
Math 6702, Exam 1 Name and section:

An operator L : V → W is linear from a vector space V of functions to another vector
space W of functions if

L[af + bg] = aL[f ] + bL[g] for every a, b ∈ R and f, g ∈ V .

1. (linear partial differential operators) Show the following partial differential operators are
linear. State clearly a natural vector space of functions for the domain V and codomain
W of each operator.

(a) (The Lewy Operator)

L

[

u
v

]

=

(

ux − vy + 2yuz + 2xvz

vx + uy + 2yvz − 2xuz

)

.

Here we are using subscript notation for (partial) derivatives.

(b) (anisotropic Laplacian)

A[u] =

n
∑

j=1

aj(x)D
2eju.

Here, we are using multi-index notation for derivatives and ej is the j-th standard
unit basis vector. Note: We should also require aj : U → R for j = 1, . . . n
are given positive functions on some domain U ⊂ Rn. You may further restrict
the coefficients aj = aj(x) in order to determine/specify the codomain W of this
operator. The isotropic spacial case a1 = a2 = · · · = an ≡ 1 of this operator gives
the Laplacian

∆u = ∇2u =
n
∑

j=1

∂2u

∂x2
j

.

(c) (heat operator)
H [u] = ut − k∆u.

Here the positive constant k = α2 is called the diffusivity, and the operator is also
called the diffusion operator.

(d) (wave operator)
�u = utt − k∆u.

Here the positive constant k = c2 is called the square of the propogation

speed. The wave operator is also sometimes called the D’Alembertian after Jean
D’Alembert.

Solution:

(a) (Lewy operator) A natural domain for this operator, especially given the histori-
cal significance, is V = C1(R3)×C1(R3) consisting of pairs (u, v) of C1 functions
on all of R3. Of course, a natural alternative would be V = C1(U)×C1(U) where
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U is an open subset of R3. In any case, it should be clear from the definition,
that with one of these choices for V , say the first one, a reasonable choice for
the codomain is W = C0(R3) × C0(R3) the vector space of pairs of continuous
functions. As for the linearity:

L

[

au+ bũ
av + bṽ

]

=

(

(au+ bũ)x − (av + bṽ)y + 2y(au+ bũ)z + 2x(av + bṽ)z

(av + bṽ)x + (au+ bũ)y + 2y(av + bṽ)z − 2x(au+ bũ)z

)

= a

(

ux − vy + 2yuz + 2xvz

vx + uy + 2yvz − 2xuz

)

+ b

(

ũx − ṽy + 2yũz + 2xṽz

ṽx + ũy + 2yṽz − 2xũz

)

= aL

[

u
v

]

+ bL

[

ũ
ṽ

]

.

(b) For the anisotropic Laplacian we can take V = C2(U) with U and open subset
of Rn and W ∈ C0(U). You know it’s Rn because there are n terms in the
summation. Linearity is given by

A[au+ bv] =

n
∑

j=1

aj(x)D
2ej (au+ bv)

=
n
∑

j=1

aj(x)(aD
2eju+ bD2ejv)

= a

n
∑

j=1

aj(x)D
2eju+ b

n
∑

j=1

aj(x)D
2ejv

aA[u] + bA[v].

(c) For the heat operator, we may wish to get fancy and require the domain to
contain functions which are C1 in time and C2 in space. People who are
fancy operators on the heat equation do this sort of thing, and the notation
is something like V = C2

1 (U × [0, T )). We could also just be simple and use
V = C2(U × [0, T )). It’s nice for you to know the domain here U × [0, T ) which
is called a heat domain where U ⊂ Rn. Sometimes t = 0 will be excluded,
and sometimes T will be included. Also sometimes T = ∞. In any case, the
codomain is simpler: W = C0(U× [0, T )). For linearity, we can use the previous
part to apply to the Laplacian:

H [au+bv] = (au+bv)t−k∆(au+bv) = at+bvt−ka∆u−kb∆v = aH [u]+bH [v].

(d) Similarly, the wave operator is composed of two terms each of which is essentially
a Laplacian of some sort. In fact, we didn’t use the positivity of the coefficients
in part (b), so we could just say this is a special case. But we’ll give the details.
Why not? V = C2(U) where U ⊂ Rn+1 or maybe V = C2(U × [0, T )). Setting
U = U × [0, T ), we have W = C0(U), and

�(au+ bv) = (au+ bv)tt − k∆(au+ bv) = a�u+ b�v.
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2. Consider the heat equation ut = k∆u + f on (with forcing) B1(0) × [0,∞) = {(x, y, t) :
x2 + y2 < 1 and t ≥ 0} .

(a) Let w(ξ, η, τ) = u(αξ, αη, βτ) where α and β are positive constants. Determine the
domain of w, and compute

wτ (ξ, η, τ) and ∆w(ξ, η, τ) = wξξ + wηη.

(b) (scaling in time) Say you know how to solve wτ − ∆w = f0(ξ, η, τ) for any f0 ∈
C0(B1(0) × [0,∞) with a particular initial condition

w(x, y, 0) = g0(x, y)

and a homogeneous boundary condition

w∣
∣

x2+y2=1

= 0 for all time τ ≥ 0.

Explain how to solve










ut − k∆u = f on B1(0) × [0,∞)
u(x, y, 0) = g0(x, y), (x, y) ∈ B1(0)
u∣
∣

x2+y2=1

= 0, for all time t ≥ 0

for k 6= 1 by scaling in time. Hint: Use the idea of part (a).

(c) (scaling in space) If wt = ∆w on W = B5(0) × [0,∞) find the PDE satisfied by
u(x, y, t) = w(5x, 5y, t) on B1(0) × [0,∞).

(d) (anisotropic heat diffusion) Find an appropriate domain on which to solve the heat
equation wt = ∆w which allows you to solve the anisotropic heat equation

ut = 3uxx + 2uyy on B1(0) × [0,∞).

Which initial and boundary conditions can you handle? Hint: Scale in space by
different factors in different directions, i.e., anisotropically.

Solution:

(a) If w(ξ, η, τ) = u(αξ, αη, βτ), then this suggests (actually it does more than
suggest) the change of variables

x = αξ, y = αη, and t = βτ .

Since the domain of u (in x and y) has x2 + y2 < 1, we see that ξ and η should
satisfy ξ2 + η2 < 1/α2. This means the new domain should be

B1/α(0) × [0,∞).
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Scaling the time doesn’t make any visible change in this expression. In retro-
spect, I should have given you B1(0) × [0, T ) for u. Then you would need

B1/α(0) × [0, T/β) for the domain of w.

Also, wξ = αux. That is, wξ(ξ, η, τ) = αux(αξ, αη, βτ). Similarly, with these
same arguments wξξ = α2uxx and wτ = βut. Thus,

wτ = βut and ∆w = α2∆u.

Those are the derivatives requested.

(b) (scaling in time) Now, here we kind of want to go in the opposite direction. We
want to start with a solution u of the given problem and then express u in terms
of a solution of the appropriate problem for w. Note that our flexibility is with
the forcing f0 = f0(ξ, η, τ) = f0(x, y, τ), so we want to idenfity that function in
order to be successful. Notice that we’ve sort of put α = 1 since it’s suggested
we only scale in time, and we have ξ = x and η = y. This should work.

The next important thing to notice is that the u equation has a scalar k in front
of the Laplacian, but w equation does not. So we need to pick a time scaling
to take care of that. Recalling part (a) above, it makes sense to take β = 1/k.
Then, for example,

wτ =
1

k
ut = ∆u+

1

k
f = ∆w +

1

k
f.

This tells us, recalling the arguments, that we want

f0(x, y, τ) =
1

k
f(x, y, τ/k). (1)

Now, we can only solve for w if we have a particular intitial condition w(x, y, 0) =
g0(x, y). So we had better get the same intitial condition for u(x, y, t) =
w(x, y, kt). Fortunately, we’re given that u(x, y, 0) = g0(x, y), so that’s all
good. Also, the homogeneous boundary condition translates flawlessly between
the two problems. Thus, we can solve











wt = ∆w + 1
k
f(x, y, τ/k) on B1(0) × [0,∞)

w(x, y, 0) = g0(x, y), (x, y) ∈ B1(0)
w∣
∣

x2+y2=1

= 0, for all time t ≥ 0

With this solution in hand, we set u(x, y, t) = w(x, y, t/β) = w(x, y, kt) as
mentioned above. Then

ut(x, y, t) = kwτ = k∆w + f = k∆u+ f (2)

which is what we wanted. The initial and boundary conditions are satisfied
as well, as mentioned above, so (2) is the key calculation. Also (1) is the key
specification. Those two lines are really the heart of the problem.
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(c) This one is pretty straightforward:

ut = wt = ∆w =
1

25
∆u.

So the equation is ut = ∆u/25.

(d) (last part) Consider u(x, y, t) = w(x/
√

3, y/
√

2, t) where w solves











wt = ∆w on E × [0,∞)
w(ξ, η, 0) = g0(ξ, η), (ξ, η) ∈ E
w∣
∣

(ξ,η)∈∂E

= h0(ξ, η, t), for all time t ≥ 0

where E = {(ξ, η) : 3ξ2 + 2η2 < 1} is a domain with boundary the ellipse

ξ2

1/3
+

η2

1/2
= 1.

Then uxx = wξξ/3 and uyy = wηη/2, so

3uxx + 2uyy = wξξ + wηη = wt = ut,

and we have a solution of the heat equation on B1(0) × [0,∞). The initial
condition satisfied by this solution is

u(x, y, 0) = g0(x/
√

3, y/
√

2),

and the boundary condition is

u∣
∣

x2+y2=1

= h0(x/
√

3, y/
√

2), for all time t ≥ 0.

These are the initial and boundary conditions you can handle.
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A function u : U → R with U an open subset of Rn and p ∈ U is differentiable at p if
there is a linear function L : Rn → R such that

lim
w→0

u(p + w) − u(p) − L(w)

|w| = 0. (3)

The linear map L : Rn → R is called the differential of u at p and is denoted by
dup : Rn → R.

3. Let u : U → R be differentiable at p ∈ U .

(a) show the first partial derivatives Dju(p) exist for j = 1, 2, . . . , n.

(b) Express the linear function L : Rn → R for which (3) holds in terms of the gradient

vector

Du(p) = (D1u(p), D2u(p), . . . , Dnu(p)).

(c) Let U = (0, 1) × (0, 1) ⊂ R2 and consider the specific function u : U → R by

u(x, ξ) =

{

x(1 − ξ), 0 ≤ x ≤ ξ
(1 − x)ξ, ξ ≤ x ≤ 1.

Determine the points in U at which u is differentiable.

(d) Let u be the specific function given in the last part of this problem. Reexpress u in
the form

u(x, ξ) =

{

u1(x, ξ), 0 ≤ ξ ≤ x
u2(x, ξ), x ≤ ξ ≤ 1.

(e) What can you say about the regularity of the specific function u from the previous
two parts? Hint: You can start by showing u ∈ C0(U). You can also find some
subdomains U1 and U2 of U on which the functions u1 and u2 are C∞.

Solution:

(a) Recall that a partial derivative is defined as

∂u

∂xj
(p) = lim

h→0

u(p + hej) − u(p)

h
.

If, for example, we take w = hej in the definition of differentiability we have

lim
h→0

u(p + hej) − u(p) − L(hej)

|h| = 0.

Taking h > 0 so that hց 0, we get

lim
hց0

{

u(p + hej) − u(p)

h
− L(ej)

}

= 0.
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Notice that we used linearity in the second term and the h is no longer present
there. Thus, we have

lim
hց0

u(p + hej) − u(p)

h
= L(ej).

Similarly, if we take h < 0 so that hր 0, then we get

lim
hր0

{

−u(p + hej) − u(p)

h
+ L(ej)

}

= 0.

Notice the value of the limit from this direction is the same:

lim
hր0

u(p + hej) − u(p)

h
= L(ej).

Putting these two together, we have

lim
h→0

u(p + hej) − u(p)

h
= L(ej).

This means

Dju(p) =
∂u

∂xj

(p) = L(ej) exists.

(b) The matrix of a linear transformation L : Rn → R1 is a 1×n row vector obtained
by putting the values L(ej) in the “columns” (of length one). That is,

L(w) = (D1u(p), D2u(p), . . . , Dnu(p)) · w = Du(p) · w.

(c) Clearly, if (x0, ξ0) ∈ U1 where U1 is the trianglar domain

U1 = {(x, ξ) : 0 < x < ξ < 1},

then Du = (1− ξ,−x). Since Du ∈ C∞(U1) we know u is differentiable at each
point in this region. Similarly, if (x0, ξ0) ∈ U2 where U2 is the trianglar domain

U2 = {(x, ξ) : 0 < ξ < x < 1},

then Du = (−ξ,−x). Since Du ∈ C∞(U2) we know u is differentiable at each
point in this region. We have used here the following theorem from calculus:

A function with continuous first partials in an open set (u ∈ C1(U))
is differentiable.



Name and section:

This result is stated at the end of section 3 of chapter 4 of Boas. It is stated much
more clearly and with a tolerably good proof (if memory serves) in Thomas’
elementary calculus text.

It is more or less obvious, that the definition of u gives a differentiable function
at each boundary point of the square [0, 1]× [0, 1] except the corners (0, 0) and
(1, 1). More generally, we suspect the function u is not differentiable along the
diagonal x = ξ. Using numerical software to plot the graph of u confirms this
suspicion:

Probably the easiest way to confirm the non-differentiability of u along the
diagonal x = ξ is to use part (a) where we have shown a differentiable function
has first partial derivatives. Thus, we attempt to show u does not have a well-
defined, say x partial at a point p = (x0, x0). The differentiability quotient

of (3) becomes:
u(p + w) − x0(1 − x0) − L(w)

|w| .

Taking w = he1 with h > 0, we have p + w = (x0 + h, x0) and x = x0 + h >
ξ = x0. Therefore, we get

lim
hց0

(1 − x0 − h)x0 − (1 − x0)x0

h
= −x0.

On the other hand, taking w = he1 with h < 0, we have x = x0 + h < ξ = x0

and

lim
hր0

(x0 + h)(1 − x0) − x0(1 − x0)

h
= 1 − x0.

Since these one sided limits are clearly different, the limit of the difference
quotient does not exist, there is no first partial derivative at these points, and u
is not differentiable by part (a). Note that nothing particularly different happens
at the corners (0, 0) and (1, 1), except that one of the one-sided limits (which
are also one-sided partials) vanishes, which can be observed in the illustration.
The behavior near the point (1, 1) is clearly visible, and one sees ux(1

−, 1) = 0
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while ux(1
+, 1) < 0. This, however, it not quite adequate to show there is

no extension of u to a function which is differentiable at, say (1, 1). The
computation does not show this at the corners because, for example in the case
p = (1, 1), when calculating the first one sided limit we used points p + he1 =
(1, 1)+(h, 0) = (1+h, 0) outside the closed square [0, 1]× [0, 1] and we can infer
no formula for such points. What we have, is that under the assumption ux and
uξ exist, we must have ux(1, 1) = 0 according to the limit from the left. We can
also calculate the limit of the difference quotient associated with uξ from the
left:

lim
hր0

(1 + h)(0) − 0

h
= 0.

Thus, under the assumption of differentiability we obtain uξ(1, 1) = 0 as well.
But then we know the gradient must vanish Du(1, 1) = 0 and the linear approx-
imation must also vanish L(w) = Du(1, 1) · w ≡ 0. Here, note that we have
used the expression from part (b). Finally, then, we may calculate the limit as
hր 0 of the differentiability quotient along the diagonal:

lim
hր0

u(1 + h, 1 + h) − u(1, 1) − L(h, h)

|h| = lim
hր0

−u(1 + h, 1 + h) − u(1, 1) − 0

h

= lim
hր0

−(1 + h)[1 − (1 + h)] − 0

h

= −1 6= 0.

This shows there is no extension of u to a function which is differentiable at the
point (1, 1). Naturally, the same conclusion holds at the origin p = (0, 0).

(d) This is simply a matter of slicing the square vertically rather than horizontally:
The specification 0 ≤ ξ ≤ x corresponds to the triangular region U2 above with
boundary on the x-axis. And similarly, x ≤ ξ ≤ 1 corresponds to the region
triangular region U1 with boundary on the ξ-axis. Thus,

u(x, ξ) =

{

u1(x, ξ), 0 ≤ ξ ≤ x
u2(x, ξ), x ≤ ξ ≤ 1.

where u1(x, ξ) = (1 − x)ξ and u2 = x(1 − ξ). Thus,

u(x, ξ) =

{

(1 − x)ξ, 0 ≤ ξ ≤ x
x(1 − ξ), x ≤ ξ ≤ 1.

(e) We know u is continuous on the open triangles U1 and U2 from the calculus
theorem:

Differentiability implies continuity.



Name and section:

See Thomas’ Calculus. Each of the piecewise functions defining u is also indi-
vidually in C∞(R2), and it is easily checked that the formulas coincide along the
diagonal. Thus, u ∈ C0(U). Considering the Lipschitz quotient

|u(p) − u(q)|
|p− q|

with p 6= q, we can take p = (p1, p2) and q = (q1, q2) and one of the following
possibilities holds: If p,q ∈ U1, then

|u(p) − u(q)|
|p− q| =

|p1(1 − p2) − q1(1 − q2)|
√

(p1 − q1)2 + (p2 − q2)2

=
|(1 − p2)(p1 − q1) − (1 − q2)(q1 − p1) + q1(1 − p2) − p1(1 − q2)|

√

(p1 − q1)2 + (p2 − q2)2

≤ 2|p− q| + |q1 − p1 − q1p2 + p1q2|
|p− q| .

We have used the triangle inequality and the fact that |1−p2| ≤ 1 and |1−q2| <
1. Also, note that

|q1 − p1 − q1p2 + p1q2| ≤ |q1 − p1| + |p2(p1 − p2) + p1(q2 − p2)| ≤ 3|p− q|.

Therefore, in this case
|u(p) − u(q)|

|p− q| ≤ 5. (4)

A second case is when p ∈ U1 and q ∈ U2. In this case, consider the reflection
q̂ = (q2, q1) of q about the diagonal x = ξ. Notice that we have p1 ≤ p2 because
p ∈ U1. Also, q2 ≤ q1, so q̂ ∈ U1. Moreover, u(q̂) = q2(1 − q1) = (1 − q1)q2 =
u(q). Thus, by the previous case

|u(p) − u(q̂)|
|p− q̂| ≤ 5,

unless q̂ = p. If q̂ = p, however, we have q2 = p1 and q1 = p2, thus u(q) =
(1 − q1)q2 = p1(1 − p2) = u(p) so the Lipschitz quotient vanishes. Also, if both
p and q are on the diagonal, then p = (p1, p1) and q = (q1, q1), so the Lipschitz
quotient satisfies

|u(p) − u(q̂)|
|p− q̂| =

|p1(1 − p2) − q1(1 − q2)|
|p− q̂| ,

and the argument of the previous case applies. Thus, we are reduced to the case
p 6= p̂ and at least one of the points p or q does not lie on the diagonal. In this
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final case, there is a unique point p∗ on the intersection of the segment between
p and q and the diagonal. In fact, noting that

(1− t)p+ tq = ((1− t)p1 + tq1, (1− t)p2 + q2) = (p1 +(q1 − p1)t, p2 − (p2 − q2)t),

we see

p∗ =

(

1 − p2 − p1

q1 − q2 + p2 − p1

)

p +
p2 − p1

q1 − q2 + p2 − p1

q

and the value

t∗ =
p2 − p1

q1 − q2 + p2 − p1

of the parameter t on the segment is well-defined because max{q1−q2, p2−p1} >
0. Thus, we note

|p− q̂| ≤ |p− p∗| + |p∗ − q̂|
= |p− p∗| + |p∗ − q|
= |p− q|.

Therefore, we can apply the previous case to the Lipschitz quotient for p and
q̂ to see Then

|u(p) − u(q)|
|p− q| ≤ |u(p) − u(q̂)|

|p − q̂|
≤ 5.

We have established (4) in this second case as well. The remaining cases are
symmetric with those considered above, so the estimate (4) holds in general,
and we can say u ∈ Lip(U).

It can be further verfied that u has a weak derivative given by

Du(x, ξ) =

{

((1 − ξ),−x), 0 ≤ x ≤ ξ
(−ξ, (1 − x)), ξ < x ≤ 1.

We will not give the details here.
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An ODE Problem

4. This problem is about the (homogeneous and autonomous) second order linear ODE
y′′ + y = 0. You may recall that the initial value problem







y′′ + y = 0,
y(x0) = y0,
y′(x0) = y′0

(5)

has a unique solution. That solution, furthermore, is in C∞(R).

(a) Write down/find the unique solution for (5).

(b) Show the solution you’ve written down is unique by completing the following steps:

1. Let u be another solution with u ∈ C2(x0 − δ, x0 + δ) for some δ > 0. That is,
u satisfies (5). Let w = y − u, and find an initial value problem satisfied by w.

2. Let z = w′ and m = w2 + z2. Notice that m ∈ C1(x0 − δ, x0 + δ), and show
that m satisfies

{

m′(x) = 0 for |x− x0| < δ,
m(x0) = 0.

3. If there is some x with |x − x0| < δ such that m(x) > 0, then prove there is
some ξ between x and x0 such that m′(ξ) 6= 0. Hint: Mean Value Theorem.

4. Conclude that m(x) ≡ 0 for x with |x − x0| < δ. In particular, w(x) ≡ 0 and
u(x) ≡ y(x) for all x with |x− x0| < δ.

(c) Show the two point boundary value problem

{

y′′ + y = 0,
y(0) = 0, y(π) = 0

(6)

does not have a unique solution. Find infinitely many different solutions.

The point of this last part is that the uniqueness for a boundary value problem
(even for ODEs) cannot be taken for granted. Even if you are able to write down
a solution, you can not always be sure your solution is unique.

(d) What is the general situation for existence and uniqueness for the two point bound-
ary value problem

{

y′′ + y = 0,
y(a) = 0, y(b) = c

where a, b, and c are real numbers with a < b?

Solution:

(a) y = y0 cos(x− x0) + y′0 sin(x− x0).

(b) Assume u′′ +u = 0 with u(x0) = y0, u
′(x0) = y′0 for some u ∈ C2(x0 − δ, x0 + δ).
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1. Set w = y − u. Then

{

w′′ + w = 0
w(x0) = 0 = w′(x0).

2. Let z = w′ and m = w2 + z2. Then m(x0) = [w(x0)]
2 + [w′(x0)]

2 = 0, and
m ∈ C1(x0 − δ, x0 + δ) with

m′ = 2ww′ + 2w′w′′ = 2(ww′ − w′w) ≡ 0.

3. For any x ∈ (x0 − δ, x0 + δ) with x 6= x0, we have by the mean value
theorem that there is some x∗ between x and x0 with

0 = |m′(x∗)| =
|m(x) −m(x0)|

|x− x0|
.

4. Since m′ ≡ 0, we must have m(x) ≡ m(x0) = 0. That is, u ≡ y.

Note: This approach differs slightly from the suggested steps in the problem,
but it is essentially the same.

(c) y(x) = sin x is a solution. u(x) = 3 sin x is also a solution. In facts, y(x) = c sin x
is a solution for any c ∈ R.

(d) Starting with y(x) = c1 cos(x− a) + c2 sin(x− a) as a general solution, the first
boundary condition gives c1 = 0. Thus, we have a one parameter family of
possible solutions:

y(x) = c2 sin(x− a).

The question is thus reduced to the algebraic equation y(b) = c2 sin(b − a) = c
for c2. There are three possibilities:

1. If sin(b− a) 6= 0, then there is a unique solution

y(x) =
c

sin(b− a)
sin(x− a).

2. If sin(b− a) = 0 and c 6= 0, there is no solution.

3. If sin(b− a) = 0 and c = 0, then there are infinitely many solutions

y(x) = c2 sin(x− a).
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Laplace’s Equation in One and Two Dimensions

Laplace’s equation in two dimensions for a function u = u(x, y) is

∂2u

∂x2
+
∂2u

∂y2
= 0. (7)

Laplace’s equation in one dimension is

u′′ = 0 (8)

for u = u(x). You might not think there is anything interesting to say about this ODE,
and maybe you are right, but let’s see.

5. It is natural to think about the solution of (8) as the solution of an initial value

problem so that

u(x) = u′0(x− x0) + u0 where u0 = u(x0).

(a) Show the following: The two point boundary value problem for (8),

{

u′′ = 0,
u(a) = ua, u(b) = ub,

(9)

has a unique solution for any real numbers a, b, ua, and ub with a < b.

(b) Did you write down a formula for the solution in part (a)? If not, write one/it
down.

(c) What unique solution of (9) do you find when ua = 0 and ub = 0?

(d) Can you find a solution u = u(x, y) of the boundary value problem

{

∆u = 0,
u∣
∣

∂U

≡ 0. (10)

for (7) defined on an open set U ⊂ R2?

(e) Show the solution you found in part (d) is unique if the domain U is bounded by
completing the following steps:

1. Assume there is a solution v ∈ C2(U) of (10) with v(p) > 0 for some p ∈ U .
Let w(x) = v(p)− ǫ|x−p|2 where ǫ is a positive constant. Show that for ǫ > 0
small enough, w(x) > 0 for x ∈ U . Hint: There is some M > 0 for which
w ≥ v(p) − ǫM2.

2. Let q ∈ U be a point such that

c = v(q) − w(q) = max
x∈U

[v(x) − w(x)].

Why does such a point q exist and what is the sign of the constant c?
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3. Show that ∆v(q) < 0 (which is a contradiction). Hint: The function φ(x) =
w(x)+ c− v(x) vanishes at x = q. Combining this with the previous part tells
you something about ∆φ(q).

Solution:

(a) Integrating the equation from a to x, we must have

u′(x) ≡ u′(a) (constant)

and integrating again from a to x, we must have

u(x) = u(a) + u′(a)(x− a) = ua + u′(a)(x− a).

The second endpoint condition gives

u(b) = ua + u′(a)(b− a).

Since a < b, this means

u′(a) =
ub − ua

b− a
and u(x) = ua +

ub − ua

b− a
(x− a). (11)

This is the only possible solution of the two point boundary value problem. And
it is easily checked that it is a solution.

(b) I already wrote it down in (11).

(c) If ua = ub = 0, then u ≡ 0.

(d) The function u = u(x, y) ≡ 0 is a solution for this PDE too (no matter what
domain U is used).

(e) Let M > 0 be a bound for U . That is, |x| ≤M for all x ∈ U . Then

w(x) = v(p) − ǫ|x − p|2

≥ v(p) − ǫ(|x| + |p|)2

≥ v(p) − ǫ(4M2).

Thus, if ǫ < v(p)/(8M2), then w(x) > v(p)/2 > 0 for all x ∈ U , and w(x) ≥
v(p)/2 > 0 for all x ∈ U .

(f) We are assuming v ∈ C2(U) with

v(p) > 0 and v∣
∣

x∈∂U

≡ 0.
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This means in particular, v − w ∈ C0(U). A continuous function on a closed
and bounded set has a maximum value. That is, there is some q ∈ U for which

c = v(q) − w(q) = max
U

[v(x) − w(x)].

Since p ∈ U and we are assuming v(p) − w(p) = v(p) > 0, we know c > 0.
Also, since

v∣
∣

x∈∂U

≡ 0 and w∣
∣

x∈∂U

> 0

we know
(v − w)∣

∣

x∈∂U

< 0.

Therefore, the maximum is not taken on ∂U . It must be a positive maximum
c > 0 with q ∈ U .

(g) Consider f(x, y) = w(x, y) + c − v(x, y). This is a non-negative function on U
with an interior minimum f(q) = 0. This means, in particular, that

Df(q) = (0, 0).

Thus, the first order Taylor approximation of f at q = (q1, q2) gives

f(x, y) = fxx(q
∗)(x− q1)

2 + 2fxy(q
∗)(x− q1)(x− q2) + fyy(q

∗)(x− q2)
2

where q∗ is a point on the segment from q to x. By taking x = (q1 + h, q2) we
find

0 ≤ fxx(q
∗)h2.

That is, fxx(q
∗) ≥ 0 for some point q∗ = (h∗, 0) with 0 < h∗ < h. Taking the

limit as hց 0, we conclude
fxx(q) ≥ 0.

Similarly, taking x = (q1, q2 + k) for k > 0, we have

fyy(q1, q2 + k∗) ≥ 0

where 0 < k∗ < k. Taking k ց 0, we know

fyy(q) ≥ 0

Therefore, 0 ≤ ∆f = ∆w − ∆v, and we have

∆v(q) ≤ ∆w(q) = −4ǫ < 0.

Here we have computed ∆w using the formula w(x, y) = v(p) − ǫ[(x1 − p1)
2 +

(x2 − p2)
2]. This is a contradiction of the assumption that v is a solution of

∆v = 0, and establishes the uniqueness. (Technically, we have shown v ≤ 0.
But −v is also a solution, and the argument shows −v ≤ 0. That is, v ≥ 0 as
well.
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Laplace’s Equation on a Rectangle

The next two problems give two different approaches to solving the boundary value
problem for Laplace’s equation (7) on a rectangle U = (a, b) × (c, d) in the plane. Both
approaches can lead to viable solution methods, but we will only concentrate on some
of the preliminaries.

6. In view of problem 2, you should not be surprised that it is enough to restrict to the
special case U = [0, L] × [0,M ] where L and M are positive numbers. This just makes
some computations easier.

(a) Verify that u(x, y) = sin(2πx/L) sinh(2πy/L) solves

{

∆u = 0,
u(x, 0) = 0, u(L, y) = 0, u(x, L) = g(x), u(0, y) = 0

(12)

if g = g(x) happens to be a suitable function.

(b) Solve

{

∆v = 0,
v(x, c) = 0, v(b, y) = 0, v(x, d) = 0, v(a, y) = sinh[2π(b− a)/(d− c)] sin[2π(y − c)/(d− c)]

for a < b and c < d. (Note: This problem had some correction/typo in the original
formulation.)

(c) Returning to (12) substitute a “separated variables” solution u(x, y) = A(x)B(y)
into Laplace’s equation ∆u = 0. Rearrange what you get into a form

Φ(x) = Ψ(y) (13)

for some functions Φ (involving only A and depending only on x) and Ψ (involving
only B and depending only on y).

(d) Take the partial derivative with respect to x of both sides of (13). What does this
tell you about the function Φ = Φ(x)?

(e) Find “ordinary differential equations” which must be satisfied by A and B if
u(x, y) = A(x)B(y) is a solution of ∆u = 0. (I put ODEs in quotes here be-
cause you cannot determine the equation completely, but you should be able to
determine the form of the equation, e.g., second order linear, homogeneous, etc.,
but there may be parameters which you cannot determine (yet).)

(f) If you substitute the separated variables solution u(x, y) = A(x)B(y) into the
boundary values specified in (12), what can you conclude about the boundary values
of A on [a, b] and B on [c, d] under the assumption that u = AB is not identically
zero?

(g) Find all possible separated variables solutions u(x, y) = A(x)B(y).



Name and section:

Solution:

(a) Since a negative sign comes out when we differentiate sin twice and no negative
sign come out when we differentiate sinh (and the scalars 2π/L are the same),
it is clear u is a solution of the PDE. Also, the boundary conditions are clearly
satisfied if

g(x) = sinh(2π) sin(2πx/L).

(b) Notice that in part (a) we had a top horizontal segment with the non-homogeneous
boundary condition. Here we have a left vertical side. This suggests simply
translating and switching the sin and sinh. Let’s see if that works:

u(x, y) = sinh[2π(x− a)/(d− c)] sin[2π(y − c)/(d− c)].

Of course, we’ve got to have the same scaling factors to get a solution of the
PDE, and the boundary condition suggests using 2π/(d − c). Yes. This will
certainly solve the PDE. Also, when we put in y = c or y = d we get zero.
When we put in x = b, we have a problem but we’re getting u(a, y) = 0 as it
is. I see the problem: In part (a) we had the horizontal side off the axis with
the non-homogeneous condition: y = L. Here, we have the vertical side on the

axis, so we’ve done the wrong translation in the sinh factor. Let’s try instead

u(x, y) = sinh[2π(x− b)/(d− c)] sin[2π(y − c)/(d− c)].

Now everything works, but we’re off by a sign. This is no problem to fix:

u(x, y) = sinh[2π(b− x)/(d− c)] sin[2π(y − c)/(d− c)].

Notice, when we differentiate with respect to x, the negative sign from the chain
rule from [2π(b − x)/(d − c)] comes out twice (because we differentiate twice).
So the PDE is still satisfied. And we’ve got all the boundary conditions too.

(c) With substitution we get A′′B + AB′′ = 0 which we write as

Φ(x) = −A
′′

A
=
B′′

B
= Ψ(y).

This is okay, of course, as long as AB 6= 0, and it’s okay at any points (x, y)
where A(x)B(y) 6= 0.

(d) We get
d

dx

(

−A
′′

A

)

= 0

which tells me

−A
′′

A
= λ (constant)

Similarly, B′′ = λB with the same constant λ.
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(e) Hence A′′ = −λA and B′′ = λB.

(f) B(0) = 0, A(L) = 0, B(L) = g(x)/A(x), A(0) = 0. The condition g(x)/A(x) =
B(L) is the odd man out here. The function g = g(x) is given, and presumably,
it either helps us find a solution or not, but it’s not clear that it should. In
particular, we know we need A(0) = A(L) = 0, and if we take A as a multiple
of g as this suggests, then either g(0) = g(L) = 0 or it does not. And we don’t
really know. So, let’s set that aside for a moment. The other conditions look
promising:

{

A′′ = −λA
A(0) = 0 = A(L).

This looks like a two point boundary value problem (except for the unknown
constant λ. We need cases:

1. If λ < 0, then A = α cosh µx+ β sinh µx where µ =
√
−λ. The condition

A(0) = 0 implies α = 0, and the condition A(L) = 0 then implies β = 0
unless µ = 0 (which amounts to the same thing). There are no interesting
solutions in this case.

2. If λ = 0, then A = αx+β. Again the boundary conditions imply α = β = 0
in short order. Nothing to see here.

3. If λ > 0, then we get A = α cosµx+β sin µx where µ =
√
λ. The condition

A(0) = 0 gives α = 0 again, but then we get

β sin(µL) = 0.

This gives nontrivial solutions when µk = kπ/L for k = 1, 2, 3, . . .. That
is, λ = k2π2/L2 and (more importantly)

Ak(x) = βk sin(kπx/L).

The B ode then gives Bk(y) = c1 cosh(kπx/L) + c2 sinh(kπx/L). The one
good boundary condition we got, namely B(0) = 0, implies c1 = 0, so we
get “solutions” that look like

uk(x, y) = sin(kπx/L) sinh(kπy/L).

These are the “separated variables solutions.” Of course, they don’t solve
the whole problem immediately, but they satisfy everything except the
non-homogeneous boundary condition u(x, L) = g(x). Two final notes:

(a) Either the separated variables solutions satisfy u(x, L) = g(x) or not.
That depends on g. See parts (a) and (b) above.
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(b) Any constant multiple of these separated variables solutions satisfies
all the conditions except (maybe) u(x, L) = g(x), and any linear com-
bination of them

∑

ak sin(kπx/L) sinh(kπy/L)

does as well. This means we can solve this problem whenver g(x) is a
linear combination of the functions sin(kπx/L). That turns out to be
pretty good.

Poisson’s Equation

Here we consider a more general version of (12)
{

∆u = 0,
u(x, 0) = g1(x), u(L, y) = g2(y), u(x,M) = g3(x), u(0, y) = g4(y).

(14)

7. Let us assume that g1, g2, g3, g4 ∈ C∞(R) with

g1(0) = g4(0),

g1(L) = g2(0),

g2(M) = g3(L), and

g3(0) = g4(M).

It turns out that under these (boundary) conditions there are functions g ∈ C∞(U) for
which

g(x, 0) = g1(x), g(L, y) = g2(y), g(x,M) = g3(x), g(0, y) = g4(y). (15)

In fact, when we can solve (14) then the solution u will be such a function. For the
moment, it’s not even so obvious that such a smooth function g (of any sort) exists. But
we will assume such a function exists for now.

(a) Rewrite the boundary conditions of (14) in terms of g satisfying (15) using only
one equation. Hint: Look at the boundary condition in (10) from Problem 5.

(b) Let w = u − g and, assuming u satisfies (14), find the boundary value problem
satisfied by w. (The PDE you should find is a form of what is called Poisson’s

equation.

The point of this last part is that the boundary value problem (14) for Laplace’s
equation can be replaced by a boundary value problem for Poisson’s equation with
homogeneous boundary values.

(c) Let U = (0, ln 2) × (0, π). Assume you can solve
{

∆w = (1 + x/ ln 2) sin y,
w∣
∣

∂U

≡ 0. (16)
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Use the solution of this problem to solve

{

∆u = 0,
u∣
∣

∂U

≡ (1 + x/ ln 2) sin y. (17)

(d) Use Problem 5 part (e) to show the boundary value problem (16) can have at most
one solution w ∈ C2(U) ∩ C0(U).

Solution:

(a)
u∣
∣

∂U

= g or u∣
∣

∂U

= g∣
∣

∂U

.

(b) ∆w = ∆u− ∆g = −∆g.

{

∆w = −∆g on U
w∣
∣

∂U

≡ 0.

(c) Let u(x, y) = w(x, y) + (1 + x/ ln 2) sin y. Then

∆u = ∆w − (1 + x/ ln 2) sin y = 0.

And
u∣
∣

∂U

= (1 + x/ ln 2) sin y.

Thus, u solves (17).

(d) Assume w and v are both solutions of problem (16). Set φ = w − v. Then
∆φ = 0 and φ∣

∣

∂U

≡ 0. Therefore,

{

∆φ = 0 on U
φ∣
∣

∂U

≡ 0.

Since U = (0, ln 2) × (0, π) is a bounded open subset of R2, our result from
Problem 5 applies, and we know φ ≡ 0 is the unique solution. Thus, w ≡ v and
(16) has at most one (classical) solution.
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Fourier Series

Let’s think a little bit about Fourier series. Let f : [0, L] → R be a continuous function.
A Fourier sine series for f has the form

f(x) =

∞
∑

j=1

fj sin
jπx

L
. (18)

where the numbers f1, f2, f3, . . . are called the Fourier coefficients of f and the
functions sin(πx/L), sin(2πx/L), sin(3πx/L),. . .make up what is called the Fourier

sine basis. We do not need to worry too much about convergence of the series. For a
continuous function, if the coefficients are chosen correctly, then the series will converge
to f(x) at least on (0, L), and we can manipulate the series, at least as far as integrating
term by term, pretty freely.

8. This problem is about computing Fourier coefficients.

(a) Compute
∫ L

0

sin
jπx

L
sin

kπx

L
dx.

Hint: Something special happens when j = k because (you can show)
∫ L

0

sin2 jπx

L
dx =

∫ L

0

cos2 jπx

L
dx and sin2 jπx

L
+ cos2 jπx

L
= 1.

Something even more special happens when j 6= k.

(b) Multiply both sides of (18) by sin(kπx/L) and integrate both sides from x = 0 to
x = L. Use the result to find a formula for the Fourier coefficients.

(c) Consider the specific example f : [0, L] → R by

f(x) =

{

bx/a, 0 ≤ x ≤ a
b(x− L)/(a− L), a ≤ x ≤ L.

Draw the graph {(x, f(x)) : 0 ≤ x ≤ L} of f . What can you say about the regularity
of f?

(d) Let f be the specific function from the last part of this problem. Find the Fourier
sine series expansion of f .

(e) The trigonometric polynomial

Pn(x) =

n
∑

j=1

fj sin
jπx

L

is (called) the n-th Fourier sine approximation of f . Use mathematical software
(Matlab, Mathematica, Maple, etc.) to plot P1(x), P2(x), P3(x), P10(x), and P100(x)
for the specific example from the last two parts.
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Solution:

(a) If j 6= k, then express the trigonometric functions in terms of exponentials:

∫ L

0

sin
jπx

L
sin

kπx

L
dx =

1

(2i)2

∫ L

0

(eijπx/L − e−ijπx/L)(eikπx/L − e−ikπx/L) dx

= −1

4

∫ L

0

(ei(j+k)πx/L − ei(j−k)πx/L − ei(k−j)πx/L + e−i(j+k)πx/L) dx

= −1

4

[

L

i(j + k)π
ei(j+k)πx/L − L

i(j − k)π
ei(j−k)πx/L

− L

i(k − j)π
ei(k−j)πx/L − L

i(j + k)π
e−i(j+k)πx/L)

]

∣

∣

L

0

= − L

2π

[

1

j + k
sin[(j + k)πx/L] +

1

k − j
sin[(j − k)πx/L]

]

∣

∣

L

0

= 0.

If j = k, then
∫ L

0

sin
jπx

L
sin

kπx

L
dx =

∫ L

0

sin2 jπx

L
dx

=
1

2

(
∫ L

0

sin2 jπx

L
dx

∫ L

0

cos2 jπx

L
dx

)

=
1

2

∫ L

0

1 dx

= L/2.

To see that
∫ L

0

sin2 jπx

L
dx =

∫ L

0

cos2 jπx

L
dx,

Note that sin2 is π periodic, so that

∫ L

0

sin2 jπx

L
dx =

∫ L+L/(2j)

L/(2j)

sin2 jπx

L
dx

=

∫ L

0

sin2

(

jπ(ξ + L/(2j))

L

)

dξ

=

∫ L

0

sin2

(

jπξ

L
+
π

2

)

dξ

=

∫ L

0

cos2 jπξ

L
dξ.

We have used the change of variables ξ = x− L/(2j).
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(b)

∫ L

0

f(x) sin
kπx

L
dx =

∫ L

0

∞
∑

j=1

fj sin
kπx

L
sin

jπx

L
dx

=
∞
∑

j=1

fj

∫ L

0

sin
kπx

L
sin

jπx

L
dx

=
L

2
fk.

Note that we have integrated the series termwise. Thus,

fk =
2

L

∫ L

0

f(x) sin
kπx

L
dx.

(c) Here is a plot of a tent function.

(d) According to the formula above

fj =
2

L

∫ L

0

f(x) sin
jπx

L
dx

=
2

L

[

b

a

∫ a

0

x sin
jπx

L
dx+

b

a− L

∫ L

a

(x− L) sin
jπx

L
dx

]

.

We need to integrate by parts. I’ll calculate for each separate integral:

∫ a

0

x sin
jπx

L
dx = − L

jπ
x cos

jπx

L
∣

∣

a

x=0

+
L

jπ

∫ a

0

cos
jπx

L
dx

= − L

jπ
a cos

jπa

L
+

L2

(jπ)2
sin

jπx

L
∣

∣

a

x=0

= − L

jπ
a cos

jπa

L
+

L2

(jπ)2
sin

jπa

L
.
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∫ L

a

(x− L) sin
jπx

L
dx = − L

jπ
(x− L) cos

jπx

L
∣

∣

L

x=a

+
L

jπ

∫ L

a

cos
jπx

L
dx

=
L

jπ
(a− L) cos

jπa

L
+

L2

(jπ)2
sin

jπx

L
∣

∣

L

x=a

=
L

jπ
(a− L) cos

jπa

L
− L2

(jπ)2
sin

jπa

L
.

Substituting these values for the integrals in the calcuation we started before,
we find

fj =
2b

L

(

1

a
− 1

a− L

)

L2

(jπ)2
sin

jπa

L

= − 2b

a(a− L)

L2

(jπ)2
sin

jπa

L
.

Thus, the Fourier sine series expansion for this function is

f(x) =
2bL2

a(L− a)

∞
∑

j=1

1

(jπ)2
sin

jπa

L
sin

jπx

L
. (19)

(e) Here are the plots of some Fourier approximations for f with the values a = 1/4,
b = 1/2 and L = 1:
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One Dimensional Poisson’s Equation

The one dimensional Poisson’s equation is u′′ = f(x), and again, we are back to a
relatively easy ODE.

9. It is possible to use the method of Homework Assignment 1 (problems 1 and 2) to solve

{

u′′ = f(x),
u(0) = 0, u(L) = 0,

(20)

and you should write that solution down, but we are going to solve this boundary value
problem a different way.

(a) Expand f as a Fourier sine series, so that the equation becomes

u′′ =
∞
∑

j=1

fj sin
jπx

L
.

Solve infinitely many 1-D Poisson equations u′′j = fj sin(jπx/L) with homogene-
neous boundary conditions, so that the solution u can be written as a series

u(x) =
∞
∑

j=1

uj.

(b) Substitute the Fourier coefficients fj so that u takes the form

u(x) =

∫ L

0

G(x, ξ) f(ξ) dξ (21)

where G = G(x, ξ) is a function of two variables defined as a series on [0, L]× [0, L].
The function G is called the Green’s function for the problem (20).

(c) Determine G explicitly and classify the regularity of G as a function of two vari-
ables. Hint(s): You can either restrict to horizontal lines ξ = constant or vertical
lines x = constant, and use the previous problem (Problem 8) on Fourier series
or, alternatively, you can use the solution obtained by the method of Homework
Assignment 1 (problems 1 and 2) and put that solution (involving integrals) into
the form (21) to find G directly by explicit integration. It’s not a bad idea to do
both.

Solution:

(a) As we calculated in the previous problem, we know

fj =
2

L

∫ L

0

f(x) sin
jπx

L
dx. (22)



Name and section:

If we write

u′′ =
∑

u′′j =
∑

fj sin
jπx

L
,

then

uj(x) = −fj
L2

(jπ)2
sin

jπx

L
.

Thus,

u(x) = −
∞
∑

j=1

fj
L2

(jπ)2
sin

jπx

L

should be a solution.

(b) Now, if we substutite the value for fj from (22), this becomes

u(x) = −
∞
∑

j=1

2

L

∫ L

0

f(ξ) sin
jπξ

L
dξ

L2

(jπ)2
sin

jπx

L

= − 2

L

∫ L

0

f(ξ)

(

∞
∑

j=1

L2

(jπ)2
sin

jπξ

L
sin

jπx

L

)

dξ.

According to the form suggested in the problem, we can identify

G(x, ξ) = − 2

L

∞
∑

j=1

L2

(jπ)2
sin

jπξ

L
sin

jπx

L
.

(c) For a first approach, let us compare to (19):

2bL2

a(L− a)

∞
∑

j=1

1

(jπ)2
sin

jπa

L
sin

jπx

L
.

This suggests that we take a = ξ. Then these will match identically if

− 1

L
=

b

a(L− a)
=

b

ξ(L− ξ)
.

That is,

b = −ξ(L− ξ)

L
.

If this is the case, then we see that each restriction of G(x, ξ) to a line ξ =
constant is a piecewise affine function as indicated in the illustration below.
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Thus, we can use the formula for the tent function in problem 8 with these
values of a and b to see

G(x, ξ) =

{

−(L− ξ)x/L, 0 ≤ x ≤ ξ
(x− L)ξ/L, ξ ≤ x ≤ L.

(23)

This finishes this problem and the exam. (Whew!)

But there is a second approach to this problem. Let’s see if we can pull that off:

We integrate the ODE u′′ = f directly starting from x = 0 to get

u′(x) = u′(0) +

∫ x

0

f(ξ) dξ.

Integrating a second time we have

u(x) = u′(0)x+

∫ x

0

∫ t

0

f(ξ) dξ dt.

Now we want to switch the order of integration. This is not a change of variable
nor integration by parts or any other manipulation, but simply a change of

the order of integration according to Fubini’s theorem, which says that
if we have iterated integrals or an iterated intgral as we have here, then
(under certain circumstances) the order of integration may be switched with the
appropriate changes of limits of integration. To see how this works, note that
the limits of integration determine a certain triangular region in the t, ξ plane:

On the left note the region Ux = {(t, ξ) : 0 < t < x, 0 < ξ < t} described
according to the limits in the integration: First one fixes t with 0 < t < x.
Then one considers the vertical segment 0 < ξ < t. The union of these seg-
ments gives the region Ux. We say these segments foliate or slice the region

vertically. Thus, these iterated integrals are built around slicing the domain
vertically. Fubini’s theorem tells us two things in this situation. First, the the-
orem is built around the idea that these iterated integrals represent a single
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area integration over the region Ux. Thus, according to Fubini’s theorem we
can (and should) write

∫ x

0

∫ t

0

f(ξ) dξ dt =

∫

(t,ξ)∈Ux

f(ξ).

Thus, the region Ux is a domain of integration in its own right where we consider
the integrand f(ξ) as a function of two variables φ(t, ξ) = f(ξ) which just
happens to only depend on one of them.

Second, Fubini’s theorem says we can slice horizontally instead of vertically.
This approach to folating the domain is illustrated on the right. We fix ξ
between 0 and x, and then the horizontal slice has limits ξ < t < x. Thus, the
region Ux may be also written as

Ux = {(t, ξ) : 0 < ξ < x, ξ < t < x}.

Note that these changes of limits were exactly what was discussed in Problem 3
Part (d). In the end, Fubini’s theorem tell’s us we can write the (area) integral
as iterated integrals with the order of integration for the iterated integrals in
either order. The integrand remains unchanged:

u(x) = u′(0)x+

∫ x

0

∫ x

ξ

f(ξ) dt dξ.

Now, we may proceed to simplify this new iterated integral:

u(x) = u′(0)x+

∫ x

0

f(ξ)

∫ x

ξ

1 dt dξ = u′(0)x+

∫ x

0

f(ξ)(x− ξ) dξ.

There are essentially two more steps. One is to use the second boundary condi-
tion u(L) = 0 to conclude

u′(0) = − 1

L

∫ L

0

f(ξ)(L− ξ) dξ.

Thus, we have

u(x) =

∫ x

0

f(ξ)(x− ξ) dξ − x

L

∫ L

0

f(ξ)(L− ξ) dξ.

And finally, we need to combine these integrals so we have the form required
for the Green’s function involving a single integral from ξ = 0 to ξ = L. We
accomplish this by using a characteristic function

χ[0,x)(ξ) =

{

1, ξ ∈ [0, x)
0, ξ /∈ [0, x).
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in the first integral. Thus,

u(x) =

∫ L

0

f(ξ)(x− ξ)χ(0,x) dξ −
∫ L

0

f(ξ)
L− ξ

L
x dξ.

=

∫ L

0

f(ξ)

(

(x− ξ)χ(0,x) −
L− ξ

L
x

)

dξ.

Notice the values of the characteristic function at the endpoints do not effect
the value fo the integral. Now, hopefully the function contained in the large
parentheses is our Green’s function:

(x− ξ)χ(0,x) −
L− ξ

L
x =

{

x− ξ − (L− ξ)x/L, ξ ∈ [0, x)
(ξ − L)x/L, ξ /∈ [0, x).

=

{

(x− L)ξ/L, 0 ≤ ξ ≤ x
(ξ − L)x/L, x ≤ ξ ≤ L.

Switching the way we slice the domain once again, we see this agrees precisely
with (23).

This direct integration approach can also be tackled using integration by parts
as follows: Say we start with

u(x) = u′(0)x+

∫ x

0

∫ x

ξ

f(ξ) dt dξ. (24)

Setting

ψ(t) =

∫ t

0

f(ξ) dξ and dφ = dt

we have
ψ′(t) = f(t) and φ(t) = t.

Thus, integrating by parts, we get
∫ x

0

∫ x

ξ

f(ξ) dt dξ = φψ∣
∣

x

t=0

−
∫ x

0

φψ′ dt

=

[

t

∫ t

0

f(ξ) dξ

]

∣

∣

x

t=0

−
∫ x

0

tf(t) dt

= x

∫ x

0

f(ξ) dξ −
∫ x

0

ξf(ξ) dξ

=

∫ x

0

(x− ξ)f(ξ) dξ.

The rest goes pretty much as before, but let me see if I can clean that up a bit
on the second pass:

u′(0) =
1

L

∫ L

0

(ξ − L)f(ξ) dξ.
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Therefore, substiting what we have found into (24), we get

u(x) =
x

L

∫ L

0

(ξ − L)f(ξ) dξ +

∫ x

0

(x− ξ)f(ξ) dξ

=

∫ L

0

(

ξ − L

L
x+ χ[0,x](ξ)(x− ξ)

)

f(ξ) dξ.

Then, as above

ξ − L

L
x+ χ[0,x](ξ)(x− ξ) =

{

ξ(x− L)/L, 0 ≤ ξ ≤ x
(ξ − L)x/L, x < ξ ≤ L,

which is easily seen to be the same as

ξ − L

L
x+ χ[0,x](ξ)(x− ξ) =

{

(ξ − L)x/L, 0 ≤ x ≤ ξ
ξ(x− L)/L, ξ ≤ x ≤ L.


