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We are now going to prove the Riesz representation theorem for bounded linear
functionals on a Hilbert space. Let me recall the statement:

Theorem 1 (Riesz representation theorem) If 〈 · , · 〉 : H × H → R is any inner
product on a Hilbert space H and L : H → R is a bounded linear functional, i.e.,
L ∈ i0(H) = H∗, then there exists a unique u ∈ H such that

Lv = 〈u, v〉 for all v ∈ H.

The last lecture should have given you a pretty good idea about how to prove
this, or at least start. You start by looking at the null space ker(L) of L which is a
closed subspace of H.

Exercise 1 Show the null space ker(L) of a bounded linear functional L ∈ H∗ is
closed.

We even had a prospective choice for the representing vector which we got like this:
Take u0 ∈ ker(L)⊥\{0}. Then (according to Riesz) some scaling u = αu0 will work.
If so, then

α =
Lu0

|u0|2
. (1)

But (hopefully) the big question which should have been left in your mind at the end
of the last lecture was the following:
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If we look at

Lv = L

(

v −
〈u0, v〉

|u0|2
u0

)

+ L

(

〈u0, v〉

|u0|2
u0

)

while I certainly know v − 〈u0, v〉 u0/|u0|2 ∈ span{u0}⊥, how do I know

L

(

v −
〈u0, v〉

|u0|2
u0

)

= Lv −
〈u0, v〉

|u0|2
Lu0 = Lv −

〈

Lu0

|u0|2
u0, v

〉

= 0? (2)

If we have the equality in (2), then we can say

Lv = L

(

〈u0, v〉

|u0|2
u0

)

=
〈u0, v〉

|u0|2
Lu0 =

〈

Lu0

|u0|2
u0, v

〉

= 〈αu0, v〉 (3)

so we have representation.
Let me point out that we can certainly take u0 ∈ ker(L)⊥\{0}. At least if we

can’t, then ker(L) = H and we can take u = 0 ∈ H, and we are done.

Exercise 2 Once we have a vector u0 ∈ ker(L)\{0}, then we can assume |u0| = 1,
so α = Lu0. How does this simplify the main question (2) above?

Still the question of (2) remains.
You might also recall that the equality of (2) would follow if we knew span{u0}⊥ ⊂

ker(L)⊥⊥ = ker(L). The set equality V ⊥⊥ = V is true for any closed subspace in a
Hilbert space, but we do not have a proof of that fact. (The analogue in the finite
dimensional case used a direct sum decomposition, and the proof of the direct
sum decomposition lemma used that we had a finite basis.) We are apparently stuck.

Riesz’ Trick in Rn

Let us return briefly to our consideration of the finite dimensional case ℓ : Rn → R
and even to our specific mapping ℓ : R3 → R determined by ej 7→ j−1 for j = 1, 2, 3.
The argument from the last lecture should give us that the vector

z = v −
v · u0

|u0|

u0

|u0|
(4)

from the Gram-Schmidt procedure satisfies z ∈ ker(ℓ). It will be observed, however,
that this is hardly the case. In fact, I see no clear and obvious way to see

ℓ(z) = ℓ(v) −
v · u0

|u0|

ℓ(u0)

|u0|
= 0.
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Of course, you can write z as z = z0 + w0 with z0 ∈ ker(ℓ) and w0 ∈ ker(ℓ)⊥ and
then follow through the argument of the double orthgonal complement lemma. Even
if you do that to conclude z = z0 ∈ ker(ℓ), the relation between the decomposition
in (4) involving v and u0 and the decomposition z = z0 + w0 remains (as far as I
can see) still rather obscure. In particular, the relationship depends on the use of
some basis for V = ker(ℓ) which you don’t even have (at least easily) in the infinite
dimensional case.

Riesz had the very clever (and elegant) idea of decomposing v in a manner similar
to

v = v −
v · u0

|u|2
u0 with z =

v · u0

|u|2
u0

but in a crucially different way using a different multiple of u0. That is, consider

v = (v − βu0) + βu0 (5)

where β is some constant to be determined. This gives the residual vector

z = v − βu0 with ℓ(z) = ℓ(v) − βℓ(u0). (6)

Now, all we need to know is that u0 /∈ ker(ℓ) and we can take β = ℓ(v)/ℓ(u0). Then
we get ℓ(z) = 0, i.e., z ∈ ker(ℓ), automatically. In this way we have ℓ(v) = βℓ(u0).
But, do we get Riesz representation from this and the choice suggested in (1)? In
fact,

v ·
ℓ(u0)

|u0|2
u0 = (v − βu0) ·

ℓ(u0)

|u0|2
u0 + βu0 ·

ℓ(u0)

|u0|2
u0 = β ℓ(u0) = ℓ(v)

since v − βu0 ∈ ker(ℓ) and u0 ∈ ker(ℓ)⊥.

Proof of the Riesz Representation Theorem

Consider
N = {z ∈ H : Lz = 0}

the null space of L. This is a closed vector subspace of H.
If N = H, then we have representation using the zero vector:

Lv = 〈0, v〉,
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and the representation is unique since

〈u, v〉 = 0 for all v ∈ V =⇒ ‖u‖2 = 〈u, u〉 = 0.

So, obviously the more interesting case is when N ( H. In this case, we can take a
vector u0 ∈ N⊥\{0}. Now, normally one would think there are many such vectors
u0, so it’s not so obvious that you can count on anything special from this one.
Apparently, however, the fact that the image of the functional L is R (which is
conspicuously one dimensional) somehow narrows the possibilities.

Thus, the crucial ansatz is to look for a scaling of u0 as the choice of u. That is,
we look for some α ∈ R for which

Lv = 〈αu0, v〉 for all v ∈ H.

Once this ansatz is written down, then you know the identity of the scalar α because
you must have

Lu0 = α‖u0‖
2.

That is,

α =
Lu0

‖u0‖2
.

Once that determination is made, one simply needs to see if (or show that)

u =
Lu0

‖u0‖2
u0 works.

The idea for accomplishing this is somewhat reminiscent of the decomposition of a
vector in a direct sum. That is, we take an arbitrary vector v and decompose it in
terms of a component along N⊥ or more precisely along span(u0):

v = (v − βu0) + βu0.

In order to have v − βu0 ∈ N , we take β = Lv/Lu0. This is a well-defined vector
since u0 /∈ N and so Lu0 6= 0. Note then, that

L(v − βu0) = 0, so v − βu0 ∈ N , and 〈u0, v − βu0〉 = 0.

Then we can compute

〈αu0, v〉 = 〈αu0, v − βu0〉 + 〈αu0, βu0〉

= 〈αu0, βu0〉

= αβ‖u0‖
2

= Lv
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since

αβ =
Lu0

‖u0‖2

Lv

Lu0

=
Lv

‖u0‖2
.

Thus, we have existence of a vector u = αu0 for which

〈u, v〉 = Lv for all v ∈ V .

Uniqneness is, again rather easy: If 〈u, v〉 = 〈ũ, v〉, then taking v = u − ũ, we get

‖u − ũ‖2 = 〈u − ũ, u − ũ〉 = 0. �

One thing to note about our discussion of the Riesz representation theorem: Es-
sentially no inequalities, estimates, questions of convergence, or limits were used. Ba-
sically no (hard) analysis was mentioned. There was a good deal of (perhaps tricky)
algebra and especially linear algebra. To be fair, the usual proofs that a closest
vector in a subspace to a given vector outside that subspace exists involve showing
some sequence is Cauchy, and that involves some elementary estimation, but that is
about it. Incidentally, this is the point where the completeness of a Hilbert space
comes in.

Exercise 3 Show that a closed subset of a Hilbert space is metrically complete. In
particular a closed subspace of a Hilbert space is a Hilbert space. Give an example of
a subspace of a Hilbert space which is neither closed nor complete.

Exercise 4 Give a simplified version of the proof of the Riesz represenation theorem
utilizing the remark made above that you can assume |u0| = 1.

Summary: Final Remarks

Once we have proved the Riesz representation theorem in Hilbert space, we can look
back and see

ker(ℓ) = {z ∈ H : ℓ(z) = 0} = {z ∈ H : 〈u, z〉 = 0} = span{u}⊥.

Thus, since the span span{u} of the representing vector is one-dimensional, the space
ker(ℓ) is the (very large) orthogonal complement. Our intuition was correct, even
though we didn’t use it directly in the proof.

It will noted that all estimates involved here (all analysis) has been swept under
the rug in the exercise from the previous lecture in which one shows the projection

5



onto a closed subspace is well-defined. That analysis, moreover, is aimed at showing
the existence of a vector closest to the closed linear subspace which is the null space
of the function ℓ. In our application to existence and uniqueness of weak solutions
of Poisson’s equation, the actual operator from the PDE is actually further hidden
away in the inner product, and we only really see the abstract properties of the inner
product in the proof of the Riesz theorem above. In this way, there is a kind of
double sweeping of the analysis under the rug. The only means to get back to what is
actually happening with the operator, in this case the Laplace operator, is in regard
to the Poincaré inequality which essentially renders the weak adjoint

B[u, v] =

∫

Du · Dv with [u]W 1,1 = B[u, u]

an inner product.

Exercise 5 (challenge) Where is the positive definiteness of the inner product used/required
in the proof of existence in the Riesz representation theorem?
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