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By regularity we mean roughly continuity and differentiability properties
of functions. There are various measures for continuity and differentiability and
some of those are commonly represented by sets (specifically by sets of functions).
We introduce some of these here, and generally collect notes related to Chapter 4 on
differentiation in the text Mathematical Methods in the Physical Sciences by Mary
Boas.

The book should be viewed as a kind of starting place for topics. It is usually
helpful to view the topics in the book from a more general or abstract point of view,
and I will attempt to provide that framework in the lectures.

Contents

1 Continuity 2

2 Kinds of Sets 4

3 Continuity II 7

4 Path Connectedness
Simply Connected Sets 13

5 Continuity Measures
Fractional Differentiability 16

1



6 Partial Derivatives 21
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1 Continuity

The simplest and most familiar regularity classes of functions are the classes Ck for
k = 0, 1, 2, . . .. Generally, continuity is represented by the symbol C0. A real valued
function f defined on the real line R or an interval I ⊂ R is continuous at x0 ∈ I if
the following condition holds:

Given ǫ > 0, there is some δ > 0 for which

x ∈ I, and
|x − x0| < δ

}

=⇒ |f(x) − f(x0)| < ǫ.

Such a function f : I → R is simply continuous or C0 if it is continuous at each
point in I. Thus C0(I) denotes the collection of all continuous real valued functions
on the interval I. The same set of functions may be denoted by

C0(a, b) if I = (a, b),

C0[a, b) if I = [a, b),

C0[a, b] if I = [a, b].

A function f : (a, b) → R is differentiable at x0 ∈ (a, b) if the limit

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
(1)

exists. A function is differentiable on (a, b) if f is differentiable at each point
x0 ∈ (a, b). In this case (1) defines a function f ′ : (a, b) → R called the derivative of
f . Let us denote by Diff(a, b) the collection of all differentiable real valued functions
defined on (a, b). Then

C1(a, b) = {f ∈ Diff(a, b) : f ′ ∈ C0(a, b)}.

If I is any interval, then C1(I) denotes the collection of functions f : I → R such
that there is an open interval J = (α, β) with I ⊂ J and a function φ ∈ C1(J) such
that the restriction of φ to I satisfies

φ∣
∣

I

= f.

Naturally, the function φ is called an extension of f .

2



Exercise 1 Show that if f ∈ Diff(a, b), then f ∈ C0(a, b).

Since differentiability implies continuity, we know C1(I) ⊂ C0(I). Also, the functions
with k continuous derivatives are given inductively by

Ck(I) = {f ∈ Ck−1(I) : f (k−1) ∈ C1(I)}.

In the study of partial differential equations we consider functions u = u(x1, . . . , xn)
of several variables. Usually these functions are real valued, but sometimes they are
vector valued with

u : U → Rk where U ⊂ Rn.

We wish to extend certain notions of continuity and differentiability to these more
general functions. The sets corresponding to open intervals (a, b) and more general
sets like half open/half closed intervals [a, b) are somewhat more complicated in higher
dimensions.

At length, we will define the basic differentiability classes

C0(U) ⊃ Diff(U) ⊃ C1(U) ⊃ C2(U) ⊃ C3(U) ⊃ · · · ⊃ Ck(U) ⊃ · · ·

for U ⊂ Rn without too much difficulty. After that, roughly speaking, we would like
to insert fractional differentiability classes in between each of the Ck spaces. For
example, we would like a continuum of classes C0,α(U) for 0 < α < 1 such that

C0(U) ⊃ C0,α ⊃ Diff(U) ⊃ C1(U)

so that u ∈ C0,α, say if α = 1/2, means roughly that u is “half differentiable.”
Similarly, we want classes Ck,α for every k with

Ck(U) ⊃ Ck,α ⊃ Ck+1(U)

where u ∈ Ck means u is k times differentiable and the k-th partials of u have a
fractional measure (α) of differentiability. There are two main problems encountered
in this construction. We may enumerate them as

1. The inclusion problem.

2. The metric problem.
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The inclusion problem is the simpler one. It is simply that the inclusion Ck ⊂ Ck,α

only holds under certain additional hypotheses. Thus, some understanding of what
is needed to have the desired inclusion is required. The metric problem is somewhat
more complicated to explain at this point because it requires an understanding of some
more general structures. Roughly speaking, in the study of differential equations (and
regularity in particular) it is extremely useful to be able to measure the distance
between functions. The metric problem is that, again, the most natural definitions
for the fractional differentiability of Ck,α do not lend themselves immediately to a
reasonable notion of distance between functions. Fortunately, some aspects of the
metric problem already arise in the Ck spaces and even in C0, so can be addressed in
a relatively simple context. We take this up at the beginning of the next section on
continuity. First we discuss some preliminaries concerning sets in Rn.

2 Kinds of Sets

The set Rn consisting of ordered n-tuples of real numbers,

Rn = {x = (x1, . . . , xn) : x1, . . . , xn ∈ R}

is called n dimensional Euclidean space. A set U ⊂ Rn is said to be open if for
each p = (p1, . . . , pn) ∈ U , there is some r > 0 so that the (open) ball

Br(p) = {x ∈ Rn : |x − p| < r} ⊂ U.

In the definition of the open ball, the expression

|x − p| =

(

n
∑

j=1

(xj − pj)
2

)1/2

is called the Euclidean distance from x to p.

Exercise 2 Show that an open ball in Rn is open. Show that

Br(p) = {x ∈ Rn : |x − p| ≤ r}

is not open.
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Summary/Observation: We have defined the Ck differentiability classes
Ck(I) for I an interval in R1. When we were done, we had

C0(I) ⊃ C1(I) ⊃ C2(I) ⊃ C3(I) · · · .

Note that we might like to add to this inclusion C0(I) ⊃ Diff(I) ⊃ C1(I),
but Diff(I) was only defined for I = (a, b) an open interval. It was easy
to define continuity C0 for any interval. In fact, we could have defined
C0(E) for any subset of R1, not just intervals, and we can define the class
C0 in a much much broader context which will be discussed below. But
we needed an open interval to consider difference quotients and define
differentiability. The notion of open sets given above may seem simple,
but it is rather powerful. It is useful for us even back in R1, and we can
use it to define C1(U) for any open set in R1. Then C1(E) can be defined
for any set in R1 as the set of functions with a C1 extension to some open
set containing E. Then Ck(E) may be defined inductively.

An interval I ⊂ R is said to be a finite interval if it is bounded below and bounded
above, that is, if it has well-defined left and right endpoints a ≤ b in R. Note that in
our discussion of intervals above infinite intervals like [a,∞) and R = (−∞,∞) were
allowed. We now return to our immediate goal of describing the analogue of finite
open intervals (a, b) and finite closed intervals [a, b] in higher dimensional Euclidean
spaces.

An open set U ⊂ Rn is connected if whenever V1 and V2 are disjoint open sets
in Rn with the property that U ⊂ V1 ∪ V2, then either

V1 ∩ U = φ or V2 ∩ U = φ.

(Here φ is the empty set.)

Exercise 3 Show B1(−1)∪B1(1) is not connected in R1. In fact, the open connected
sets in R1 are precisely the open intervals (a, b).

We will give another characterization of open connected sets in Rn below.

A set E is closed in Rn if the complement Rn\E is open.

Exercise 4 Show that the empty set is open and Rn is closed.
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Any union of open sets is open, and it follows that any intersection of closed sets
is closed. Any set is a subset of the closed set R, so the collection of closed sets
containing any set E is nonempty. This means the intersection of all closed sets
containing a set E is always a well-defined set. We call this intersection

E =
⋂

C closed,

E⊂C

C

the closure of E.

Exercise 5 The closure of any set E is closed. What is the closure of the empty set?

A subset U of Rn is bounded if there is a number M for which

|x| < M whenever x ∈ U.

The expression

|x| =

(

n
∑

j=1

x2
j

)1/2

appearing in the definition of boundedness is called the Euclidean norm of x.

The sets in Rn corresponding to open intervals in R1 are the open con-
nected sets. These can be much more complicated than open intervals.

A finite open interval (a, b) ⊂ R1 is one for which a, b ∈ R. Recall that
we denote R by (−∞,∞). The sets in Rn corresponding to finite open
intervals in R1 are the open connected sets which are bounded.

The sets in Rn corresponding to the finite closed intervals [a, b] ⊂ R1 are
the closures of open connected sets which are bounded.

Exercise 6 If E is bounded, then the closure E of E is also bounded.

We have discussed what it means for a set E ⊂ Rn to be open, closed, connected,
and/or bounded. These are a good start concerning the elementary understanding of
the properties of sets in Rn. After a further discussion of continuity, we can add to
this list the notions of being pathwise connected and simply connected which is
are also sometimes useful.
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3 Continuity II

If U ⊂ Rn and u : U → Rk, then our definition of continuity above adapts with a
minimal change of notation: The function u is continuous at p ∈ U if

Given ǫ > 0, there is some δ > 0 for which

x ∈ U, and
|x − p| < δ

}

=⇒ |u(x) − u(p)| < ǫ.

Note that we are using the Euclidean distance here instead of the absolute value.
In fact this definition applies in much more generality which is very worthwhile to
introduce.

The Euclidean norm |x| = |x − 0| satisfies the following properties:

(i non-negative homogeneity) |cx| = |c||x| for all c ∈ R and x ∈ Rn,

(ii positive definite) |x| = 0 ⇐⇒ x = 0, and

(iii the triangle inequality for norms) |x + p| ≤ |x| + |p| for all p,x ∈ Rn.

Given any vector space V (over R) we say ‖ · ‖ : V → [0,∞) is a norm if we
have

(i non-negative homogeneity) ‖cv‖ = |c|‖v‖ for all c ∈ R and v ∈ V ,

(ii positive definite) ‖v‖ = 0 ⇐⇒ v = 0, and

(iii the triangle inequality for norms ) ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V .

Exercise 7 Write down the definition of a vector space.

Solution: A vector space V over a field F is a set with an operation of addition, i.e.,
a function + : V ×V → V whose values are written as (v, w) 7→ v+w, and a scaling,
i.e., a function (a, v) 7→ av ∈ V for (a, v) ∈ F × V , such that V is a commutative
group under addition:

[i associative] (v + w) + z = v + (w + z) for every v, w, z ∈ V .

[ii identity element] There is some 0 ∈ V such that 0 + v = v + 0 = v for every
v ∈ V . The vector 0 is called the additive identity.
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[iii inverses] For each v ∈ V , there is some w ∈ V with v + w = w + v = 0. The
vector w is called the additive inverse of v and is denoted by w = −v.

[iv commutative] v + w = w + v for all v, w ∈ V .

The scaling is associative in the sense that

(ab)v = a(bv) for every a, b ∈ F and v ∈ V .

Finally, the addition and scaling should satisfy two distributive properties:

(i distributive of scalars over vectors) a(v +w) = av +aw for a ∈ F and v, w ∈
V .

(i distributive of vectors over scalars) (a+b)v = av+bv for a, b ∈ F and v ∈ V .

We could go into the algebraic properties possessed by a field in general, but let it
suffice to say that the real numbers R and and the complex numbers C are fields.
Roughly speaking there are two operations, addition and multiplication, in a field F ;
the field is a group under addition, and the nonzero elements F ∗ are a group under
multiplication. The Euclidean spaces Rn are vector spaces over R.

Exercise 8 1. Show that Ck(I) is a vector space for every k = 0, 1, 2, . . ..

2. Show C0(U) is a vector space for U ⊂ Rn.

Exercise 9 Given any vector space V (over R) with a norm ‖ · ‖, show that

d : V × V → [0,∞) by d(v, w) = ‖w − v‖

satisfies

(i reflexive) d(v, w) = d(w, v) for all v, w ∈ V ,

(ii positive definite) d(v, w) = 0 ⇐⇒ v = w, and

(iii satisfies the triangle inequality for distances) d(v, w) ≤ d(v, z) + d(z, w)
for all v, w, z ∈ V .

The function d is called the norm induced distance.
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Notice that the properties satisfied by a norm induced distance do not depend on the
vector space structure of V .

Given any set X and a function d : X × X → [0,∞) which satisfies the following
conditions:

(i reflexive) d(x, y) = d(y, x) for all x, y ∈ X,

(ii positive definite) d(x, y) = 0 ⇐⇒ x = y, and

(iii satisfies the triangle inequality for distances) d(x, y) ≤ d(x, z)+d(z, y) for
all x, y, z ∈ X.

we say X is a metric space and d is a distance function (or sometimes “metric”).
In this way, we can adapt our definition of continuity to a much more general

context:
If X1 and X2 are metric spaces, with distance functions d1 and d2 respectively,

and f : X1 → X2 is a function, then we say f is continuous at p ∈ X1 if the following
condition holds:

Given ǫ > 0, there is some δ > 0 for which

x ∈ X1, and
d1(x, p) < δ

}

=⇒ d2(f(x), f(p)) < ǫ.

The class C0(X1 → X2) consists of all functions f : X1 → X2 which are continuous
at all points of X1.

Exercise 10 Show that

d(x,p) =

n
∑

j=1

|pj − xj |

is a distance function on Rn. How is this distance related to Euclidean distance?

Returning to simpler cases, when the functions under consideration are real valued,
we simply write C0(X1) for C0(X1 → R). Even in the simplest case C0(I) where I
is in interval in R it is sometimes convenient to consider C0 itself as a metric space.
This is usually accomplished by setting

d(f, g) = sup
x∈I

|g(x) − f(x)|. (2)

This brings up a minor technical difficulty.
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Exercise 11 Find two continuous (real valued) functions f and g on the interval
I = (0, 1) such that the value d(f, g) defined in (2) is not a finite number.

There are various approaches to dealing with this difficulty. The ususal one is to
simply realize that if you want C0 to be a metric space, then you need to restrict to
some smaller subset of functions. In essence, you can’t (always) treat C0 as a metric
space. I will suggest a variant of this approach below with some additional details and
a somewhat lengthy discussion. Before starting that, let me mention a couple other
alternatives/special cases. One “quick fix” is to restrict attention to only compact
(closed and bounded) sets. Then in Rn at least we have recourse to the following
result:

Theorem 1 (max/min theorem) If K is a nonempty subset of Rn which is com-
pact, i.e., closed and bounded, and u ∈ C0(K), then there are points p and q in K
such that

u(p) ≤ u(x) ≤ u(q) for every x ∈ K.

The values u(p) and u(q) are called the minimum and maximum of u on K respec-
tively. The points p and q are called minimum and maximum points respectively. The
minimum and maximum values are unique, but the minimum and maximum points
are not necessarily unique.

Exercise 12 The max/min value theorem asserts that every continuous real valued
function f ∈ C0[a, b] defined on a closed interval in R attains its maxiumum and
minimum values at points in the interval [a, b]. Use this result to show that if f, g ∈
C0[a, b], then

sup
x∈I

|g(x) − f(x)| < ∞.

More generally, C0(K) is a metric space with distance function

d(f, g) = sup
x∈K

|g(x) − f(x)| (3)

whenever K is a compact subset of Rn.
Another possibility is to allow distance functions with values in the extended

real numbers [0,∞]. On the one hand arithmetic in [0,∞], and even in (−∞,∞],
is easy to define setting a + ∞ = ∞ when a ∈ R. On the other hand, the “point at
infinity” ∞ has no additive inverse in this arithmetic, and the informational value of
the condition d(f, g) = ∞ is somewhat limited.
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To introduce our approach, let us first note that the proposed distance function
given (2) or (3) “looks like” it comes from a norm. Fortunately, we’ve already
discussed the notion of a norm. Let us set

C0
b (X) = {u ∈ C0(X) : sup

x∈X
|u(x)| < ∞}.

Exercise 13 Show that of X is any metric space, then C0
b (X) is a vector space and

‖u‖C0 = sup
x∈X

|u(x)| defines a norm on the subspace C0
b (X). (4)

In fact, given any set A whatsoever the set of bounded real valued functions on
A, sometimes denoted B(A) is a vector space (over R), and if we have A = X is a
metric space, then C0

b (X) ⊂ B(X) is a subspace. Actually,

B(A) = {f : A → R such that sup
x∈A

|f(x)| < ∞}

is a normed space with the norm

‖f‖C0 = sup
x∈A

|f(x)| (5)

though this is not a space we will have much use for in this course.

To summarize, we use the notation C0
b (X) to denote the normed space associated

with C0(X) where X is a metric space and (4) defines the norm so that

d0(u, v) = ‖u − v‖C0 = sup
x∈X

|u(x) − v(x)|

defines the C0 distance on C0
b (X). The norm (4) is variously called the sup norm, the

C0 norm, the norm of uniform convergence, and (borrowing from the intagrability
classes we will talk about later) the L∞ norm. It is an important norm. Furthermore,
the approach we have presented here is a precursor of the standard approach to the
Hölder spaces Ck,α discussed below.

Exercise 14 f : R → R by f(x) = x2 satisfies f ∈ C0(R)\C0
b (R). (The point being:

There are some very common and familiar and useful functions, like polynomials,
which do not fall into natural normed spaces associated with differentiability. On the
other hand, some other useful functions like sin, cos, and tan−1 are in C0

b (R).)
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As a final remark, the possibility of considering a space of functions like F =
C0

b (X) as a metric space in its own right should suggest that one might consider
functions on F and the real valued continuous functions C0(F) in particular. In
fact, one does consider such functions f : F → R, and these are commonlly called
functionals. A continuous functional is a continuous function on a metric space
of functions. The subject called Calculus of Variations is about minimizing such
functionals. We know enough now to formulate a simple problem in the calculus of
variations:

Given an open disk U = B1(0) = {(x, y) : x2 + y2 < 1} ⊂ R2 in the plane,
and a fixed function u0 ∈ C1(U), find the function in

A =

{

u ∈ C1(U) : for which u∣
∣

∂U

= u0

}

with graph of least area. The area of the graph of u is defined by

area[u] =

∫

U

√

1 +

(

∂u

∂x

)2

+

(

∂u

∂y

)2

.

Here we are considering the area functional area : C1(U) → R. Technically, we
haven’t made C1 a metric space, but that is now easy because

‖u‖C1 = ‖u‖C0 + max

{
∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

C0

,

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

C0

}

defines a norm. Technically, we haven’t defined partial derivatives yet either, but
I expect you have at least a passing familiarity with them and know these partial
derivatives are given by limits of difference quotients

∂u

∂x
(p) = lim

h→0

u(p1 + h, p2) − u(p)

h
and

∂u

∂y
(p) = lim

h→0

u(p1, p2 + h) − u(p)

h

where p = (p1, p2) lies in an open set of R2 where u is defined.

Exercise 15 Show that the space C1(U) consisting of functions with a C1 extension
to an open subset V of R2 with U ⊂ V is a vector space and that

[u]C1 = max

{
∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

C0

,

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

C0

}
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satisfies the non-negative homogeneity and triangle inequality for norms on

C1
b (U) = {u ∈ C1(U) : ‖u‖C0 < ∞ and [u]C1 < ∞}.

This function [ · ]C1 : C1
b (U) → [0,∞) is called the C1 seminorm. Why isn’t

u 7→ [u]C1 a norm?

4 Path Connectedness

Simply Connected Sets

It should now be clear what it means for a function r : I → Rn where I is an interval
to be continuous. We have discussed the space C0(I → Rn). You should have also
seen, at some point, differentiable functions r : I → Rn. The image points of such a
function are determined by n separate real valued functions of one variable:

r(t) = (r1(t), r2(t), . . . , rn(t)). (6)

When n = 2 the image is a parameterized curve in the plane and we might write r(t) =
(x(t), y(t)). When n = 3, the image is a parameterized curve in three dimensional
Euclidean space, and we might write r(t) = (x(t), y(t), z(t)). When n > 3, the image
is still a curve. Unfortunately, continuous curves can be very complicated.

Theorem 2 (space filling curve) There exists a continuous function R : [0, 1] →
R3 such that for every x in the unit cube

C = [0, 1] × [0, 1] × [0, 1] = {(x, y, z) : 0 ≤ x, y, z ≤ 1}

there is some t ∈ [0, 1] such that r(t) = x. The function r is surjective (onto).

Fortunately, differentiable curves are not so badly behaved. We say r : (a, b) → Rn is
differentiable if each of the functions r1, r2, . . . , rn appearing in (6) is differentiable.
The vector valued derivative of such a vector valued function is given simply by

r′(t) = (r′1(t), r
′
2(t), . . . , r

′
n(t)).

To get an idea of the geometric meaning of this vector, consider the following vector
valued difference quotient:

r(t + h) − r(t)

h
.
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Exercise 16 Show that

lim
h→0

r(t + h) − r(t)

h
= r′(t).

The vector r(t + h) − r(t) can be pictured as the secant vector which has origin at
the point r(t) and terminal point at r(t+h). See Figure 1. The difference quotient is

Figure 1: A curve in the plane with a secant vector from r(t) to r(t + h).

a real valued scaling of the secant vector, so it is still in the direction of a secant, and
if there is a finite limit r′(t), then the resulting vector should be a tangent vector.

Exercise 17 Explain why the value of |r′(t)| is the rate of change of change of the
position r(t) with respect to the parameter t, i.e., the speed.

There are some special curves and particular parameterizations that are useful.
One of those is a straight line from p to q parameterized as a convex combination.
This is given by

r(t) = (1 − t)p + tq.

Exercise 18 Find r(0), r(1), and r′(t).

A curve which is parameterized by a collection of concatenated straight line seg-
ments is called a polygonal path. For example,

γ(t) =

{

(t, 0), 0 ≤ t ≤ 1
(1, t − 1), 1 ≤ t ≤ 2

(7)

is a concatenated path.

Exercise 19 Sketch the image of the path γ defined in (7).
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Generally, by a path we simply mean a continuous vector valued function on an
interval, but as pointed out above, these can be very complicated. A path is said to
be a C1 path if each of the coordinate functions r1, r2, . . . , rn is C1.

An set U ⊂ Rn is said to be path connected if given any two points p and q in
U , there is a path γ : [a, b] → U with γ(a) = p and γ(b) = q. In this case, we say the
path γ connects p to q.

The following results are the main objective of this section:

Theorem 3 If U is an open subset of Rn and U is path connected, then U is con-
nected.

Theorem 4 If U is an open subset of Rn and U is connected, then U is path con-
nected.

Theorem 5 If U is an open subset of Rn and U is connected, then any two points
in U can be connected by a polygonal path.

Theorem 6 If U is an open subset of Rn and U is connected, then any two points
in U can be connected by a C1 path.

Finally, we explain what it means for a subset U ⊂ Rn to be simply connected.
A path r : [a, b] → Rn is closed if r(a) = r(b). A closed path is also called a loop.

A continuous function H : [a, b] × [0, 1] → X is a homotopy or continuous
deformation of one path r : [a, b] → X into another path γ : [a, b] → X if

r(t) = H(t, 0) for t ∈ [a, b], and

γ(t) = H(t, 1) for t ∈ [a, b].

Here X can be any metric space, but we have in mind particularly the case X = U ⊂
Rn.

A set U ⊂ Rn is simply connected if given any loop r : [a, b] → U , there exists
a homotopy H : [a, b] × [0, 1] → U such that

r(t) = H(t, 0) for t ∈ [a, b],

H(a, s) = H(b, s) for s ∈ [0, 1] so that each path h : t 7→ H(t, s) is a loop, and

H(t, 1) ≡ q for some point q ∈ U .
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5 Continuity Measures

Fractional Differentiability

A function u : U → R defined on U ⊂ Rn is Lipschitz continuous at p ∈ U if the
following condition holds:

There is some δ > 0 and some Λ for which

x ∈ U
|x − p| < δ

}

=⇒ |u(x) − u(p)| < Λ|x− p|. (8)

Exercise 20 Show that if u is Lipschitz continuous at p, then u is continuous at p.

Extending the pointwise Lipschitz condition given above to sets requires some care.
A function u : U → R with U ⊂ Rn is said to be globally Lipschitz at p with
respect to E ⊂ U if

sup
x∈E\{p}

|u(x) − u(p)|

|x − p|
< ∞.

In this case, we can set

Λ = sup
x∈E\{p}

|u(x) − u(p)|

|x − p|
,

and we call Λ the Lipschitz constant of u at p. The set of all Lipschitz functions on
a set U ⊂ Rn usually refers to those functions which are globally Lipschitz at every
point of U and for which the global Lipschitz constant

[u]C0,1 = sup
p∈U

sup
x∈E\{p}

|u(x) − u(p)|

|x − p|
= sup

p,x∈U

x 6=p

|u(x) − u(p)|

|x − p|
< ∞.

Again, this is a seminorm, and it is usual to write

Lip(U) = {u : U → R such that [u]C1,0 < ∞}.

For u ∈ Lip(U), the constant [u]C0,1 is called the Lipschitz constant for u.

Exercise 21 1. Show f(x) = |x| has f ∈ Lip(R) but g(x) = x2 has g /∈ Lip(R).

2. Show u(x) = |x| has u ∈ Lip(Rn).
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Exercise 22 In keeping with the discussion of continuity above, the space

Lipb(U) = {u : U → R such that ‖u‖C0 < ∞ and [u]C1,0 < ∞}

which is a normed (and metric) space with norm given by

‖u‖C0,1 = ‖u‖C0 + [u]C0,1 ,

is also referred to as the Lipschitz functions and sometimes denoted by Lip(U) but
more commonly by C0,1(U). In particular, when U is an open bounded set in Rn and
one refers to Lip(U) there is no ambiguity because Lipb(U) = C0,1(U) and Lip(U) are
the same in that case; see below.

We have just described at least four different kinds of Lipschitz functions u : U →
R with respect to a set U ⊂ Rn:

1. The functions which are (locally) Lipschitz at every point in U .

2. The functions which are uniformly (locally) Lipschitz at every point in U , that
is, there is a single constant Λ such that for each p ∈ U there is some δ > 0
such that (8) holds.

3. The functions which are globally Lipschitz at each point of U .

4. The functions which are uniformly globally Lipschitz. Lip(U).

Let us denote these spaces of functions by Lip1(U), Lip2(U), Lip3(U), and Lip(U)
respectively.

1. Show there are sets U for which each of the following hold:

(a) Lip(U) $ Lip3(U) ∩ Lip2(U).

(b) Lip3(U) $ Lip1(U).

(c) Lip2(U) $ Lip1(U).

(d) Lip3(U) ∩ Lip2(U) $ Lip3(U).

(e) Lip3(U) ∩ Lip2(U) $ Lip2(U).

2. Show that

Lip2(U) = {u ∈ C0(U) : u ∈ Lip(K) for each compact set K ⊂ U}.
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3. Show that if U is open, then

Lip2(U) = {u ∈ C0(U) : u ∈ Lip(K) for each compact set K ⊂ U}.

4. Show that if U is compact, then

C0,1(U) = Lip(U) = Lip3(U) = Lip2(U) = Lip1(U).

Sometimes the set

Liploc(U) = {u ∈ C0(U) : u ∈ Lip(K) for each compact set K ⊂ U}

is called the set of locally Lipschitz functions on U . The usual context for this
is when U is an open set. Otherwise, one may need to be particularly careful about
the properties of such functions and the (continuity) properties of functionals on
such a set in particular. There is also a corresponding space of locally Lipschitz
functions Lipb,loc(U) = C0,1

loc (U) which are bounded on compact subsets of U . Again,
this notation is used especially when U is an open subset of Rn.

The set of all (uniformly globally) Lipschitz functions on a subset E of a normed
vector space, and analogues of all the Lipschitz spaces discussed above, may be defined
by simply replacing the Euclidean norm on U in the discussion above with the norm
on the vector space. The resulting space is denoted by Lip(E).

Exercise 23 Formulate a condition defining (uniformly globally) Lipschitz functions
f : X1 → X2 where X1 and X2 are metric spaces and define a seminorm [ · ]C0,1. The
space of all such functions is denoted Lip(X1 → X2). In the special case X1 = X2

and [f ]C0,1 < 1, such a function is called a contraction mapping.

Combining two results known as the Weierstrass’ nondifferentiability theorem and
Rademacher’s differentiability theorem, we can state the following:

Theorem 7 There is a function f ∈ C0(R) which is not differentiable at any point,
and any function f ∈ C0,1(R) is differentiable at most points, in the following sense:
Given any ǫ > 0, there exist open intervals Ij = (aj , bj) for j = 1, 2, 3, . . . such that
the set of points N where f is nondifferentiable satisfies

N ⊂

∞
⋃

j=1

Ij
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and the sum of the lengths of the intervals satisfies

∞
∑

j=1

(bj − aj) < ǫ.

In particular, the length of R is infinite, but the points of nondifferentiability of f
must lie in a set with zero length.

Rademacher’s regularity theorem extends to u ∈ C0,1(U) for any open subset U of
Rn.

Hölder Continuity

A function u : U → R defined on U ⊂ Rn is Hölder continuous at p ∈ U with
Hölder exponent α ∈ (0, 1) if the following condition holds:

There is some δ > 0 and some c for which

x ∈ U
|x − p| < δ

}

=⇒ |u(x) − u(p)| < c|x − p|α. (9)

Exercise 24 Show that if u is Hölder continuous at p, then u is continuous at p.

Exercise 25 Show that if u is Lipschitz continuous at p, then u is Hölder continuous
at p with any exponent 0 < α < 1.

Exercise 26 Show f(x) = x1/3 is Hölder continuous at x = 0 with exponent 1/3 but
not with exponent 1/2 (nor satisfying (9) with α = 1). How about u : Rn → R by
u(x) = |x|1/3?

As with Lipschitz continuity there are various options for the most desirable notion
of a Hölder contiuous function on a set. We can begin with the uniformly globally
Hölder functions for which

[u]C0,α = sup
p∈U

sup
x∈U\{p}

|u(x) − u(p)|

|x − p|α
= sup

p,x∈U

x 6=p

|u(x) − u(p)|

|x − p|α
(10)

is finite and defines a seminorm on C0,α(U) for which we should, perhaps, have an
alternate name. There is not a standard one, but I might suggest Hölα(U). In any
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case, this set has the usual problems concerning inclusion and the lack of a norm. As
with the Lipschitz functions, one option for dealing with both of these problems is to
consider the subspace

C0,α
b (U) = Hölαb (U) = {u ∈ C0(U) : ‖u‖C0 < ∞ and [u]C0,α < ∞}.

This is a normed space with norm

‖u‖C0,α = ‖u‖C0 + [u]C0,α .

Once we have this space of bounded uniformly globally Hölder functions, we
may define the larger space

C0,α
loc (U) = {u ∈ C0(U) : u ∈ C0,α(K) for each compact set K ⊂ U}.

It is customary to let C0,α(U) denote C0,α
loc (U) whenever U is open and to let C0,α(U)

denote C0,α(U) = C0,α
b (U) when U is compact. That is to say, many authors use

these conventions.

Exercise 27 Let f(x) = x1/3. Show f ∈ [C
0,1/2
loc (0, 1) ∩ C

0,1/3
b (0, 1)] but

sup
x∈(0,1)

sup
t∈(0,1)\{x}

|f(t) − f(x)|

|t − x|1/2
= ∞.

Exercise 28 Let f(x) = x2 and g(x) = tan−1(x).

1. Show that f ∈ C
0,1/2
loc (R) but for each x ∈ R

sup
t∈R\{x}

|f(t) − f(x)|

|t − x|1/2
= ∞.

2. Show that g ∈ C
0,1/2
b (R) and for each x ∈ R

sup
t∈R\{x}

|g(t) − g(x)|

|t − x|1/2
< ∞.

Exercise 29 Say u ∈ C0(U) and U is an open subset of Rn. Show that u ∈ C0,α
loc (U)

if and only if
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For each p ∈ U , there is some δ and some c such that

x ∈ U
|x − p| < δ

}

=⇒ |u(x) − u(p)| < c|x − p|α.

This condition is called local pointwise Hölder continuity on U .

Having defined the Hölder classes C0,α “between” C0 and C1, we are now in a position
to define the Hölder fractional differentiability classes between Ck and Ck+1 for the
higher derivatives. Before I do that, let me (at least) state the definition of partial
derivatives (which presumably you all know) and give some related notation which
you probably don’t know.

6 Partial Derivatives

The simplest case in which partial derivatives arise is that in which one has a function
of two variables. Say u = u(x, y) is a function of two variables defined in an open
set U with p = (p1, p2) ∈ U . We defined the first partial derivative of u in the
x-direction at p to be

∂u

∂x
(p) = lim

h→0

u(p1 + h, p2) − u(p1, p2)

h

when this limit exists. We can also call this the first partial of u in the e1 direction
in honor of the standard basis vector e1 = (1, 0). Notice that the limit above may
also be written

lim
h→0

u(p + he1) − u(p)

h
. (11)

Exercise 30 Sketch the graph of u(x, y) = x2 + y2. Let p be a point in the first
quadrant of the domain of u.

1. Along with your graph, sketch the curve

α(t) = p + te1 for t ∈ R

where where we interpret p as (p1, p2, 0) ∈ R3 and e1 = (1, 0, 0).

2. Also sketch the curve

γ(t) = (p + te1, u(p + te1))

where here we interpret p and e1 as points in the domain of u.

21



3. Realize the second curve as the intersection of a vertical plane through the first
curve.

Your solution should look something like what you see in Figure 2.

Figure 2: A curve in the plane y = p2 on the graph of u.

The difference quotient appearing in (11) is the slope of a secant line in the plane
y = p2. Thus, the limit (the x-partial derivative of u) is the slope, in this plane, of
the line tangent to the curve of intersection of the graph of u

G = {(x, y, u(x, y)) : (x, y) ∈ U}

with the vertical plane y = p2. A similar interpretation applies to the other partial
derivative

∂u

∂y
(p) = lim

h→0

u(p + he2) − u(p)

h
.

More generally, we can take a curve α(t) = p + tv in any direction v, and attempt
to compute the derivative:

Dvu(p) = lim
h→0

u(p + hv) − u(p)

h
. (12)

If this limit exists, it is called the directional derivative of u at p in the direction
v.

Exercise 31 If v is a unit vector in (12), then the value of Dvu(p) is the rate of
change of u in the direction v. What does Dvu(p) measure when v is a nonzero
vector but does not have unit length?
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Returning to the special case where the direction of differentiation is v = e1 or e2,
the values

∂u

∂x
(p) and

∂u

∂y
(p)

defined above are called the first partial derivatives of u at p. There are various
notations for these partial derivatives. Among them are

ux and uy,

D1u and D2u,

u1 and u2,

and
D(1,0)u and D(0,1)u. (13)

And of course, we can interpret these partials as special directional derivatives

De1
u and De2

u.

The notation in (13) can be especially useful in certain contexts and we will discuss
it carefully below, though it is rather cumbersome in this simple case.

Notice that the construction of taking a path in the direction of any standard
unit basis vector and attempting the form the limit of a difference quotient works the
same way in any dimension. More precisely, given u : U → R with U and open subset
of Rn and p ∈ U , the partial derivative of u at p = (p1, p2, . . . , pn) is given by

∂u

∂xj
(bp) = lim

h→0

u(p + hej) − u(p)

h

when this limit exists. The picture is harder to draw in higher dimensions. The
construction for general directional derivatives (12) may also be applied with only
a dimensional change.

Exercise 32 How do each of the notations for the first partial derivatives above
change when the dimension is greater than two?

If first partials exist at every point in an open set U on which the function u is
defined, then they also define functions on U . Here is an important point:

For functions of one variable, if the derivative of f exists on an open
interval (a, b), then we say the function f is differentiable and write
f ∈ Diff(a, b), but...
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In more than one dimension, we do not (usually) identify
the existence of partial derivatives with differentiability.

Let us say that if the first partial derivatives of a function of several variables all exist
on an open set U , then u is partially differentiable on U . The following results
illustrate why partially differentiable and differentiable are different things in higher
dimensions.

Theorem 8 If f : (a, b) → R is differentiable at a point x0 ∈ (a, b), then f is
continuous at x0. But the first partial derivatives of u : R2 → R by

u(x, y) =

{

0, xy 6= 0
1, xy = 0

(14)

both exist at the point (0, 0) ∈ R2, but u is not continuous at (0, 0). Therefore, partial
differentiability at a point does not imply continuity.

Exercise 33 Compute the first partials ux and uy at (x, y) = (0, 0) where u : R2 → R
is given by (14), and show that u is not continuous at (0, 0).

Theorem 9 If f : (a, b) → R is differentiable at every point in (a, b), then f ∈
C0(a, b). But the first partial derivatives of u : R2 → R by

u(x, y) =

{

xy/(x2 + y2), (x, y) 6= (0, 0)
0, (x, y) = (0, 0)

(15)

both exist at all points of R2, but u /∈ C0(R2). Therefore, partial differentiability at
all points does not imply continuity.

Exercise 34 Compute the first partials ux and uy at all points in the plane where
u : R2 → R is given by (15), and show that u is not continuous at (0, 0).

The following result is about differential approximation:

Theorem 10 If f : (a, b) → R is differentiable at x0 ∈ (a, b), then

lim
h→0

f(x0 + h) − f(x0) − hf ′(x0)

h
= 0,

but for either of the functions u : R2 → R given by (14) or (15), one does not have

lim
w→0

u(p + w) − u(p) − (ux(p), uy(p)) · w

|w|
= 0 (16)
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where p = (0, 0) and

v ·w = (v1, v2) · (w1, w2) = v1w1 + v2w2

is the dot product.

Exercise 35 Verify the assertion of this theorem.

Notice that the limit in (16) is a somewhat different kind of limit than we have
encountered before. The vector valued increment w can approach p in a much greater
variety of ways than a number x0 + h can approach x0 as h → 0. And this makes a
significant difference.

Definition 1 A function u : U → R with U an open subset of Rn and p ∈ U is
differentiable at p if there is a linear function L : Rn → R such that

lim
w→0

u(p + w) − u(p) − L(w)

|w|
= 0. (17)

The function u is differentiable on U if u is differentiable at every point p ∈ U .

Theorem 11 If u : U → bbr with U an open subset of Rn has first order partial
derivatives defined at all points in some open ball Br(p) ⊂ U , and Dju is continuous
at p for j = 1, . . . , n, then u is differentiable at p.

Exercise 36 If u : U → R is differentiable at p ∈ U , then show the first partial
derivatives Dju(p) exist for j = 1, 2, . . . , n, and express the linear function L : Rn →
R for which (17) holds in terms of the gradient vector

Du(p) = (D1u(p), D2u(p), . . . , Dnu(p)).

Hint: Compare (17) to (16).

Theorem 12 If u : U → R with U an open subset of Rn has first order partial
derivatives which are continuous, i.e., u ∈ C1(U), then u is differentiable and u is
continuous.
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We are now in a position to define the differentiability classes Ck(U) for U ⊂ Rn.
Some aspects of these definitions formalize and extend our discussion even in R1.
First of all, if U is open,

C1(U) = {u ∈ C0(U) : Dju(p) exists for every p ∈ U and

Dju ∈ C0(U) for j = 1, . . . , n }.

For k = 2, 3, 4, . . .,

Ck(U) = {u : Dβu ∈ C1(U) for |β| = k − 1}.

Notice that this definition implies the partial derivatives Dβu(p) with |β| = k − 1
and pinU exist as well as the derivatives Dβu with |β| = k.

For a general set E ⊂ Rn,

Ck(E) = {u ∈ C0(E) : there exists an open set U ⊂ Rn such that E ⊂ U

and there exists u ∈ Ck(U) with u∣
∣

E

= u}.

The spaces Ck(U) and Ck(E) as we have defined them, will not be normed spaces in
general. Following the constructions above, we define

[u]C1 = sup
j

sup
x

|Dju(x)|

which is a seminorm, called the C1 seminorm, on the set of all C1 functions for which
the value is finite. We also define for an open set U ⊂ Rn

C1
b (U) = {u ∈ C1(U) : ‖u‖C0(U) < ∞ and [u]C1(U) < ∞}

which is a normed space with

‖u‖C1(U) = ‖u‖C0(U) + [u]C1(U).

For k = 2, 3, . . ., we define the seminorm

[u]Ck = sup
|β|=k

sup
x

|Dβu(x)|

and
Ck

b (U) = {u ∈ Ck−1
b (U) : [u]Ck(U) < ∞}.

The Ck norm is given in general by

‖u‖Ck =

k
∑

j=0

[u]Cj

where we take [u]C0 = ‖u‖C0.
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Taylor Expansion and Power Series

As an application of the multi-index notation for partial derivatives, we mention some
useful facts about multivariable Taylor expansions and power series. This material is
also covered in Assignment 2 and relates to Boas section 4.2. As in the assignment,
we start with recalling how Taylor expansion works in one dimension. The Taylor
expansion of a function

f ∈ C∞(R) = ∩∞
k=0C

k(R)

at x0 ∈ R is given by
∞
∑

j=0

f (j)(x0)

j!
(x − x0)

j. (18)

Here f (j) denotes the j-th (ordinary) derivative of f as usual:

f (j) =
djf

dxj
.

A function f ∈ C∞(R) is said to be real analytic in the interval I = (x0 − r, x0 + r)
if the series in (18) converges for each x ∈ I and

f(x) =

∞
∑

j=0

f (j)(x0)

j!
(x − x0)

j.

The set of real analytic functions is denoted by Cω. Even for a function which is only
in Ck(a, b), the Taylor approximation theorem always holds. It is very useful and
powerful.

Theorem 13 If f ∈ Ck+1(a, b) and x0 ∈ (a, b), then for any x ∈ (a, b)

f(x) =

k
∑

j=0

f (j)(x0)

j!
(x − x0)

j + Rk(x)

where Rk = Rk(x, x∗) is the k-th order Taylor remainder given by

Rk(x) =
f (k+1)(x∗)

(k + 1)!
(x − x0)

k+1

and x∗ is some (unknown) point between x and x0. Generally, one can say x∗ depends
(in some complicated unknown way) on x, but it is often useful to consder Rn as a
function of both x and x∗ (and x0 as well) since the dependence on each of these
“variables” is explicitly known.
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The question of whether a C∞ function is real analytic is precisely the question of
whether or not one has

lim
k→∞

Rk(x) = 0.

This will generally be true in some open interval Br(x0) = (x0 − r, x0 + r), though
for actual convergence, one can only ensure r ≥ 0. If r = 0, then this (open) interval
is empty. You still get trivial convergence for x = x0, but of course that tells you
nothing. More generally, using the Taylor approximation formula effectively boils
down to getting an estimate (a uniform estimate on some interval) for the k +1 order
derivative.

The basic outline of these results holds in any dimension, though the set of conver-
gence becomes a general ball Br(x0) and you need estimates for all partial derivatives
of order k + 1. I will not state the results in detail.

The Taylor expansion of a function u ∈ C∞(U) at x0 ∈ U ⊂ Rn is given by

∞
∑

j=0

∑

|β|=j

Dβu(x0)

β!
(x − x0)

β. (19)

In this expansion formula β = (β1, β2, . . . , βn) is a multi-index, which simply means

β ∈ Nn = {(m1, . . . , mn) : m1, . . . , mn ∈ N} where N = {0, 1, 2, 3, . . .}.

The derivative Dβu denotes the partial derivative taken βj times with respect to xj

for each j = 1, 2, . . . , n:

Dβu =
∂|β|u

∂xβ1

1 ∂xβ2

2 · · ·∂xβn
n

.

The “length” of a multi-index β is defined by

|β| =
n
∑

j=1

βj .

The factorial of a multi-index β is given by

β! = β1!β2! · · ·βn!.

The multi-index power of a vector variable x = (x1, . . . , xn) ∈ Rn is

xβ = xβ1

1 xβ2

2 · · ·xβn

n .
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A function u ∈ C∞(Rn) is said to be real analytic in the ball Br(p) = {x ∈ Rn :
|x − p| < r} if the series in (19) converges for each x ∈ Br(p) and

u(x) =
∞
∑

j=0

∑

|β|=j

Dβu(x0)

β!
(x − x0)

β.

The set of real analytic functions denoted by Cω(U) where U is an open subset of
Rn consists of those functions u for which u is real analytic on some ball centered at
each point x0 ∈ U .

7 Hölder Continuity and the Ck,α spaces.

We have already given the basic condition (9) for a function to be Hölder continuous.
There are two main settings in which this condition can be used to construct a
space of functions which is normed and lies withing a nested continuum of spaces
measuring fractional differentiability. Naturally, for any function u defined on any set
U (consisting of at least two points) it makes sense to consider the Hölder seminorm
given in (10) by

[u]C0,α = sup
p∈U

sup
x∈U\{p}

|u(x) − u(p)|

|x − p|α
= sup

p,x∈U

x 6=p

|u(x) − u(p)|

|x − p|α
.

This will be a seminorm on the set Hölαb (U) where the value is finite and will be a
term in the C0,α Hölder norm

‖u‖C0,α = ‖u‖C0 + [u]C0,α (20)

whenever that norm is well-defined. The first situation of primary interest is when U
is an open subset of Rn and

C0,α
b (U) = {u ∈ C0(U) : ‖u‖C0 < ∞ and [u]C0,α < ∞}.

In this case, C0,α
b (U) is a normed space with norm given by (20), and we have

C0
b (U) ⊃ C0,α

b (U) ⊃ C0,γ
b (U) ⊃ C1

b (U)

for 0 < α ≤ γ < 1. We can also define for k = 1, 2, . . .

Ck,α
b (U) = {u ∈ Ck

b (U) : [Dβu]C0,α < ∞ for |β| = k}.
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This is a normed space with

‖u‖Ck,α(U) = ‖u‖Ck(U) + [u]Ck,α(U) where [u]Ck,α(U) = sup
|β|=k

[Dβu]C0,α(U). (21)

Here we have
Ck

b (U) ⊃ Ck,α
b (U) ⊃ Ck,γ

b (U) ⊃ Ck+1
b (U)

for 0 < α ≤ γ < 1. Notice that these spaces admit

tan−1 ∈ ∩k,αCk,α(R).

The next situation of primary interest is when U is an open subset Rn whose
closure U is compact. In this case, we define

Ck,α(U) = {u ∈ Ck(U) : Dβu has an extension wβ ∈ C0(U) for 0 ≤ |β| ≤ k

and wβ ∈ C0,α(U) for |β| = k}.

This is a normed space with the same norm given in (21) and we have

Ck
b (U) ⊃ Ck,α

b (U) ⊃ Ck,γ
b (U) ⊃ Ck+1

b (U)

for 0 < α ≤ γ < 1 as desired. Notice that by denoting the set using the closure
notation, U , we are implicitly requiring that the closure be compact.

There are two or three other spaces of Hölder continuous functions which are in
common use. These are now easy to describe, though our primary interest is in the
two above. For example, given an arbitrary subset E ⊂ Rn, on may consider

Ck,α
b (E) = {u ∈ Ck

b (E) : there exists an open set U ⊂ Rn such that E ⊂ U

and there exists u ∈ Ck,α
b (U) with u∣

∣

E

= u}.

This is a normed space with the desired continuum nesting properties, though it
is not commonly used. If the set E in Ck,α

b (E) is compact, then the condition of
boundedness need not be explicit. That is, for a compact set K ⊂ Rn, we can set

Ck,α(K) = {u ∈ Ck(K) : there exists an open set U ⊂ Rn such that K ⊂ U

and there exists u ∈ Ck,α(U) with u∣
∣

E

= u}.

One that is used very often is

Ck,α
loc (U) = {u ∈ Ck(U) : u ∈ Ck,α(K) for each compact set K ⊂ U}.

This is generally not a normed space, but one may generally restrict to some open
subset of U whose closure is compact.
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