
Math 6702, Exam 2 Name and section:

1. (linear partial differential operators and Laplace’s equation on a rectangle) Solve the
following boundary value problem for u ∈ C2([0, 1] × [0, 2]):

{

∆u = 0,
u(x, 0) = 0, u(1, y) = sinh π sin πy, u(x, 2) = sinh 6π sin 3πx, u(0, y) = 0.

(1)

Hint: Consider two separate boundary value problems with homogeneous boundary
conditions on three of the four boundary segments of the rectangle. Solve each of
these problems using separation of variables. Then use the linearity of the Laplace
operator.



Name and section:

2. (first order linear PDE; method of characteristics) Solve the PDE

xux − yuy + (x2 + y2)u = x2 − y2 on U = {(x, y) ∈ R
2 : x, y > 0}.

“Solve” here means “Find all possible C1 solutions.” Your solution should depend on
an arbitrary function which you will need to introduce. Knowing how to do that is part
of the problem. (This is like if someone says: Solve x′′ = 0. Then you know x = at + b
with two arbitrary constants a and b.)

Hint(s): Consider the characteristic field v = (x,−y) on the first quadrant U . Plot it
with numerical software if necessary. Choose an appropriate non-characteristic curve.
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3. (one dimensional wave equation) Solve the initial value problem for the wave equation:







utt = uxx on R × [0,∞)
u(x, 0) = u0(x)
ut(x, 0) = v0(x)

(2)

where u0 ∈ C2(R) and v0 ∈ C1(R) to obtain d’Alembert’s solution:

u(x, t) =
1

2
[u0(x + t) + u0(x − t)] +

1

2

∫ x+t

x−t

v0(ξ) dξ.

Hint(s): Factor the operator 2u = utt − uxx as either

(ut − ux)t + (ut − ux)x or (ut + ux)t − (ut + ux)x.

Then solve two first order PDEs with appropriate Cauchy conditions. Incidentally, the
initial conditions in (2) are Cauchy conditions for the wave equation.



Name and section:

The Divergence of a Vector Field in R
2

This will give you a chance to integrate on curves. You’ll need to integrate on curves.
So the first part is a warm up involving integration on a curve. Remember, before you
start it, that

∫

Γ

f = lim
∑

f(pj) length(Γj)

where {Γj} is a partition of the curve Γ and f : Γ → R is a real valued function; each
point pj is in the partition piece Γj and the limit is as the “diameter measure” (in this
case length will work) of the largest partition piece tends to zero.

Also, the divergence for a vector field v : R
2 → R

2 at a point p ∈ R
2 is defined as

div v = lim
U→{p}

1

area(U)

∮

∂U

v · n

(when this limit exists). Here n is the outward unit normal to U and the little circle
is put on the integral sign just to remind us that we’re integrating over a cycle or, in
this case, a simple closed curve.

Okay, let’s do this.

4. A nice curve to consider (when thinking about integrating on a curve) is a single turn
of a helix

Γ = {(cos t, sin t, t) : t ∈ [0, 2π]}.

Let’s try to compute
∫

Γ

f

where f = f(x, y, z) is just some function I write down. This should illustrate how inte-
gration over a curve works in general. The first step is to write down a parameterization
for the curve.

(a) Write down a parameterization γ : [0, 2π] → R
3 for the specific curve Γ given above

and sketch the image. (Hint: Yes, this is as easy as it looks.)

(b) Now, this is perhaps a little harder: For the computation, we want to “change
variables” from Γ to [0, 2π]. This requires a scaling factor:

∫

Γ

f =

∫ 2π

0

f ◦ γ(t) σ dt.

What is the scaling factor σ for the specific helix parameterized in the previous
part? And what is the scaling factor, in general, if a curve Γ is parameterized by
γ ∈ C1([a, b] → R

n) on some interval [a, b]?

(c) Compute
∫

Γ

f

for Γ the single turn of the helix above and f(x, y, z) = x2 + y2 + z2. Hint: This
may not be as easy as it looks at first.



Name and section:

(d) Consider a point p = (p1, p2) ∈ R
2 and a vector field v ∈ C1(R2 → R

2). For
positive numbers ǫ and δ, let

R = Rǫ,δ = {x = (x1, x2) ∈ R
2 : |x1 − p1| < ǫ and |x2 − p2| < δ}

be a rectangular domain with outward unit normal n. Draw R along with n and
show

∫

∂R

v · n = 2δ

∫ p1+ǫ

p1−ǫ

∂v2

∂y
(x, p∗2) dx + 2ǫ

∫ p2+δ

p2−δ

∂v1

∂x
(p∗1, y) dy

for some point p∗ = (p∗1, p
∗
2) ∈ R. Hint: Use the mean value theorem which

tells you, for example, that if v ∈ C1(R2), then for a < b and y ∈ R, there is some
x∗ ∈ (a, b) such that

v(b, y) − v(a, y) =
∂v

∂x
(x∗, y) (b− a).

(e) Compute

lim
ǫ,δ→0

1

area(R)

∫

∂R

v · n.
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The 2D Heat Equation on U ⊂ R
2

5. Derive the heat equation (carefully and from scratch) as it applies to a laminar domain
U ⊂ R

2. Start by listing/identifying all the quantities you will use with their units.
Let’s try this: I’ll start you out and give you a sort of outline to follow. When I put an
ellipsis (· · · ), this will mean there are details for you to fill in—probably lots of them.

quantity identification units

θ2 = θ2(x, y, t), areal or laminar heat energy density [θ2] = [energy]
L2

...

Incidentally, energy has units of work [energy] = [force]L = ML2

T 2

...
~φ2 = ~φ2, laminar heat flux field [~φ2] = . . .
...
...
u = u(x, y, t), temperature [u] = [temperature]
Du = Du(x, y, t), temprature gradient [Du] = . . .
σ = σ(x, y, u), specific heat capacity [σ] = . . .
K2 = K(x, y, u), laminar thermal conductivity [K2] = . . .
...
...

Accounting of rate of change of total energy

d

dt

∫

U

θ2 = −

∫

∂U

~φ2 · n +

∫

U

Q2

. . .

Law of specific heat . . .

Fourier’s law . . .

∂

∂t
[σρ2u] = div[K2Du] + Q2.

. . .

Finally, taking σρ2 = K2 (constant) and setting f = Q2/K2,

ut = ∆u + f.


