξ) dξ.

Hint(s): Factor the operator 2u = utt − uxx as either

(ut − ux)t + (ut − ux)x or (ut + ux)t − (ut + ux)x.

Then solve two first order PDEs with appropriate Cauchy conditions. Incidentally, the
initial conditions in (4) are Cauchy conditions for the wave equation.

Solution: As per the hint, let w(x, t) = ut(x, t)−ux(x, t). Then w(x, 0) = ut(x, 0)−
ux(x, 0) = v0(x) − u′

0(x) and
wt + wx = 0.

Along the characteristic curve γ(t) = (ξ + t, t) starting at (ξ, 0), we find

d

dt
w(ξ + t, t) = wx(ξ + t, t) + wt(ξ + t, t) = 0.

Therefore,
w(ξ + t, t) ≡ w(ξ, 0) = v0(ξ) − u′

0(ξ).

Given an arbitrary point (x, y) = (ξ + t, t), we have

w(x, y) = v0(x − y) − u′
0(x − y).

We have solved for w. Applying this approach to the PDE ut − ux = w, we get

d

dt
u(ξ − t, t) = −ux(ξ − t, t) + ut(ξ − t, t) = w(ξ − t, t) = v0(ξ − 2t) − u′

0(ξ − 2t).

Therefore,

u(ξ − t, t) = u(ξ, 0) +

∫ t

0

[v0(ξ − 2τ) − u′
0(ξ − 2τ)] dτ

= u0(ξ) +
1

2
[u0(ξ − 2t) − u0(ξ)] +

∫ t

0

v0(ξ − 2τ)dτ

=
1

2
[u0(ξ − 2t) + u0(ξ)] −

1

2

∫ ξ−2t

ξ

v0(η)dη

=
1

2
[u0(ξ − 2t) + u0(ξ)] +

1

2

∫ ξ

ξ−2t

v0(η)dη.
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Given an arbitrary point (x, y) = (ξ − t, t), we have

u(x, y) =
1

2
[u0(x − y) + u0(x + y)] +

1

2

∫ x+y

x−y

v0(η)dη.

This is d’Alembert’s formula (1747).
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The Divergence of a Vector Field in R
2

This will give you a chance to integrate on curves. You’ll need to integrate on curves.
So the first part is a warm up involving integration on a curve. Remember, before you
start it, that

∫

Γ

f = lim
∑

f(pj) length(Γj)

where {Γj} is a partition of the curve Γ and f : Γ → R is a real valued function; each
point pj is in the partition piece Γj and the limit is as the “diameter measure” (in this
case length will work) of the largest partition piece tends to zero.

Also, the divergence for a vector field v : R
2 → R

2 at a point p ∈ R
2 is defined as

div v = lim
U→{p}

1

area(U)

∮

∂U

v · n

(when this limit exists). Here n is the outward unit normal to U and the little circle
is put on the integral sign just to remind us that we’re integrating over a cycle or, in
this case, a simple closed curve.

Okay, let’s do this.

4. A nice curve to consider (when thinking about integrating on a curve) is a single turn
of a helix

Γ = {(cos t, sin t, t) : t ∈ [0, 2π]}.
Let’s try to compute

∫

Γ

f

where f = f(x, y, z) is just some function I write down. This should illustrate how inte-
gration over a curve works in general. The first step is to write down a parameterization
for the curve.

(a) Write down a parameterization γ : [0, 2π] → R
3 for the specific curve Γ given above

and sketch the image. (Hint: Yes, this is as easy as it looks.)

(b) Now, this is perhaps a little harder: For the computation, we want to “change
variables” from Γ to [0, 2π]. This requires a scaling factor:

∫

Γ

f =

∫ 2π

0

f ◦ γ(t) σ dt.

What is the scaling factor σ for the specific helix parameterized in the previous
part? And what is the scaling factor, in general, if a curve Γ is parameterized by
γ ∈ C1([a, b] → R

n) on some interval [a, b]?

(c) Compute
∫

Γ

f

for Γ the single turn of the helix above and f(x, y, z) = x2 + y2 + z2.
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(d) Consider a point p = (p1, p2) ∈ R
2 and a vector field v ∈ C1(R2 → R

2). For
positive numbers ǫ and δ, let

R = Rǫ,δ = {x = (x1, x2) ∈ R
2 : |x1 − p1| < ǫ and |x2 − p2| < δ}

be a rectangular domain with outward unit normal n. Draw R along with n and
show

∫

∂R

v · n = 2δ

∫ p1+ǫ

p1−ǫ

∂v2

∂y
(x, p∗2) dx + 2ǫ

∫ p2+δ

p2−δ

∂v1

∂x
(p∗1, y) dy

for some point p∗ = (p∗1, p
∗
2) ∈ R. Hint: Use the mean value theorem which

tells you, for example, that if v ∈ C1(R2), then for a < b and y ∈ R, there is some
x∗ ∈ (a, b) such that

v(b, y) − v(a, y) =
∂v

∂x
(x∗, y) (b− a).

(e) Compute

lim
ǫ,δ→0

1

area(R)

∫

∂R

v · n.

Solution:

(a) γ(t) = (cos t, sin t, t).

(b) σ =
√

1 + 1 = |γ′(t)|.

(c) Therefore,

∫

Γ

f =

∫ 2π

0

(1 + t2)
√

2 dt =
√

2

∫ 2π

0

(1 + t2) dt = 2π
√

2(1 + 4π2/3).

(d) Here is a drawing of a vector field around a point in the plane:
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∫

∂R

v · n =

∫ p1+ǫ

p1−ǫ

v(x, p2 − δ) · (0,−1) dx +

∫ p2+δ

p2−δ

v(p1 + ǫ, y) · (1, 0) dy

+

∫ p1+ǫ

p1−ǫ

v(x, p2 + δ) · (0, 1) dx +

∫ p2+δ

p2−δ

v(p1 − ǫ, y) · (−1, 0) dy

=

∫ p1+ǫ

p1−ǫ

[v2(x, p2 + δ) − v2(x, p2 − δ)] dx +

∫ p2+δ

p2−δ

[v1(p1 + ǫ, y) − v1(p1 − ǫ, y)] dy

= 2δ

∫ p1+ǫ

p1−ǫ

∂v2

∂y
(x, p∗2) dx + 2ǫ

∫ p2+δ

p2−δ

∂v1

∂x
(p∗1, y) dy

where we have obtained the values p∗1 and p∗2 from the mean value theorem.

(e) Since the area of R is 4δǫ, we have

lim
ǫ,δ→0

1

area(R)

∫

∂R

v · n = lim
ǫ,δ→0

(

1

2ǫ

∫ p1+ǫ

p1−ǫ

∂v2

∂y
(x, p∗2) dx +

1

2δ

∫ p2+δ

p2−δ

∂v1

∂x
(p∗1, y) dy

)

=
∂v2

∂y
(p) +

∂v1

∂x
(p).
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The 2D Heat Equation on U ⊂ R
2

5. Derive the heat equation (carefully and from scratch) as it applies to a laminar domain
U ⊂ R

2. Start by listing/identifying all the quantities you will use with their units.
Let’s try this: I’ll start you out and give you a sort of outline to follow. When I put an
ellipsis (· · · ), this will mean there are details for you to fill in—probably lots of them.

quantity identification units

θ2 = θ2(x, y, t), areal or laminar heat energy density [θ2] = [energy]
L2

...

Incidentally, energy has units of work [energy] = [force]L = ML2

T 2

...
~φ2 = ~φ2, laminar heat flux field [~φ2] = . . .
...
...
u = u(x, y, t), temperature [u] = [temperature]
Du = Du(x, y, t), temprature gradient [Du] = . . .
σ = σ(x, y, u), specific heat capacity [σ] = . . .
K2 = K2(x, y, u), laminar thermal conductivity [K2] = . . .
...
...

Accounting of rate of change of total energy

d

dt

∫

U

θ2 = −
∫

∂U

~φ2 · n +

∫

U

Q2

. . .

Law of specific heat . . .

Fourier’s law . . .

∂

∂t
[σρ2u] = div[K2Du] + Q2.

. . .

Finally, taking σρ2 = K2 (constant) and setting f = Q2/K2,

ut = ∆u + f.
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Solution: Let U ⊂ U .

quantity identification units

θ2 = θ2(x, y, t), areal or laminar heat energy density [θ2] = [energy]
L2

∫

U
θ2 total energy in U at time t

[∫

V
θ2

]

= [energy]

Incidentally, energy has units of work [energy] = [force]L = ML2

T 2

~φ2 = ~φ2, laminar heat flux field [~φ2] = [energy]
LT

∫

∂U
~φ2 · n rate at which heat energy exits U [energy]

T

Q2 areal energy forcing rate density [energy]
L2T

∫

U
Q2 energy forcing rate on U [energy]

T

u = u(x, y, t), temperature [u] = [temperature]

Du = Du(x, y, t), temprature gradient [Du] = [temperature]
L

ρ2 = ρ2(x, y), areal mass density [ρ] = M
L2

σ = σ(x, y, u), specific heat capacity [σ] = [energy]
M [temperature]

K2 = K2(x, y, u), laminar thermal conductivity [K2] = [energy]
T [temperature]

Accounting of rate of change of total energy

The time derivative of the total energy in U should be given by the sum of the
rates at which energy is entering U through ∂U and the heat energy internally
generated/depleted by forcing:

d

dt

∫

U

θ2 = −
∫

∂U

~φ2 · n +

∫

U

Q2.

If θ2 and ~φ2 have adequate regularity, we can differentiate under the integral sign
and apply the divergence theorem to obtain

∫

U

∂θ2

∂t
= −

∫

U

div ~φ2 +

∫

U

Q2.
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We can write this as
∫

U

[

∂θ2

∂t
+ div ~φ2 − Q2

]

χU . (5)

If the quantity
∂θ2

∂t
+ div ~φ2 − Q2

is continuous and strictly positive at a point, then by taking U to be a small neigh-
borhood of that point, we arrive at a contradiction of (5). The same reasoning applies
if

∂θ2

∂t
+ div ~φ2 − Q2

is strictly negative at a point. Therefore, under adequate regularity assumptions, for
example θ2 ∈ C1(U), ~φ2 ∈ C1(U → R

2) and Q2 ∈ C0(U), we have

∂θ2

∂t
= − div ~φ2 + Q2. (6)

Forms of the Heat Equation

The relation (6) represents a first form of the heat equation for the unknown heat

energy density θ2 = θ2(x, y, t) and the unknown heat flux ~φ2 = ~φ2(x, y, t). This
constitutes a single PDE for three real valued functions of three variables—two spatial
variables and time.

We proceed to express the three unknown functions of (6) in terms of a single real
valued function. Let u be the temperature. We assume the following:

Law of specific heat: θ2 = σρ2u.

Fourier’s law: ~φ2 = K2Du.

Making these substutions in (6) under the assumption that there is no mass flow, we
have

ρ2
∂

∂t
[σu] = div[K2Du] + Q2.

In general, this is a nonlinear second order equation (PDE) for u.

Assuming further that σ is independent of t and the thermal conductivity is K2

constant in space, this becomes

ρ2σut = K2∆u + Q2.

Finally, taking σρ2 = K2 (constant) and setting f = Q2/K2 we obtain the “standard”
heat equation:

ut = ∆u + f.


