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I want to prove the existence and uniqueness of weak solutions for the problem
{

−∆u = f, on U

u∣

∣

∂U

≡= 0. (1)

Theorem 1 (existence and uniqueness) Given any bounded open set U ⊂ Rn

and any f ∈ L2(U), there exists a unique weak solution u ∈ H1
0 (U) = W

1,2
0 (U) of

the boundary value problem (1) for Poisson’s equation with homogeneous boundary
values.

Before discussing and proving this theorem, I will state a complementary related
result:

Theorem 2 (regularity) If U ⊂ Rn is an open bounded domain with ∂U a smooth
(C∞) n−1 dimensional submanifold1 and f ∈ C∞(U), then the unique weak solution
from the existence and uniqueness theorem is a classical solution of (1) with u ∈
C∞(U).

Let me say at the outset that, while the existence and uniqueness theorem is (in the
main) a relatively “soft” result relying fundamentally on abstract linear/functional
analysis techniques (which are considered “easy” compared to “hard” analysis like
that required to obtain the regularity result for example) there is still quite a lot
involved, and maybe it is a little ambitious to present such a result. There is a lot to

1A smooth curve or collection of curves if U ⊂ R2, a smooth surface if U ⊂ R3, etc..
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keep track of. We have covered most of the ingredients in some context, and there
are a few new things. In any case, this is a good time and opportunity to make sure
the necessary ideas are consolidated and understood.

The proof may be divided into three parts.

1. Identify a bounded linear functional on H1
0 (U).

2. Identify a non-standard inner product on H1
0 (U).

3. Apply the Riesz representation theorem to obtain existence and uniqueness.

In this lecture I will begin with a review of a preliminary part which could be
prepended to our list above as

0. Give a weak formulation of the problem.

1 Weak Formulation

Remember that the classical formulation says something like this: Find a function
u ∈ C2(U) ∩ C0(U) satisfying (1). The corresponding precise weak formulation is

Find u ∈ H1
0 (U) with

∫

U

Du · Dφ =

∫

U

f φ for every φ ∈ C∞

c (U). (2)

This looks like a weak formulation obtained using integration by parts on a presumed
classical solution:

∫

U

(−∆u) φ =

∫

U

f φ.

Exercise 1 Use the divergence theorem to show that for a classical solution u ∈
C2(U) of (1) the condition (2) holds.

Questions you should be asking: What is H1
0 (U) and where does the homogeneous

boundary condition come in with respect to the weak formulation? The answers to
these questions are related.

First of all, it should be noted that we only integrated by parts once to obtain the
weak formulation, and the derivatives Du appearing on the left in (2) are weak first
partial derivatives. That is Du is a weak gradient or a vector of weak first partials.
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You should know about these and know the space in which they may be found is the
space of weakly differentiable functions W 1(U) or W 1

loc(U). In this particular case,
we are starting out with H1(U) = W 1,2(U) which is the space of weakly differentiable
functions which are square integrable

∫

U

|u|2 < ∞

and with weak first partial derivatives (i.e., “one” weak derivative) in L2(U). The
point of this is that L2(U) and consequently W 1,2(U) is an inner product space
with inner product

〈u, v〉W 1,2 =

∫

U

u v +

n
∑

j=1

∫

U

Duj · Dvj. (3)

In fact, H1(U) = W 1,2(U) is a complete inner product space or Hilbert space.
This much you should, more or less, know. And you should pause and make sure

you know it. In particular, (and I repeat) you should be aware of and appreciate the
fact that the derivatives appearing in (3) are weak derivatives.

The space H1
0(U) = W

1,2
0 (U) may be somewhat new to you, though I think I

mentioned it before. Now, let’s make sure we understand it. We have an inner
product on H1(U). This means we have a norm and a distance. This set of functions
is a metric space, and we know about open sets, closed sets, convergence of sequences
and all the notions that make sense in a metric space. In particular, the intersection
of all closed sets containing a particular subset A ⊂ H1(U) is the closure of that
set and it is well defined as the smallest closed set A containing the set A. This is
topology which should be familiar at least for sets in Rn, but here we’re applying it
in a vector space of functions.

To get H1
0 (U) we take A = C∞

c (U), which is a very familiar vector space. It is
also quite clear that every function φ ∈ C∞

c (U) satisfies φ ∈ L2(U) and the classical
partials Djφ are weak partials with Djφ ∈ L2(U) as well.

H1
0 (U) = C∞

c (U)

where the closure is taken with respect to the W 1,2 norm

‖u‖W 1,2 =

√

∫

U

|u|2 +

∫

U

|Du|2.
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You know A = C∞

c (U) is not only a subset of H1(U), but it is a subspace. It should
be no surprise that H1

0 (U), therefore, is a closed subspace. It is a standard theorem
from functional analysis, furthermore, that a closed subspace in a Hilbert space is also
metrically complete with respect to the same inner product norm (restricted to the
subspace). Thus, H1

0 (U) is a Hilbert space with respect to (3) as well.
Finally, if you think about it, looking for a (weak) solution in H1

0 (U) = C∞

c (U) is
a pretty reasonable way to weakly formulate the boundary condition

u∣

∣

∂U

≡ 0. (4)

Exercise 2 If U ⊂ R2 has ∂U a C2 curve and u ∈ C2(U) satisfies (4) classically
then show u ∈ H1

0 (U). Hint: Consider Uδ = {x ∈ U : dist(x, ∂U) > δ} and mollify
uχUδ

.

The crucial converse also holds: If u ∈ H1
0 (U) ∩ C0(U), then (4) holds.

I think we’re in a position to start the proof.

2 Preliminaries

The weak formulation can be written as

B[u, φ] = 〈f, φ〉 for all φ ∈ C∞

c (U) (5)

where B : H1
0 (U) × H1

0 (U) → R by

B[u, v] =

∫

U

Du · Dv.

This bilinear form B will immediately be recognized, on the one hand, as consisting
of terms from the H1 inner product. It is also directly related to the standard W 1,2

seminorm:

[u]W 1,2 =

√

∫

U

|Du|2.

We will observe in the second step that, in fact, B is (due to the restriction to H1
0 (U))

unexpectedly a bona fide inner product, different from but equivalent to the standard
inner product (3). But we’re getting a little ahead of ourselves.
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The first step, as listed above, is to “identify a bounded linear functional.” The
bounded linear functional is on the right side in (2) and (5): Consider ℓ : H1

0 (U) → R

by

ℓ(v) =

∫

U

f v.

When we use “bounded” here it is in the sense of operators, as in i0(H1
0 (U) → R) =

i0(H1
0 (U)) = [H1

0 (U)]∗. If you don’t remember what that means, now is a good time
to think about it. It means there is a constant C for which

|ℓ(v)| ≤ C‖v‖H1 = C‖v‖W 1,2 for all v ∈ H1
0 (U). (6)

Notice that this is something like being Lipschitz, except that the domain here is
some infinite dimensional function space instead of a subset of Rn.

Exercise 3 Show that if ℓ satisfies (6), then ℓ ∈ C0(H1
0 (U)).

To see that (6) holds, we can simply use the Cauchy-Schwarz inequality in the Hilbert
space L2(U):

|ℓ(v)| =

∣

∣

∣

∣

∫

U

f v

∣

∣

∣

∣

≤

∫

U

|f | |v| ≤ ‖f‖L2(U)‖v‖L2(U) ≤ ‖f‖L2(U)‖v‖H1(U).

Thus, we take C = ‖f‖L2(U) which is a fixed constant, and we’ve got (6).
Step 1 is now complete. This is probably adequate for one lecture. The next thing

I’m going to do is give an extended discussion of preliminaries for the third step. That
is, the representation of bounded linear functionals on a Hilbert space and the Riesz
representation theorem.
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