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We will prove the Riesz representation theorem for bounded linear functionals on
a Hilbert space below,1 and this is the setting where the result is of primary interest.
In particular, we want to apply the result to get the existence and uniqueness of weak
solutions of Poisson’s PDE with homogeneous boundary conditions, and in that case
our Hilbert space will be H = H1

0
(U) which is a Sobolev space. Here is the statement:

Theorem 1 (Riesz representation theorem) If 〈 · , · 〉 : H × H → R is any inner
product on a Hilbert space H and L : H → R is a bounded linear functional, i.e.,
L ∈ i0(H) = H∗, then there exists a unique u ∈ H such that

Lv = 〈u, v〉 for all v ∈ H.

It may be helpful to consider the special case of this result in the familiar setting
of finite dimensional linear mappings. Say we have a linear function

ℓ : R
n → R,

that is, a linear functional. Such a function is always continuous and has a number
of other properties with which are (or should be) quite familiar from linear algebra.
One of these is that there exists a particular vector u ∈ Rn such that

ℓ(v) = u · v for all v ∈ R
n. (1)

This observation, and the fact that the vector u is uniquely determined by the func-
tional ℓ, constitute the essential assertion of the Riesz representation theorem. The

1More properly in the next lecture.
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linear functional ℓ is said to be “represented” by the vector u. Of course, the lin-
ear functional ℓ is also represented in these theorems by the inner product, and
that (though it usually almost goes without saying and the emphasis is put on the
representing vector u) is actually a really important point for us in our application.

The right side of the relation (1) uses the usual Euclidean dot product, and the
Riesz representation theorem essentially replaces this with an arbitrary inner product
(and applies to bounded linear functionals on a (potentially) infinite dimensional
Hilbert space).

Let’s attempt to think a little bit about the vector u and why this kind of repre-
sentation occurs. The usual way to do this is to note (or observe) that

u = (ℓ(e1), ℓ(e2), . . . , ℓ(en))

where ej is the j-th standard unit basis vector (with 1 in the j-th entry and zeros
in all other entries). This choice clearly gives

ℓ(ej) = ej · u for j = 1, 2, . . . , n.

The identity
ℓ(v) = u · v for every v ∈ R

n

follows by linearity since we can write v =
∑

(v · ej) ej .
In an infinite dimensional inner product space, like L2(a, b), if you consider an

orthonormal basis like {sin jπ(x−a)/(b−a)}∞j=1
, then you will have to consider series

representation, which can be done, but then you will have questions of convergence
and other inconveniences to deal with. In some sense, it is the point of functional
analysis to avoid such messy details and give a fundamentally different argument
avoiding reference to a basis, or limits, or estimates—but sticking to ideas of linear
algebra. Let’s see if we can suggest how this might be done in the finite dimensional
case where we understand everything.

First of all, if we have a representation ℓ(v) = u · v, then while the connection
between ℓ and u may not be at all obvious, there is one connection which is easy to
make: The subspace

ker(ℓ) = {x : ℓ(x) = 0}

which is the kernel or null space of ℓ will consist of the vectors which are perpen-
dicular to u. That is, on the one hand ker(ℓ) is a vector subspace of Rn and, on the
other hand, the orthogonal complement of any vector u

u⊥ = {x ∈ R
n : x · u = 0}
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is also a subspace. If our representation construction is going to work, these sub-
spaces must match. Note that this gives us a place to start without ever mentioning
a basis.

If ker(ℓ) = Rn, then we can get a representation using u = 0 (the zero vector). In
fact, in this case, u = 0 is the unique choice since

u · v = ũ · v for all v =⇒ (u− ũ) · v = 0.

And taking v = u− ũ, we get |u− ũ| = 0.
Otherwise, there is some nonzero vector u0 ∈ ker(ℓ)⊥. The basic observation of

the Riesz theorem is then that some scaling u = αu0 of u0 will work. If that is
correct, then we need

ℓ(αu0) = αu0 · (αu0) = α2|u0|
2,

so α = ℓ(u0)/|u0|
2. Then the question is: Will

u =
ℓ(u0)

|u0|2
u0 =

ℓ(u0)

|u0|

u0

|u0|
(2)

work?
In fact, we will show that this does work, even in the general infinite dimensional

case. Before we do that, however, it may be instructive to consider a very specific
example. Let ℓ : R3 → R1 by determined by







e1 7→ 0
e2 7→ 1
e3 7→ 2.

(3)

The linearity argument above tells us u = (0, 1, 2) should be the unique vector such
that ℓ(v) = u · v, and clearly this works.

We are supposed, however, to see/find this vector u = (0, 1, 2) without using the
basis {e1, e2, e3}. To do so, we look at

ker(ℓ) = {z ∈ R
3 : ℓ(z) = 0}.

We might be inclined, looking at the definition of ℓ in (3), to think

ker(ℓ) = span{e1}. (4)

Let’s go with that assumption for a moment. Then our argument says to choose an
arbitrary vector u0 ∈ ker(ℓ)⊥. We could take u0 = e2 for example. Then a scaling
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Figure 1: An example of a linear functional ℓ : R3 → R.

u = αu0 is supposed to work. At this point, clearly something has gone wrong
because we will never get u = (0, 1, 2) as a scaling of u0 = (0, 1, 0). What has gone
wrong?

What has gone wrong is that our identification of the null space in (4) is incorrect.
The null space ker(ℓ) is larger than span{e1}. In fact, if we had thought about it a
little bit (and maybe you did) the dimension theorem says

dim Dom(ℓ) = dim Im(ℓ) + dim ker(ℓ). (5)

In this case, dim ker(ℓ) = dim Dom(ℓ) − dim Im(ℓ) = 3 − 1 = 2. And in general, for
ℓ : Rn → R1, we must have dim ker(ℓ) = n − 1. Thus, in the finite dimensional case,
we must have a rather large kernel. In particular, the orthogonal complement of
ker(ℓ) must always satisfy

dim ker(ℓ)⊥ = 1.

Thus, it is no surprise to find the representing vector there. This is the underlying
idea also in the case of an infinite dimensional Hilbert space:

Riesz representation follows because ker(L) is large to the extent that
ker(L)⊥ is one dimensional.

We will return to this point. For the moment, let us give a more careful account of
our example.

We should be able to find another vector in ker(ℓ) for the linear map ℓ : R3 → R

determined by (3). A moment’s thought tells us ℓ : (0,−2, 1) 7→ 0 ·0−2 ·1+1 ·2 = 0.
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Figure 2: An example of a linear functional ℓ : R3 → R; correctly identified null
space.

Thus, ker(ℓ) is a (two dimensional) plane and u = (0, 1, 2) is clearly a normal to that
plane.

In the infinite dimensional case we do not have recourse to the dimension the-
orem/relation (5) telling us ker(ℓ) is large, say of dimension n − 1, so that ker(ℓ)⊥

is small, having dimension 1. These statements, however, do translate into infinite
dimensions (for a continuous functional L ∈ H∗ on a Hilbert space H) in the following
form

ker(L) is large to the extent that

dim ker(L)⊥ = 1 and H = ker(L) ⊕ ker(L)⊥.

The crucial smallness of ker(L)⊥ holds in particular, so that representation is to be
expected. I mention these things now, in part, because these facts do not come out in
the proof. In the proof, we do something that uses much weaker hypotheses but is, in
some sense, much trickier. Nevertheless, it is worth noting that this (true) description
is what underlies and drives the result.

As just mentioned, we more or less need to do something rather tricky to show

u · v =
ℓ(u0)

|u0|2
u0 · v = ℓ(v) for all v ∈ R

n

as required by the choice (2). Frigyes Riesz seems to have been particularly good
at this kind of trickery. Given our previous discussion based on misidentification of
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ker(ℓ), it is clear that we must use rather strongly that u0 ∈ ker(ℓ)⊥. The intuition
is that we must use this fact in some way that takes account of the fact that u0

is orthogonal to every vector in ker(ℓ), and not just some of them. In the finite
dimensional case, every vector v decomposes uniqely as a sum

v = z + w for some z ∈ ker(ℓ) and some w ∈ ker(ℓ)⊥.

In fact, taking ker(ℓ)⊥ = span{u0}, we can write

v =

(

v −
v · u0

|u0|2
u0

)

+
v · u0

|u0|2
u0 (6)

where w = (v · u0)u0/|u0|
2 is the projection of v onto ker(ℓ)⊥. You may recognize

this construction as a part of the Gram-Schmidt orthonormalization procedure, and
it is clear that the residual vector

z = v − (v · u0)u0/|u0|
2 (7)

is in [ker(ℓ)⊥]⊥ = ker(ℓ). What is immediately clear from the Gram-Schmidt con-
struction is that z ∈ span{u0}

⊥ = [ker(ℓ)⊥]⊥. The fact that [ker(ℓ)⊥]⊥ = ker(ℓ) or
more generally that the double orthogonal complement V ⊥⊥ = (V ⊥)⊥ satisfies

V ⊥⊥ = V for any subspace V

requires proof.

Lemma 1 If V is a subspace of Rn, then V ⊥⊥ = V .

Proof: One inclusion is easy. Specifically, if v ∈ V , then clearly v · w = 0 for all
w ∈ V ⊥. This follows from the definition of

V ⊥ = {w ∈ R
n : w · v = 0 for all v ∈ V }.

But this is also the definition of what it means to have v ∈ (V ⊥)⊥ = V ⊥⊥.
The reverse inclusion is trickier: If v ∈ V ⊥⊥, then there are unique vetors z ∈ V

and w ∈ V ⊥ with
v = z + w. (8)

Recalling from the first inclusion that V ⊂ V ⊥⊥, we know z ∈ V ⊥⊥ and, of course,
V ⊥⊥ is a subspace. Therefore,

w = v − z ∈ V ⊥⊥ ∩ V ⊥.

This implies |w|2 = w · w = 0. Hence w = 0 and v = z ∈ V . �

It will be noted that we have used the following result to obtain (8).

6



Lemma 2 If V is a subspace of Rn, then Rn = V ⊕ V ⊥. That is, each v ∈ Rn is
expressed uniquely as v = z + w with z ∈ V and w ∈ V ⊥. The vector z is called the
projection of v onto V .

Proof: If we want to get out of this easily, then we must allow recourse to the fact
that Rn and V are finite dimensional, i.e., these spaces admit bases with finitely many
elements. Say {u1, . . . ,uk} is a basis for V which we can assume (by Gram-Schmidt
orthonormalization) is an orthonormal basis. Then

z = projV (v) =
∑k

j=1
(v · uj)uj.

As a direct extension of our assertion concerning (6) we see that v − z ∈ V ⊥. Thus,
we have v = z + w with z ∈ V and w ∈ V ⊥.

For uniqueness, note that if v = z̃ + w̃ = z + w with z̃ ∈ V and w̃ ∈ V ⊥, then
z − z̃ = w̃ − w ∈ V ∩ V ⊥. That is,

|w̃ − w|2 = (w̃ −w) · (w̃ − w) = 0 and |z− z̃|2 = 0. �

Returning to our discussion of (6) and (7), if we know the vector z from (7) satisfies
z ∈ ker(ℓ), then it is immediate that

ℓ(v) = ℓ

(

v · u0

|u0|2
u0

)

=
ℓ(u0)

|u0|2
v · u0 = v ·

ℓ(u0)

|u0|2
u0,

and we have the Riesz representation proposed in connection with (2).
The argument just given using the finite orthonormal basis for V does not work

when V is infinite dimensional. Nevertheless, the assertions of Lemmas 1 and 2 do
both hold for any closed subspace V of a Hilbert space. In fact, once Lemma 2
is established for a closed subspace V of a Hilbert space, then the argument given
for Lemma 1 is valid in the same context. The following exercise, establishing the
existence of projections in a Hilbert space, is the key.

Exercise 1 Let V be a closed subspace of a Hilbert space H and let p ∈ H\V . Con-
sider a sequence of points xj ∈ V for j = 1, 2, 3, . . . with

lim
j→∞

‖xj = h‖H = dist(p, V ) = inf
x∈V

‖x − p‖H. (9)

(i) Show the sequence {xj}
∞
j=1

is Cauchy.

(ii) Use the completeness of H (and the fact that V is closed) to conclude the limit
limj→∞ xj = x achieves the minimum value in the infemum of (9).

(iii) Show the difference x − p ∈ V ⊥.
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