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1 Introduction

The main practical construction here is the calcuation of the first variation of a functional. This is given,
informally, by

δF =
d

dt
F [u+ tφ]∣

∣

t=0

.

And one can make sense of this without (really) knowing what one is doing. For example, if

F [u] =

∫ b

a

√
1 + u′2 dt

gives the length of the graph of a function u ∈ c1[a, b], then

δF =
d

dt
F [u+ tφ]∣

∣

t=0

=
d

dt

∫ b

a

√

1 + [(u+ tφ)′]2 dt∣
∣

t=0

=

∫ b

a

∂

∂t

√

1 + [(u+ tφ)′]2 dt∣
∣

t=0

=

∫ b

a

∂

∂t

√

1 + (u′ + tφ′)2 dt∣
∣

t=0

=

∫ b

a

(u′ + tφ′)φ′

√

1 + (u′ + tφ′)2
dt∣
∣

t=0

=

∫ b

a

u′φ′

√
1 + u′2

dt.

The immediate point is that if u is a minimizer of F , then this kind of “derivative” should vanish for
every admissible function φ. This leads, in turn, to an immediate question: What can you say about a
function u for which

∫ b

a

u′φ′

√
1 + u′2

dt = 0 for every φ? (1)

This is where the fundamental lemma comes in.
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Exercise 1 Assume φ(a) = 0 = φ(b) and integrate by parts in (1) to obtain a condition

∫ b

a

M [u]φ dt = 0 for every φ.

Conclude that u must satisfy the ordinary differential equation M [u] = 0. What kind of ODE have you
obtained?

For our purposes, we need to understand what is going on with the first variation in a somewhat more
detailed fashion. We need to consider the following questions:

1. What is the domain of F?

2. What is the set of admissible (or allowed) functions φ?

3. What kind of function is the first variation?

These questions and several others are addressed below.

2 Calculus of Variations

The calculus of variations is, roughly speaking, a theory of minimization.
In the broadest sense, if A is any set and f is a real valued function with domain A, i.e.,

f : A→ R,

then we can define what it means to minimize the function f in the following terms:

An element a ∈ A is a minimizer if

f(a) ≤ f(x) for all x ∈ A.

Given a minimizer a ∈ A, the real number f(a) is called the minimum value of f .

It is pretty obvious that a minimum value is unique while there may be many minimizers. Also, it is
not difficult to see that it is quite possible for no minimizer to exist.

In order to proceed further with any kind of theory of minimization, we need more structure on the
domain set A. It is also usual to introduce some kind of structure on the function f . If the set A is an
interval in the real line, and the function f is differentiable, then the minimization of f is considered in a
first course in calculus, or what is often called 1-D (one dimensional) calculus. This simple case is rather
important for us, so let’s review it.

Theorem 1 If x0 ∈ (a, b) is a minimizer of f : (a, b) → R where f is a differentiable function, then

f ′(x0) = 0. (2)

The condition (2) is called a necessary condition for a minimizer because any minimizer x0 (of this sort)
must satisfy this condition.
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Exercise 2 Give an example of a minimizer x0 ∈ [a, b] of a differentiable function f : [a, b] → R for
which (2) fails to hold. Note: When we say a function f : [a, b] → R, defined on a closed interval [a, b], is
differentiable we usually mean there is an extension f̄ : (ā, b̄) → R for some ā < b̄ with ā < a ≤ b < b̄, and

f̄∣
∣

[a,b]

= f. (3)

The function f̄∣
∣

[a,b]

: [a, b] → R is called the restriction of f̄ to the interval [a, b], and its values are given

(of course) by
f̄∣
∣

[a,b]

(x) = f̄(x) for every x ∈ [a, b].

Exercise 3 Give an example of a differentiable function f : (a, b) → R and a point x0 ∈ (a, b) with
f ′(x0) = 0 which illustrates that (2) is not sufficient to imply x0 is a minimizer.

Exercise 4 What is the definition of the derivative f ′(x) at x ∈ (a, b) for a differentiable function f :
(a, b) → R?

Exercise 5 Prove the necessary condition (2) for an interior minimizer x0 of f : (a, b) → R.

There is also a second order necessary condition for interior minimizers, but it requires more regularity
for the function f .

Theorem 2 If x0 ∈ (a, b) is a minimizer of f : (a, b) → R where f is a twice differentiable function, then

f ′′(x0) ≥ 0. (4)

Exercise 6 The following conditions on a function f : (a, b) → R are called regularity conditions:

1. (continuity) For each x ∈ (a, b), the function f is continuous at x.

2. (differentiability) For each x ∈ (a, b), the derivative f ′(x) exists (as a well-defined real number).

3. (continuous differentiability) For each x ∈ (a, b), the derivative f ′(x) exists and the function f ′ :
(a, b) → R is continuous.

4. (twice differentiability) For each x ∈ (a, b), the derivative f ′(x) exists and the function f ′(a, b) → R
is differentiable.

The set of continuous real valued functions on the interval (a, b) is denoted by C0(a, b). Let us denote the
set of differentiable real valued functions on (a, b) by Diff(a, b). The set of continuously differentiable real
valued functions on (a, b) is denoted by C1(a, b). Let us denote the set of twice differentiable real valued
functions on (a, b) by Diff2(a, b). Show

Diff2(a, b) $ C1(a, b) $ Diff(a, b) $ C0(a, b).

Exercise 7 Prove Theorem 2.

Exercise 8 Give an example showing the conclusions/necessary conditions (2) and (4) of Theorem 1 and
Theorem 2 respectively, taken together, are not sufficient to imply x0 is a minimizer.

Exercise 9 Give an example showing the conditions

f ′(x0) = 0 and f ′′(x0) > 0

are also not sufficient to imply x0 ∈ (a, b) is a minimizer of the function f ∈ Diff2(a, b).
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If f : A → R and the set A is taken to be an open subset of R2 or R3, then the minimization problem
for f is discussed in a course on multivariable calculus. Some understanding of what happens in these
cases, and when A is an open subset of Rn for any natural number n, is important for us too, and we will
review that situation below. These cases fall under the heading of finite dimensional calculus.

A minimization problem in the calculus of variations is distinguished, roughly speaking, by the condition
that the set A is infinite dimensional. This terminology is a tiny bit misleading because the notion of
dimensionality relies on a vector space structure. On the other hand, an open set Ω ⊂ Rn is usually not a
vector space, but there is an obvious (finite dimensional) vector space of which Ω is a subset. Perhaps the
best way to proceed is with a relatively simple example in which the domain does happen to be an infinite
dimensional vector space:

2.1 2-D Capillary Surfaces

Consider E : C1[−r, r] → R by

E [u] =
∫ r

−r

[

√

1 + u′(x)2 + κ
u(x)2

2

]

dx− β[u(−r) + u(r)]. (5)

Notice that E assigns to each continuously differentiable function u ∈ C1[−r, r] a real number. Such a
function is called a functional, and minimizing such functionals is the main objective in the calculus of
variations. Put another way, the calculus of variations is the theory of minimizing functionals, more or
less, like the functional E above. Generally speaking, this is a very difficult problem.

It is always a good idea, with a problem like this, to have some understanding of what your functional
is computing—or what is the meaning of its value. With this in mind, let us take a somewhat careful look
at E before we proceed to look for minimizers directly.1

As in the previous chapter, the graph of the function u represents a possible interface separating the
liquid in a capillary tube from the vapor exterior to that liquid. The idea is that the observed interface
should, for some reason, be the one minimizing the functional E . In particular, E should, roughly speaking,
measure the energy associated with any proposed interface, and the one that is observed is (the one)
minimizing that energy.

We can recognize three terms that make up E . The first one might be

∫ r

−r

√

1 + u′(x)2 dx.

Hopefully, you recognize this as the length of the graph of u. The idea is that a certain amount of energy
is required to maintain an interface between a liquid and the vapor exterior to that liquid. There are a
few different ways to look at this. First of all, it is almost surely true that on some microscopic level the
separation between the liquid and vapor is much more messy and complicated than the simple C1 curve
we are using to model it. There are molecules of liquid moving around near the separation region. Some
are evaporating into the vapor where there is probably a region of higher density near the bulk liquid;
some are condensing back into the bulk liquid. In the liquid itself molecules near the separation experience
an attraction to more molecules located deeper in the liquid than those closer to the separation. It is
assumed this results in a net force pulling those molecules deeper into the liquid. On the other hand, the
overall volume of the liquid does not appear to change position appreciably. Thus, it must be assumed
other molecules of liquid are either condensing to replace those near the surface which are sinking deeper
or deeper molecules are moving (being pushed) outward.

1This is a little bit of an obscure math joke because we are actually only going to consider what are called the indirect
methods in the calculus of variations. Thus, we will actually look for minimizers “indirectly.” There are also what are called
the “direct methods in the calculus of variations,” but we won’t really consider those methods in this course.
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The bottom line of this point of view is that there is kinetic energy associated with the separation
region called free surface (or interface) energy, and two assumptions are made about this energy (in
this 2-D case):

1. The free surface energy is proportional to the length of the interface.

2. The observed interface “prefers” to minimize this energy.

The first assumption is probably a relatively reasonable one if the identification of the energy is with the
kinetic energy of moving molecules near the separation region—modeled by the interface curve. The units
we have are not quite correct since energy is force times length, and in fact, a more physically accurate
expression for the free surface energy is

σ

∫ r

−r

√

1 + u′(x)2 dx

where σ is a constant with units of force called the surface tension. One can simply think of this as
a tension inherent to the particular liquid and vapor (subject to ambient—temperature and pressure—
conditions) along the interface. We have simply divided the entire energy by this surface tension constant
to obtain a simpler form for E .

The second assumption is quite a bit more mysterious. The word “prefers” is not intended to suggest
that the liquid (and/or vapor, molecules, etc.) are sentient. Probably the best interpretation is the
following:

If a competitor interface were somehow constructed or achieved near the observed equilibrium
interface, then the motion of molecules would result in a redistribution of the liquid so as to
minimize the length of the interface—subject to other constraints in the problem, including those
imposed by the other terms in the energy.

We are really not saying anything more than that we assume the energy is minimized. However, in practice,
this kind of interpretation can be important. Let’s consider the next term in the energy, and I will try to
explain how and why.

The second term in the energy E is proportional to
∫ r

−r

u(x) dx.

This term is much easier to understand. The idea is that there is a potential field associated with gravity
having the form −g(0, 1). If a point mass m is located at the height z in this field, say at the point (0, z),
then we imagine it has been moved there from some reference level, say z = 0, and the potential energy
associated with the point mass is given by the force times the distance

∫ z

0

mg(0, 1) · (0, 1) = mgz.

Similarly, each liquid element ∆V in the area

V = {(x, z) : |x| < r and 0 < z < u(x)}

has associated with it a potential energy
ρ∆V gz∗

where ρ is an areal density and z∗ is some representative height for the area element ∆V . Of course,
the gravitational potential field −g(0, 1) we have taken is not really representative of the inverse square
gravitational field of the earth, but it is a reasonable (and usual) approximation near the surface of the
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earth, where we expect most interesting everyday capillary surfaces will be observed. We are also assuming
in the definition of V that u is positive. With these assumptions the total energy associated with a particular
interface is approximated by a sum

∑

j

ρg∆Vjz
∗
j .

This is a Riemann sum for an area integral over V, and (under appropriate regularity assumptions) we can
say the gravitational potential energy associated with an interface determined by u should be

lim
∑

j

ρg∆Vjz
∗
j =

∫

V

ρgz = ρg

∫

V

z.

For the integral we can also write

∫

V

z =

∫ r

−r

∫ u(x)

0

z dz dx =

∫ r

−r

u(x)2

2
dx.

The factor in front of this integral for a physical energy is ρg. It will be recalled that we have divided by
the surface tension σ to obtain (5), and

κ =
ρg

σ

is called the capillary constant. The previous principle we attempted to delineate for free surface energy
can be, in a sense, easily illustrated for gravitational energy:

If a competitor interface were somehow constructed or achieved near the observed equilibrium
interface, then the motion of molecules would result in a redistribution of the liquid so as to
minimize the gravitational potential energy of the interface—subject to other constraints in the
problem, including those imposed by the other terms in the energy.

Imagine the observed interface modeled in the upper left of Figure 1 where the liquid is assumed to be
below the interface curve. The suggestion is that were the modification of the observed interface indicated
in the upper right constructed and “let go,” then the liquid in the bulge would fall in order to lower the
value of E .

Exercise 10 Consider a modification of the unit square

{(x, z) : 0 ≤ x, z ≤ 1} = [0, 1]× [0, 1]

obtained by replacing the top edge

{(x, u(x)) : 0 ≤ x ≤ 1, u(x) ≡ 0}

with the graph of v(x) = 1 + ǫx(x− 1). How does the energy

E [u] =
∫ 1

0

[

√

1 + u′(x)2 + κ
u(x)2

2

]

dx

change under this modification. There are several possible approaches you can take here. You can plot the
value f(ǫ) = E [u] numerically. You can also compute the derivative f ′(0). In the end, you should try to
obtain an understanding of the order to which the length term changes compared to the order to which the
gravitational energy term changes.
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Figure 1: A modification of an observed interface (upper row). Clearly elimination of the bulge reduces the
gravitational potential energy associated with the modified interface. Notice replacing the bulged portion
with a straight line would both reduce the gravitational potential energy and the free surface length. In
fact, this would reduce the free surface length to a minimum with respect to possible modification on the
bulge region. It is at least plausible, however, that the energy can be reduced further by lowering the
interface a little more (making it convex). This reduces the gravitational energy a relatively large amount
while increasing the free surface length only slightly. See Exercise 10. The suggestion is that the observed
interface is precisely the one obtaining the optimal balance to minimize the total energy. The lower row
indicates (very roughly) how the liquid might “move” or migrate in a way that lowers energy. You should
ask yourself the question: Is that what the liquid would actually do?
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Finally, we consider the third term −β[u(−r) + u(r)]. This term is called the wetting energy.
Technically, in order to have physically correct units the wetting energy is σβ[u(−r)+u(r)]. Nevertheless,
β is a physical constant measuring the differential attraction between the molecules of the liquid and those
of the container, or 2-D “tube” consisting of two vertical walls that are straight lines. The constant β is
called the adhesion coefficient. If β > 0, then the molecules of the liquid are attracted to those of the
walls so that the energy is lower when the wetted portions of the wall

{(−r, z) : 0 < z < u(−r)} and {(r, z) : 0 < z < u(r)}

are as long as possible. Notice again, the balance: If β > 0, then making these segments long tends to
increase both the free surface energy and the gravitational potential energy. If β = 0, then the molecules
of the liquid are indifferent toward those of the wall, and if β < 0, then the molecules of the liquid and
those of the wall experience a mutual repelling force.

The discussion of the energy functional above is vague and inadequate. If you can think more deeply
about why and how liquid interfaces minimize such a functional, many people will be interested to hear
your thoughts. We have merely attempted to make the minimization of E by observed interfaces seem
plausible. What we can do is say more precise things about the model interfaces that do minimize E . At
the current time, the ultimate motivation for this description is that it leads to the equations of Young
and Laplace and the resulting minimizing interfaces match experimental observations.

Returning to our illustration of the general subject of calculus of variations, we have a specific functional
E : C1[−r, r] → R.

Exercise 11 Recall that a vector space E over a field F is a set with a binary operation of addition
+ : E × E → E and a scaling operation · : F × E → E and having the following properties:

1. Addition is commutative: v + w = w + v for all w, v ∈ E.

2. Addition is associative: (v + w) + z = v + (w + z) for all w, v, z ∈ E.

3. There exists a zero vector 0 with

v + 0 = 0+ v = v for all v ∈ E.

4. For each vector v ∈ E, there exists an additive inverse, which is another vector w ∈ E for which

v + w = w + v = 0.

The additive inverse vector w of a vector v is denoted by −v. See Exercise 12 below.

5. Scaling is associative: (ab)v = a(bv) for all a, b ∈ F and v ∈ E.

6. 0v = 0 and 1v = v for any v ∈ E where 0 is the additive identity in the field F and 1 is the
multiplicative identity in the field F .

7. There are two distributive laws for scaling.

(a) Scalars distribute across a sum of vectors:

a(v + w) = av + aw for all a ∈ F and v, w ∈ E.

(b) A vector distributes across a sum of scalars:

(a+ b)v = av + bv for all a, b ∈ F and v ∈ E.
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Definition 1 Given two vector spaces X and E over the same field F , a function L : X → E is linear if

L(av + bw) = aL(v) + bL(w) for all a, b ∈ F and v, w ∈ X.

Show C1[−r, r] and R are both vector spaces over R, but E : C1[−r, r] → R is not linear.

Exercise 12 The following are some basic exercises concerning the notion of a vector space.

(a) Show that the zero vector in a vector space is unique.

(b) Show that the additive inverse of any vector v in a vector space is unique.

(c) Show that the compatibility properties for scaling involving the additive and multiplicative identities in
the field given in condition 6 of the definition of a vector space follow independently from the other
properties defining a vector space. Thus condition 6 may be omitted from the definition.

(d) Look up and write down carefully the definition of a field.

(e) Explain how the integers mod 3
Z3 = {0, 1, 2}

is a field.

Exercise 13 Let V be a vector space over a field F .

Definition 2 A set B ⊂ V is a basis for V if the following conditions hold:

1. Given any vector v ∈ V there exist (finitely many) vectors v1, v2, . . . , vk ∈ V and there exist scalars
c1, c2, . . . , ck ∈ F for which

v =
k
∑

j=1

cjvj .

2. Given elements w1, w2, . . . , wℓ ∈ B and a1, a2, . . . , aℓ ∈ F with the elements of B distinct, if

0 =
ℓ
∑

j=1

ajwj , then a1 = a2 = . . . aℓ = 0.

The following are basic exercises concerning the notion of a basis:

(a) Given any subset A ⊂ V , the span of A is defined to be the set of all linear combinations of elements
from A, that is,

span(A) =

{

k
∑

j=1

cjvj : v1, v2, . . . , vk ∈ A and c1, c2, . . . , ck ∈ F

}

.

Show span(A) is a vector field over the same field F . Thus, the first condition defining a basis B
may be written simply as span(B) = V , i.e., B is a spanning set.

(b) Any subset A ⊂ V satisfying the second condition defining a basis for V , that is, given elements
w1, w2, . . . , wℓ ∈ A and a1, a2, . . . , aℓ ∈ F with the elements of A distinct, if

0 =

ℓ
∑

j=1

ajwj , then a1 = a2 = . . . aℓ = 0,
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is said to be linearly independent. Show any vector v in the span of a linearly independent set A
can be written uniquely as a linear combination of distinct elements of A, i.e, if

ℓ
∑

j=1

ajwj =

k
∑

j=1

cjvj

for some distinct w1, w2, . . . , wℓ ∈ A, some distinct v1, v2, . . . , vk ∈ A and some a1, a2, . . . , aℓ, c1, c2, . . . , ck ∈
F , then

{v1, v2, . . . , vk} = {w1, w2, . . . , wℓ},
and in particular k = ℓ, and there exists a permutation, i.e., a bijection φ : {1, 2, . . . , k} →
{1, 2, . . . , ℓ = k}, such that

vj = wφ(j) and cj = aφ(j) for j = 1, 2, . . . , k.

Thus, an alternative definition of a basis B for a vector space V is a subset B ⊂ V for which each element
v ∈ V can be written as a unique linear combination of distinct elements in B.

Exercise 14 A vector space V is said to be finite dimensional if there exists a basis B for V with finitely
many elements. A vector space V is said to be infinite dimensional if it is not finite dimensional, i.e.,
if no basis with finitely many elements exists.

(a) Two vector spaces E and V over the same field are said to be isomorphic (as vector spaces) if there
is a linear bijection L : E → V . Show any finite dimensional vector space V is isomorphic to F n for
some n.

(b) Show C1[−r, r] is infinite dimensional.

According to the preceding exercises, we have a real valued nonlinear functional E : C1[−r, r] → R
defined on an infinite dimensional vector space C1[−r, r], and we can attempt to minimize E . It turns out
that, in the grand scheme of things, the fact that C1[−r, r] is an infinite dimensional vector space is not
directly representative of the infinite dimensionality inherent to the problems of the calculus of variations,
but the review of vector spaces, and infinite dimensional vector spaces in particular, will be useful and
necessary. The functional E : C1[−r, r] → R is, in fact, a rather typical example of the kinds of functionals
considered in the calculus of variations.

The object corresponding to a first derivative of a functional like E is called a first variation or
Gateaux differential. Here is the construction: Let u, φ ∈ C1[−r, r] and consider v = u + ǫφ. The
quantity

δE [φ] = δuE [φ] =
[

d

dǫ
E [u+ ǫφ]

]

∣

∣

ǫ=0

is called the first variation of E at u in the direction φ. In this definition, we are thinking of u and φ fixed.
After the value of δE is computed, we may think of u and/or φ as arguments of the first variation. If u is a
minimizer of E , then E [v] = E [u+ ǫφ] ≥ E [u], and f(ǫ) = E [u+ ǫφ] (with φ fixed) is a real valued function
of one variable, ǫ, with a minimum at ǫ = 0. Therefore, if u is a minimizer of E , then

δuE [φ] ≡ 0 for every φ ∈ C1[−r, r].

We might be worried about whether or not the derivative with respect to ǫ exists and, if so, if the limit
as ǫ tends to zero exists as well. Let’s see if we can make a computation to determine if concerns about
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this are valid. Writing out E [v] from (5) we have

E [v] =
∫ r

−r

[

√

1 + v′(x)2 + κ
v(x)2

2

]

dx− β[v(−r) + v(r)]

=

∫ r

−r

[

√

1 + [u′(x) + ǫφ′(x)]2 + κ
[u(x) + ǫφ(x)]2

2

]

dx

− β[u(−r) + ǫφ(−r) + u(r) + ǫφ(r)].

Thus, forming the difference quotient

E [u+ ǫφ]− E [u+ (ǫ+ h)φ]

h

we obtain

1

h

∫ r

−r

[

√

1 + [u′(x) + (ǫ+ h)φ′(x)]2 −
√

1 + [u′(x) + ǫφ′(x)]2
]

dx

+ κ

∫ r

−r

[

[u(x) + ǫφ(x)]φ(x) +
hφ(x)2

2

]

dx− β[φ(−r) + φ(r)].

The First term can be written as
∫ r

−r

2[u′(x) + ǫφ′(x)]φ′(x) + hφ′(x)
√

1 + [u′(x) + (ǫ+ h)φ′(x)]2 +
√

1 + [u′(x) + ǫφ′(x)]2
dx.

From these expressions, it is clear the limit as h tends to zero exists and

d

dǫ
E [v] =

∫ r

−r

[u′(x) + ǫφ′(x)]φ′(x)
√

1 + [u′(x) + ǫφ′(x)]2
dx

+ κ

∫ r

−r

[u(x) + ǫφ(x)] φ(x) dx− β[φ(−r) + φ(r)].

The derivative with respect to ǫ does exist, and evaluation at ǫ = 0 is also immediate:

δE [φ] =
∫ r

−r

[

u′(x)
√

1 + u′(x)2
φ′(x) + κu(x)φ(x)

]

dx− β[φ(−r) + φ(r)].

We pause to remark/recall that if u ∈ C1[−r, r] is a minimizer of E , then δuE [φ] = 0 for all φ ∈ C1[−r, r].
Our computation allows us to write this condition as

∫ r

−r

[

u′(x)
√

1 + u′(x)2
φ′(x) + κu(x)φ(x)

]

dx = β[φ(−r) + φ(r)]

(6)

for all φ ∈ C1[−r, r].

It is not entirely clear what this (integral) condition implies about the minimizer u. We can say, more
generally, however that any function u ∈ C1[−r, r] for which (6) holds is called a weak extremal for the
functional E . A weak extremal is an analogue of a (1-D calculus) critical point in the calculus of variations;
a weak extremal need not be a minimum; it might be a maximum or neither a minimum nor maximum.

Theorem 3 (first necessary condition in the calculus of variations) A minimizer u ∈ C1[−r, r] of E :
C1[−r, r] → R given by (5) is a weak extremal for E .
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In order to proceed further, we assume additional regularity on a minimizer (or extremal) u.

Theorem 4 (C2 weak extremals) If u ∈ C2[−r, r] is a weak extremal for E given by (5), then

d

dx

(

u′(x)
√

1 + u′(x)2

)

= κu(x) for x ∈ (−r, r), (7)

and
u′(±r)

√

1 + u′(±r)2
= ±β. (8)

Proof: If u ∈ C2[−r, r], then the curvature of the graph

d

dx

(

u′(x)
√

1 + u′(x)2

)

makes sense, and we may integrate the first term in (6) by parts to obtain

(

u′(x)
√

1 + u′(x)2
φ(x)

)

∣

∣

r

x=−r

−
∫ r

−r

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx

= β[φ(−r) + φ(r)].

That is,

∫ r

−r

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx

(9)

=

[

u′(r)
√

1 + u′(r)2
− β

]

φ(r)−
[

u′(−r)
√

1 + u′(−r)2
+ β

]

φ(−r)

for all φ ∈ C1[−r, r].

Let us assume, by way of contradiction that the factor

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

in the integral in (9) is nonzero at some point x = x0 ∈ (−r, r). By continuity, then, there is some ǫ > 0
for which

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x) 6= 0 for |x− x0| < ǫ.

Notice that this assertion assumes ǫ is small enough so that x ∈ [−r, r] for every x with |x− x0| < ǫ. We
know, furthermore, by the intermediate value theorem that this integrand assumes a single sign on the
entire interval x0 − ǫ < x < x0 + ǫ.

Exercise 15 Explain why (i.e., give explicit estimates showing) we can assume {x : |x−x0| < ǫ} ⊂ (−r, r).
Also, explain the application of the intermediate value theorem in detail.
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Exercise 16 There exists a function φ ∈ C1[−r, r] satisfying the following:

(a) φ(x) ≡ 0 for |x− x0| ≥ ǫ.

(b) φ(x) > 0 for |x− x0| < ǫ.

Substituting the function φ from Exercise 16, for which φ(−r) = φ(r) = 0, into (9) we conclude

∫ r

−r

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx = 0.

That is,
∫ x0+ǫ

x0−ǫ

[

d

dx

(

u′(x)
√

1 + u′(x)2

)

− κu(x)

]

φ(x) dx = 0.

The factors in the integrand here are both nonzero and neither changes sign on the interior interval
(x0 − ǫ, x0 + ǫ). This is a contradiction implying (7) must hold identically.

In view of what we have just shown (9) simplifies to
[

u′(r)
√

1 + u′(r)2
− β

]

φ(r) =

[

u′(−r)
√

1 + u′(−r)2
+ β

]

φ(−r)

for all φ ∈ C1[−r, r].

Taking any φ ∈ C1[−r, r] for which φ(r) = 0 but φ(−r) 6= 0, we get

u′(−r)
√

1 + u′(−r)2
= −β.

Similarly, when φ(−r) = 0 but φ(r) = 0, we conclude

u′(r)
√

1 + u′(r)2
= β. �

Notice that we have obtained in Theorem 4 the 2-D capillary surface equation (and ordinary differential
equation) and the boundary condition subject to the assumption that the adhesion coefficient β satisfies

|β| < 1

so that the equation cos γ = β defines a unique contact angle γ strictly between 0 and π. It may be
observed that there was no particular physical restriction suggesting |β| < 1, and it can be fairly asked:
What if we consider the functional E with |β| ≥ 1? Let us postpone consideration of this question until
the next chapter where we discuss solutions of Euler’s equation for elastic curves.

2.2 Calculus of Variations

With at least one example of the process (typical to the calculus of variations) by which one begins with
a functional and, in an effort to minimize its value or find a minimizer, arrives at a differential equation,
let us consider the process in a somewhat more general framework.

Problems in the calculus of variations always involve two important sets, which are usually sets of
functions. These two sets are the admissible class A and the set of perturbations V. The admissible
class is the domain of the functional under consideration. Thus, we consider

F : A → R,

13



and we (typically) seek to minimize F . The set A is very often not a vector space, though it was in our
example above. The set of perturbations V is almost always a vector space—and an infinite dimensional
vector space in the case of the calculus of variations. The perturbations can be thought of roughly as
differences of admissible functions. In particular, given an admissible function u ∈ A and a perturbation
φ ∈ V, we require

v = u+ ǫφ ∈ A for ǫ ∈ R with |ǫ| small.

We need this in order to compute the first derivative

d

dǫ
F [u+ ǫφ]

and hence the first variation

δuF [φ] =

(

d

dǫ
F [u+ ǫφ]

)

∣

∣

ǫ=0

.

If you think of V as differences admissible functions with

v = u+ a φ ∈ A and w = u− b ψ ∈ A

both admissible with φ, ψ ∈ V, then v−w = a φ+ b ψ should also be in V (at least for small a and b). This
means V is closed under “small” linear combinations making V a vector space at least on a small scale.

Also by assuming the set of perturbations V is a vector space, the first variation (Gateaux derivative
or functional derivative) is a functional defined on a vector space:

δuF : V → R.

This makes it possible to understand the first variation as a linear functional. In fact, under the most
common structural assumption for F : A → R, the first variation will always be a linear functional.
Namely, if F : A → R is an integral functional of the form

F [u] =

∫ b

a

F (x, u(x), u′(x)) dx

whereA is some subset (not necessarily a subspace) of C1[a, b] and F : [a, b]×R×R → R with F = F (x, z, p)
is continuously differentiable, then δuF : V → R by

δuF [φ] =

∫ b

a

(

∂F

∂z
(x, u(x), u′(x))φ(x) +

∂F

∂p
(x, u(x), u′(x))φ′(x)

)

dx

where V is a subspace of C1[a, b]. The first variational formula is often written in a shorter form obtained
by suppressing the arguments of the functions in the integrand:

δuF [φ] =

∫ b

a

(

∂F

∂z
φ+

∂F

∂p
φ′

)

dx (10)

Exercise 17 Compute the first variation formula (10) for an integral functional and verify δuF is linear
(assuming V is a vector subspace of C1[a, b]).

At this point consideration of several other examples is in order. In particular, we should like to see an
example where the admissible class is (naturally) not a vector space. This is easy to illustrate.
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Exercise 18 Consider the length of the graph of a function u : [a, b] → R with u ∈ C1[a, b]. Write down
the formula for the length functional L : A → R where

A = {u ∈ C1[a, b] : u(a) = ya and u(b) = yb}.

Explain why A is not a vector space, but the set of perturbations

V = {u− v : u, v ∈ A} is a vector space.

What can you say about minimizers for this problem?

The shortest graph problem above is a very simple and popular example of a problem in the calculus of
variations. The next problem is very similar to it in several ways.

Exercise 19 Again let us take

A = {u ∈ C1[a, b] : u(a) = ya and u(b) = yb}

and
V = C1

0 [a, b] = {φ ∈ C1[a, b] : φ(a) = φ(b) = 0}.
This time consider D : A → R by

D[u] =

∫ b

a

u′(x)2 dx.

This is called the Dirichlet energy of a function u ∈ C1[a, b].

(a) Find the unique minimizer in the case ya = yb. Prove your answer is the only possible minimizer in
this case.

(b) Explain why the minimizer when ya = yb is inadmissible when ya 6= yb and that the minimum value of
D (if it exists when ya 6= yb) is positive. Hint: Use the mean value theorem. Can you find an explicit
lower bound for the minimum value of D (in terms of a, b, ya, and yb)?

(c) Compute the first variation of D.

(d) Assume a minimizer u0 exists and is in C2[a, b]. Integrate by parts to find an ordinary differential
equation satisfied by the minimizer u0. State and solve the natural boundary value problem for this
ordinary differential equation for the minimizer.

(e) Again assuming ya 6= yb, compare the values of D[uc] where c is fixed with a < c < b and

uc(x) =

{

ya, 0 ≤ x ≤ c,
(yb − ya)(x− c)/(b− c) + ya, c ≤ x ≤ b.

There is something quite interesting about the functions uc in the last part of Exercise 19. Do you see
what it is?

Here are two (much harder) but still quite popular calculus of variations problems:

Exercise 20 (Brachistochrone) Consider the points A = (0, H) and B = (1, h) in the plane with 0 < h <
H. If we consider the path

{(x,−(H − h)x+H) : 0 ≤ x ≤ 1}
connecting A to B, we can imagine a point mass (or frictionless bead) that starts from rest at A and
slides down to B (under the influence of a downward gravitational field −g(0, 1)). Assuming the mass
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is constrained to the specified path, notice that the gravitational force can be decomposed in components
parallel and orthogonal to the path as

−mg(0, 1) = −mg sinψ(cosψ, sinψ) +mg cosψ(sinψ,− cosψ)

where ψ = tan−1(h−H) < 0. The component orthogonal to the path must be absorbed by a reaction force
and, according to Newton’s second law the other component gives acceleration to the mass according to

(

d2x

dt2
,
d2y

dt2

)

= −g sinψ(cosψ, sinψ).

In this case we can find an explicit expression for the motion, and then essentially everything is known.

(a) How long does it take for this mass to move from A to B?

In other cases, computing the time of travel is not so easy. Let us say a path is given by the graph of a
function in the set u ∈ C1[0, 1] with u(0) = H and u(1) = h.

Let us also assume, as with the straight line path given above, a frictionless bead starting from rest at
A will move to B along the graph of this function (under the influence of gravity) and arrive at B in finite
time T . Denote the motion of this mass by

r(t) = (x(t), y(t)) = (x(t), u(x(t))) for 0 ≤ t ≤ T.

(b) Recall the arclength relation

s =

∫ x

0

√

1 + u′(ξ)2 dξ.

Differentiate this expression twice with respect to time to obtain

d2s

dt2
= −g sinψ

where the inclination angle ψ is defined by

(cosψ, sinψ) =

(

1
√

1 + u′(x)2
,

u′(x)
√

1 + u′(x)2

)

as usual. Hint(s): Take the component of force along the path as we did for the straight line path to
conclude

d2r

dt2
= −g sinψ(cosψ, sinψ)

in general. Then compute d2r/dt2 directly and compare what you get to your expression for d2s/dt2.

(c) Show the quantity

C =
1

2
m

(

ds

dt

)2

+mgu(x(t))

is constant. Hint: Differentiate C with respect to t and use the previous part.

(d) Assume
dx

dt
> 0

so that x : [0, T ] → [0, 1] has in inverse τ : [0, 1] → [0, T ] giving the time τ = τ(ξ) at which the mass
has x-coordinate ξ. Show

T [u] =
1√
2g

∫ 1

0

√

1 + u′(x)2

H − u(x)
dx.
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Hint: Use the fundamental theorem of calculus to write T as an integral of dτ/dξ. Then use the
chain rule to show

dτ

dξ
=

ds

dx
ds

dt

.

Finally, use the conserved quantity to express ds/dt in terms of u.

A minimizer of the time of travel functional T : A → R where

A =

{

u ∈ C1[0, 1] : u(0) = H, u(1) = h, and

∫ 1

0

√

1 + u′(x)2

H − u(x)
dx <∞

}

is called a brachistochrone or “shortest time” function. This is an example where the perturbation space

V = {φ ∈ C1[0, 1] : φ(0) = 0 = φ(1)}

cannot be interpreted as the set of differences of admissible functions. Nevertheless, one has for each u ∈ A
the crucial condition

u+ ǫφ ∈ A when φ ∈ V and |ǫ| is small enough.

This is enough to compute the first variation and determine minimizers.
Incidentally, this problem was posed publicly (and somewhat flamboyantly) by Johann Bernoulli in 1696:

I, Johann Bernoulli, address the most brilliant mathematicians in the world. Nothing is more attractive

to intelligent people than an honest, challenging problem, whose possible solution will bestow fame and

remain as a lasting monument. Following the example set by Pascal, Fermat, etc., I hope to gain the

gratitude of the whole scientific community by placing before the finest mathematicians of our time a

problem which will test their methods and the strength of their intellect. If someone communicates to

me the solution of the proposed problem, I shall publicly declare him worthy of praise.

It can certainly be argued that while the shortest path and minimum Dirichlet energy problems have (at
least) obvious candidates for minimizers, this problem illustrates the fact that the calculus of variations can
be used to obtain very non-obvious information.

Exercise 21 Consider A : A → R by

A[u] = 2π

∫ 1

0

u(x)
√

1 + u′(x)2 dx

where
A = {u ∈ C1[0, 1] : u(0) = z0, u(1) = z1, u > 0}.

This functional gives the area of a surface of rotation generated by rotating the graph of u around the
x-axis. Find the first variation and the differential equation satisfied by C2 minimizers. What you will
obtain is called the axially symmetric minimal surface equation; it is in fact the equation of meridian
curves for axially symmetric surfaces with zero mean curvature. (We will discuss mean curvature in the
next section.)

Finding the actual minimizers for the functionals in the last two problems is relatively difficult.
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Note on regularity of function classes

For reasons that should become clear later—and would also become clear if the brachistochrone and axially
symmetric minimal surface problems were studied further—it is natural to require less regularity than we
have required above for admissible functions and more regularity for perturbations. In fact, we already
considered functions whose regularity was less than the nominal regularity of the admissible class in part
(e) of Exercise 19 concerning Dirichlet energy. Taking the set

{u ∈ C1[a, b] : u(a) = ya and u(b) = yb}

used in some of the examples above, we usually replace this with the larger admissible class

{u ∈ ⊏
1[a, b] : u(a) = ya and u(b) = yb}

where ⊏
1[a, b] denotes the subspace of C0[a, b] consisting of piecewise C1 functions. For each function

u ∈ ⊏1[a, b] there exists a partition a = x0 < x1 < x2 < · · · < xm = b such that for j = 1, 2, . . . , m

u∣
∣

[xj−1,xj ]

∈ C1[xj−1, xj].

Here are three reasons to consider admissible classes with lower regularity:

1. It is easier to find minimizers and prove minimizers exist—because you are allowing more possibilities.
(This is particularly important in the direct methods of the calculus of variations which we will not
really cover, and certainly wont emphasize, in this course.)

2. It is easier to make modifications/variations of a given admissible function and remain in the admis-
sible class.

3. Sometimes minimizers do not have the regularity you would expect. For example sometimes mini-
mizers turn out to be piecewise C1 instead of C1. See Exercise 22 below.

Alternatives to the space of piecewise C1 functions may be found among the spaces of functions with weak
derivatives. These spaces are considered, for example, in the text One-dimensional Variational Problems
by Buttazzo, Giaquinta, and Hildebrandt. The piecewise C1 functions, however, are a quite traditional
choice found, for example, in the classic text Introduction to the Calculus of Variations by Hans Sagan.

Exercise 22 (Newton’s profile of minimal drag) Isaac Newton modeled the drag on an axially symmetric
object of maximum radius R as proportional to

N [u] =

∫ R

0

x

1 + u′(x)2
dx

where the graph of u ∈ ⊏[0, R] gives the rigid profile meeting the opposing fluid medium. For example, if
u(x) ≡ 0, then one is considering a flat cylinder {(x, y, z) : x2 + y2 ≤ R2 and z ≤ 0} or

{(x, y, z) : x2 + y2 ≤ R2 and − L ≤ z ≤ 0}

moving vertically upward and

N [u] =
R2

2
can be viewed as giving a measure of the resistance encountered.

(a) If one caps the cylinder with a hemisphere, what does Newton’s resistance measurement give? Newton
mentioned the comparison (of the value for the hemisphere to that for the cylinder) specifically and
apparently viewed it as an encouraging sign that his functional was measuring the quantity he had in
mind.
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(b) Compute the Newtonian resistance N [u] for the conical cap determined by

u(x) =
H

R
(R− x).

In practice, it may be impractical to construct a nose cone of arbitrarily large height H. Thus, we
introduce the admissible class

A = {u ∈ ⊏
1[0, R] : u(0) = H, u(R) = 0, and u′ ≤ 0}

for H > 0 fixed. The next part gives some indication about the origin of the monotonicity requirement
u′(x) ≤ 0 for 0 ≤ x ≤ R.

(c) Plot the profile determined by u(x) = H sin2(2πnx/R) and compute N [u].

(d) We may assume every function u ∈ A has u(x) ≡ H on some interval 0 ≤ x ≤ R0 < R. Among the
admissible functions

u(x) =

{

H, 0 ≤ x ≤ R0,
H(R− x)/(R− R0), R0 ≤ x ≤ R,

which has the least Newtonian resistance N [u]?

There are two more exercises at the end of this section on Newton’s resistance functional. The first suggests
a kind of justification/derivation for the functional itself, and the second gives a start at finding some actual
minimizers and proving that every minimizer satisfies u(x) ≡ H for 0 ≤ x ≤ R0 and some R0 > 0 and that

lim
xցR0

u′(x) < 0

so that a minimizer satisfies u ∈ ⊏1[0, R]\C1[0, R].
Let us now turn our attention to the vector space of perturbations. A typical collection of perturbations

is C∞
c (a, b) which is a relatively much smaller vector space than

C1
0 [a, b] = {φ ∈ C1[a, b] : φ(a) = φ(b) = 0}.

The functions in C∞
c (a, b) are infinitely differentiable and have support compactly contained in the interior

interval (a, b). This requires a little explanation.

Open and Closed Sets; Support

We have mentioned the open interval (a, b) ⊂ R1 and the open disk

Br(x0, y0) = {(x, y) : (x− x0)
2 + (y − y0)

2 < r2} ⊂ R2.

These are both examples of open balls. Note in particular, that the open interval can be expressed as
the set of all points in R1 whose distance from the center (a + b)/2 is less than the radius (b − a)/2. In
fact open balls are prototypical open sets in any metric space which is a set with a notion of distance
between pairs of points. More precisely, a set X is a metric space if there is a function d : X×X → [0,∞)
satisfying

1. d(x, y) = d(y, x) for all x, y ∈ X . (symmetry)

2. d(x, y) = 0 if and only if x = y. (positive definite)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X . (triangle inequality)

19



The function d is called a distance function or metric (distance). Every finite dimensional Euclidean space
Rn is a metric space with

d(x,y) =

√

√

√

√

n
∑

j=1

(yj − xj)2

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). This is called the Euclidean metric and the value of
the Euclidean metric is also denoted |y − x| or sometimes ‖y − x‖ if one is worried about confusion with
the absolute value function on R.

Using any metric (on a metric space X) one defines the open ball of radius r > 0 and center p ∈ X by

Br(p) = {x ∈ X : d(x, p) < r}.

Also a subset U ⊂ X of any metric space X is said to be open if for each p ∈ U , there is some r > 0 such
that

Br(p) ⊂ U.

Exercise 23 Show that an open ball in any Euclidean space is open.

Technically, there can be other notions of open sets and we should be a little more careful and say a set
is open with respect to the metric topology if the condition above holds. For our purposes at the moment,
however, we can assume the only topologies of interest are metric topologies of the sort just described.

Exercise 24 Show a finite intersection of open sets is open and any possible union of open sets is open.

Definition 3 The interior of any set (in a metric space) is the union of all open balls inside that set. If
A ⊂ X and X is a metric space, we denote the interior of A by int(A) and

int(A) =
⋃

x∈X, r>0

Br(x)⊂A

Br(x).

Exercise 25 Show the interior of a set is always open.

A set A ⊂ X is defined to be closed if the complement

Ac = X\A = {x ∈ X : x /∈ A} is open.

Exercise 26 Show any intersection of closed sets is closed.

This brings us to a crucial construction: The closure of any subset A of a metric space X is defined to
be the smallest closed set containing A. That is, the closure of A is

clos(A) = A =
⋂

C⊃A

C:closed

C.

Exercise 27 Show a set is closed if and only if the set is its own closure.

Definition 4 (support) Given a function u : A→ R defined on a subset A of the Euclidean space Rn, the
support of u, denoted by supp(u), is the closure of the set of points where u is nonzero. That is,

supp(u) = {x ∈ A : u(x) 6= 0}.
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Definition 5 A set A ⊂ X where X is a metric space is bounded if there is some p ∈ X and some r > 0
such that

A ⊂ Br(p).

In the case where X = Rn is Euclidean space, we may take the center of the bounding ball to be the origin
0. Then a set is bounded if there is some r > 0 such that

|x| < r for all x ∈ A.

Definition 6 A set K ⊂ Rn is compact if K is closed and bounded.

Definition 7 A function u : A → R defined on a set A ⊂ Rn is said to have compact support in A if
supp(u) is compact and

supp(u) ⊂ int(A).

This condition is often written as supp(u)⊂⊂A, which is read “the function u has support compactly
contained in A” or “the function u is compactly supported in A” for short.

We are now (almost) in a position to discuss C∞
c (a, b). We have mentioned that the set of continuous

real valued functions on [a, b] is denoted by C0[a, b], and the set of continuously differentiable real valued
functions on [a, b] is denoted by C1[a, b]. These are vector spaces over R and C0[a, b] ⊃ C1[a, b]. Naturally,
we can also require continuity or differentiability only at interior points of (a, b), and the corresponding
vector spaces are denoted by C0(a, b) ⊃ C1(a, b). We can also require the existence of more continuous
derivatives: The functions in Ck(a, b) have derivatives of order k which are continuous at each point in
(a, b), and we have an infinite collection of nested vector subspaces:

C0(a, b) ⊃ C1(a, b) ⊃ C2(a, b) ⊃ · · ·

Showing strict inequality in each of these inclusions is one way to show each of these vector subspaces is
infinite dimensional.

C∞(a, b) =

∞
⋂

k=0

Ck(a, b).

In some sense, most familiar functions are in this (kind of) space. Most familiar functions have derivatives
of all orders: polynomials, exponentials, sine and cosine. The tangent function is in C∞(−π/2, π/2).

C∞
c (a, b) = {u ∈ C∞(a, b) : supp(u)⊂⊂(a, b)}.

If you haven’t been shown a function in C∞
c (a, b), or thought carefully about it for a long time, then you

probably do not know any nonzero functions in this set.

Exercise 28 Show there exists a nonzero C∞ function with compact support.

2.3 Calculus of Variations—second pass

One advantage of using a very small perturbation space is that the theorems above hold under less restrictive
hypotheses. Notice that to require

F [u] ≤ F [u+ hφ] for every φ ∈ C1
0 [a, b]

is much more than requiring

F [u] ≤ F [u+ hφ] for every φ ∈ C∞
c (a, b)
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simply because C∞
c (a, b) is effectively a subset of C1

0 [a, b].
Here is a somewhat more standard treatment of some of the results above for an integral functional

F : A → R defined on an admissible class in ⊏1[a, b]. If F is given by

F [u] =

∫ b

a

F (x, u, u′) dx,

then the function F = F (x, z, p) is called the Lagrangian for the variational problem. The first variation
of F at u in the direction φ ∈ C∞

c (a, b) is defined by

δuF [φ] =

[

d

dǫ

∫ b

a

F (x, u+ ǫφ, u′ + ǫφ′) dx

]

∣

∣

ǫ=0

.

Theorem 5 A function u ∈ A for which

δuF [φ] ≡ 0 for all φ ∈ C∞
c (a, b)

is called a weak extremal of F , and one has the first necessary condition

∫ b

a

[

∂F

∂z
φ+

∂F

∂p
φ′

]

dx = 0 for all φ ∈ C∞
c (a, b).

The key tool for the proof of the next result is called the fundamental lemma of the calculus of
variations:

Lemma 1 If f : (a, b) → R is a continuous function and

∫ b

a

f(x)φ(x) dx = 0 for every φ ∈ C∞
c (a, b),

then f(x) = 0 for x ∈ (a, b).

Theorem 6 A weak extremal for F which is C2 on any open subinterval (x0 − δ, x0 + δ) ⊂ (a, b) satisfies
the ordinary differential equation

d

dx

(

∂F

∂p

)

=
∂F

∂z
(11)

on the interval (x0 − δ, x0 + δ).

The second order ordinary differential equation (11) is called the Euler-Lagrange equation for the func-
tional F .

There are various generalizations of these results, but understanding the simple concept that minimiza-
tion problems for integral functionals lead to differential equations is a good start.

Exercise 29 Prove the fundamental lemma.

Exercise 30 Use the fundamental lemma (and integration by parts) to prove the Euler-Lagrange equation
holds for C2 weak extremals.
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Local Minimizers

Exercise 9 illustrates that critical points can be local minimizers in finite dimensional calculus without
being global minimizers. The same thing can happen in the calculus of variations, but up until this point
we have not introduced enough structure to make sense of the notion of local versus global minimizers.
The key is the introduction of a distance between elements in the admissible class A. In particular, we
already have discussed the notion of a metric distance and we certainly want to have such a distance on
A. Most commonly, however, the metric distance we will use comes from an additional abstract structure
which it is well worth discussing:

Definition 8 Given a vector space V over the field R, i.e., a real vector space, a function ‖ · ‖ : V → [0,∞)
is called a norm, and the vector space V is called a normed vector space, if the following conditions
hold:

1. ‖cv‖ = |c|‖v‖ for every c ∈ R and every v ∈ V (non-negative homogeneity)

2. ‖v‖ = 0 if and only if v = 0 (positive definite)

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality)

Exercise 31 Show that every normed vector space is a metric space with metric distance d(v, w) = ‖v−w‖.

Exercise 32 Show that ‖u‖ = max{|u(x)| : a ≤ x ≤ b} defines a norm on C0[a, b]. (You’ll need some
theorems from 1-D calculus for this.) This is called the “C zero” norm, the L∞ norm, the “sup” norm,
and the uniform norm; it goes by many names.

Exercise 33 Show C0
B(a, b) = {u ∈ C0(a, b) : sup{|u(x)| : a < x < b}} is a vector subspace of C0(a, b)

and
‖u‖C0 = sup{|u(x)| : a < x < b}

is a norm on C0
B(a, b) (the subspace of bounded continuous functions on (a, b)).

Exercise 34 There are many important continuous functions which are not in C0
B(a, b), and the sup norm

is not a norm on C0(a, b). Consider d : C0(a, b)× C0(a, b) → [0,∞) by

d(f, g) = min{1, sup{|f(x)− g(x)| : a < x < b}.

Is d a metric on C0(a, b)?

There are a good many important vector spaces, like C0(a, b), which are not (at least in any natural way)
normed spaces. Please note/recall that normed spaces are required to be vector spaces but metric spaces,
in general, are not required to be vector spaces. If the notion of a metric, however, is coupled with the
condition of being a vector space by the introduction of certain axioms one is led to (or may stumble upon)
the theory of topological vector spaces. Doing analysis in the framework of topological vector spaces
can become somewhat complicated, so we will try to avoid that, but it’s perhaps worth knowing such a
thing/structure is out there.

Exercise 35 Consider [ · ] : C1[a, b] → [0,∞) by

[u] = max{|u′(x)| : a ≤ x ≤ b}.

The function [ · ] is called the C1 seminorm.

(a) Determine which properties of a norm [ · ] satisfies. Those are the defining properties of a seminorm.
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(b) Show that ‖ · ‖1 : X → [0,∞) given by

‖v‖1 = ‖v‖+ [v]

where ‖ · ‖ is any norm on a vector space X and [ · ] is any seminorm on X is a norm on X.

The sum of the C0 “sup” norm and the C1 seminorm is called the C1 norm on C1[a, b].

(c) Define a C1 seminorm and a C1 norm on a suitable subspace C1
B(a, b) of C

1(a, b).

Definition 9 Let F : A → R be a functional defined on a admissible class of functions A which is a subset
of a normed vector space X containing the subspace of variations V. An admissible function u ∈ A is said
to be a local minimizer of F relative to the norm on X if there exists some δ > 0 such that the following
holds:

If v ∈ A and ‖u− v‖X ≤ δ, then u− v ∈ V and

F [u] ≤ F [v].

This definition gives rise to the notion of local C0 minimizers (if one takes the C0 norm on C0[a, b]) and
of local C1 minimizers (if one happens to have A ⊂ C1[a, b] and takes the C1 norm).

Theorem 7 (first order necessary conditions in the calculus of variations) A local C0 minimizer u ∈ A ⊂
C1(a, b) ∩ C0(a, b) of the integral functional F : A → R given by

F [u] =

∫ b

a

F (x, u, u′) dx

is a weak extremal:
∫ b

a

[

∂F

∂z
φ+

∂F

∂p
φ′

]

dx = 0 for all φ ∈ C∞
c (a, b).

If the local C0 minimizer satisfies u ∈ C2(a, b), then u is a solution of the Euler-Lagrange equation in the
interior of the interval (a, b):

d

dx

(

∂F

∂p

)

=
∂F

∂z
a < x < b.

Additional Exercises

Exercise 36 (Newton’s drag functional) One can heuristically motivate the interpretation of the quantity

N [u] =

∫ R

0

x
√

1 + u′(x)2
dx

as a measure of the resistance against a moving profile along the following lines: To a moving point mass
m having velocity v one can associate a momentum vector mv and a potential energy m|v|2/2. Assume
we are given a very small mass m at rest that encounters a large moving profile, associated presumably to
a large mass. We can shift reference frame and consider the profile at rest and the small mass as moving
and striking the profile with a particular orientation. In particular, if we assume the initial momentum
vector of the mass is −m|v|(0, 1) and the profile is given by {(x, u(x)) : 0 ≤ x ≤ R}, then the component
of the momentum vector orthogonal to the profile at impact is

[−m|v|(0, 1) · (sinψ,− cosψ)] (sinψ,− cosψ) = m|v| cosψ (sinψ,− cosψ)
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where the inclination angle ψ is defined by

(cosψ, sinψ) =

(

1
√

1 + u′(x)2
,

u′(x)
√

1 + u′(x)2

)

as usual. Assume this component of the momentum is completely absorbed by the profile. Accordingly, we
assume the profile absorbs the kinetic energy associated with this component of momentum.

(a) What is the absorbed kinetic energy from the mass m?

(b) Instead of a finite point mass m, approximate the absorbed energy with a mass of the form

mij = ρ x∗j (θi − θi−1) (xj − xj−1)

where ρ is a constant areal mass density and x∗j (θi − θi−1) (xj − xj−1) is a local area element given
in polar coordinates. Summing over i and j write an approximation for the total absorbed energy as
a Riemann sum converging to an integral over the disk BR(0).

(c) Show the integral expression from the last part is proportional to Newton’s functional.

Hint:

∑

i,j

1

2
ρ x∗j |v|2 cos2 ψ (θi − θi−1) (xj − xj−1)

∼ ρ

2
|v|2

∑

i,j

x∗j
1 + u′(x∗j)

2
(θi − θi−1) (xj − xj−1).

Exercise 37 (flat tipped minimizers) We consider Newton’s profile of minimal drag problem with R =
H = 1. Consider the function f : [1,∞) → R by

f(t) =
t

(1 + t2)2

(

3

4
t4 + t2 − 7

4
− log t

)

.

Set t0 = f−1(1) and r0 = 4T/(1 + T 2)2.

(a) Find t0 and r0 numerically.

(b) Use mathematical software to plot the profile {(x, u0(x)) : 0 ≤ x ≤ 1} satisfying u0(x) = 1 for
0 ≤ x ≤ r0 with the remainder of the graph given parametrically by

(x(t), z(t)) = (0, 1) +
r0(1 + t2)2

4t
(1,−f(t)), 1 ≤ t ≤ t0.

(c) Show limxցr0 u
′(x) < 0.

(d) Let R0 be fixed with 0 ≤ R0 < 1. Consider a function u : [0, 1] → [0, 1] with

(i) u ∈ C0[0, 1],

(ii) u(x) ≡ 1 for 0 ≤ x ≤ R0,

(iii) u′(x) < 0 for R0 < x ≤ 1, and

(iv) u(1) = 0.
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Note that the restriction
u∣
∣

[R0,1]

: [R0, 1] → [0, 1]

has an inverse w : [0, 1] → [R0, 1]. Assume w ∈ C1[0, 1] and set v(t) = w(1− t). Show

N [u] =
v(0)2

2
+

∫ 1

0

v(t)v′(t)3

1 + v′(t)2
dt.

(e) Consider M : M → R by

M [v] =
v(0)2

2
+

∫ 1

0

v(t)v′(t)3

1 + v′(t)2
dt

on
M = {v ∈ C2[0, 1] : v(0) ≥ 0, v(1) = 1, and v′ ≥ 0}.

Compute the Euler-Lagrange equation and show the solution v leads to the function u0 defined in part
(b). (This is somewhat tricky, but at least you should be able to show the function v0 obtained from
u0 solves the Euler-Lagrange equation.)

3 Partial Differential Equations

One generalization we do want to consider is exemplified by deriving the equations of Laplace and Young
for a capillary surface in a vertical tube. Let us, in this instance, assume the tube has general cross-section
U where U is a bounded open subset of R2 having boundary (which is a topological term we need to define)
a smooth simple closed curve. What we mean by this is the following: The boundary of any set (in a
metric space, e.g., Rn) is the intersection of the closure of the set with the closure of the complement of
the set. That is,

∂U = U
⋂

R2\U .

Exercise 38 Show a x is in the boundary ∂A of any set A if and only if for every r > 0

Br(x) ∩A 6= φ and Br(x) ∩ Ac 6= φ.

There are a couple equivalent ways we can say what it means for an open bounded set U ⊂ R2 to have
a smooth simple closed curve as boundary. It is no easy task to show they are equivalent, but we can state
the conditions.

There exists a surjective2 twice continuously differentiable vector valued function α : R → ∂Ω ⊂ R2

with the following properties

1. For some L > 0, the restriction

α∣
∣

[0,L)

: [0, L) → ∂Ω is one-to-one and onto,

2. α(L) = α(0), and

3. α(t+ L) = α(t) for all t ∈ R.

Being twice continuously differentiable here means x, y ∈ C2(R) where α(t) = (x(t), y(t)).
Alternatively, we can define a homotopy of a loop as follows: Given a loop, which is just a continuous

function α : [0, L] → U with α(L) = α(0), a homotopy of α (relative to U) is a continuous function
h : [0, 1]× [0, 1] → U satisfying the following

2Surjective means “onto” in the sense that for each p ∈ Ω, there is some t ∈ R with α(t) = p.
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1. α(t) = h(t, 0) for 0 ≤ t ≤ 1 and

2. h(0, s) = h(1, s) for 0 ≤ s ≤ 1.

A homotopy h of the loop α is a fixed point homotopy if h(0, s) = α(0) for 0 ≤ s ≤ 1. A homotopy if
a contraction to a point if there is a point p ∈ U for which h(t, 1) ≡ p for 0 ≤ t ≤ 1.

The open set U ⊂ R2 is simply connected if for every loop α : [0, 1] → U there exists a fixed point
homotopy (relative to U) which is a contraction of α to α(0).

A bounded open set U ⊂ R2 has boundary a simple closed curve if (and only if) the following hold:

1. U is simply connected, and

2. for each p ∈ ∂U , there exists some a > 0, a unit vector u = (u1, u2), and a function g ∈ C2[−a, a]
with g′(0) = 0 such that

U ∩ {p+ su+ tu⊥ : s, t ∈ [−a, a]}
= {p+ su+ tu⊥ : t ≥ g(s) and − a ≤ s ≤ a}.

In these sets u⊥ = (−u2, u1).

Exercise 39 A collection of open sets {Uα}α∈Γ where Γ is any indexing set is called an open cover of a
set A if

A ⊂
⋃

α∈Γ

Uα.

A subset A ⊂ Rn is compact if and only if it has the following property: Given any open cover {Uα}α∈Γ of
A, there exist finitely many sets Uα1 , Uα2 , . . . , Uαk

in the open cover such that

{Uα1 , Uα2 , . . . , Uαk
} is still an open cover of A.

This is called the Hiene-Borel Theorem. The finite subcollection of open sets in this result is called a finite
subcover.

Exercise 40 Show that the boundary of an open bounded subset of Rn is compact.

Returning to the capillary tube problem: Let U be a bounded open subset of R2 with boundary a
simple closed curve. Let σ be a surface tension constant with units (force)/distance. Let β ∈ (0, 1) be a
dimensionless constant adhesion coefficient, i.e., β has units 1. Let g be the usual gravitational constant.
Given u ∈ C1(U), which means there exists an open set U ⊃ U and an extension u : U → R with continuous
partial derivatives

∂u

∂x
and

∂u

∂y
,

both in C0(U), such that
u∣
∣

U

= u,

we define the capillary energy of u to be

E [u] = σ

∫

U

√

1 + |Du|2 − σβ

∫

∂U

u+
ρg

2

∫

U

u2.

As in the 2-D case, the first term is called the free surface energy, the second term is called the wetting
energy, and the third term is called the gravitational potential energy.
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Exercise 41 Explain why

A[u] =

∫

U

√

1 + |Du|2

is the area functional.

Exercise 42 Obtain the gravitational energy as a limit of a Riemann sum approximating an integral over
the volume

{(x, y, z) : (x, y) ∈ U and 0 < z < u(x, y)}
(assuming u > 0).

3.1 The first variation of area

We wish to compute a variation
[

d

dǫ

∫

U

√

1 + |D(u+ ǫφ)|2
]

ǫ=0

.

Let us first recall that the vector function Du : U → R2 is the gradient field or total derivative of u given
by the vector of first partials:

Du =

(

∂u

∂x
,
∂u

∂y

)

,

and when we write |Du|2 we are indicating the use of the Euclidean norm:

|Du|2 =
(

∂u

∂x

)2

+

(

∂u

∂y

)2

.

Thus, the value of the area functional
∫

U

√

1 + |Du|2

is an example of an integral of a real valued function of two variables x and y over an open subset U ⊂ R2.
Certainly such integrals are considered in a course on multivariable calculus. It is likely that we will need
to understand such integrals, and what can be done with them, a bit better than they are understood
by most students who have taken such a course. In view of this, I have typed up in the next section an
exposition of certain aspects of integration. It might be worth looking at before reading further. I have
also included a review of differentiation and verious kinds of derivatives which may be consulted if desired
or necessary.

Let us write A : C1(U) → R to denote the area functional and calculate the first variation of area
δA. The area of a perturbed graph given by u+ ǫφ where φ ∈ C∞

c (U) is given by

∫

U

√

1 + |Du+ ǫDφ|2.

Thus, by the chain rule

d

dǫ

∫

U

√

1 + |Du+ ǫDφ|2 =
∫

U

(Du+ ǫDφ) ·Dφ
√

1 + |Du+ ǫDφ|2
,

and

δAu[φ] =

∫

U

Du ·Dφ
√

1 + |Du+ ǫDφ|2
=

∫

U

Tu ·Dφ
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where Tu = Du/
√

1 + |Du|2 is the projection projection of the downward unit normal field (ux, uy,−1)/
√

1 + |Du|
encountered in Chapter 1. To the real scaling φTu of this projection field and use the divergence theorem
to write

∫

U

div(φTu) =

∫

∂U

φTu = 0.

owing to the fact that φ has support compactly contained in U . There is a general product formula for
the divergence applying to a real scaling of a vector field, namely,

div(wv) = Dw · v + w div v.

Exercise 43 If U is an open subset of Rn with w : U → R satisfying w ∈ C1(U) and v ∈ C1(U → Rn),
then

div(wv) = Dw · v + w div v.

Prove this identity two different ways

(a) Use the definition of the divergence as a limit of flux density.

(b) Verify the formula in terms of standard rectangular coordinates.

This is a good time to pause and note that when we restrict to perturbations φ ∈ C∞
c (U), we are

considering what are called interior variations. As pointed out in the previous section, this is a commonly
considered and convenient vector space of perturbations. In the capillary tube problem, however, it is also
important to consider more general variations.

Theorem 8 If u ∈ C2(U), then the interior variation of area at u is given by

δAu[φ] = −
∫

U

div

(

Du
√

1 + |Du|2

)

φ for φ ∈ C∞
c (U).

Thus, we encounter the mean curvature operator

Mu = div Tu = div

(

Du
√

1 + |Du|2

)

of the previous chapter.

Exercise 44 Compute the interior variation of the full capillary energy E to show that for u ∈ C2(U)

δEu[φ] =
∫

U

[

− div

(

Du
√

1 + |Du|2

)

+ f(u)

]

φ

for an appropriate function f : R → R and all φ ∈ C∞
c (U).

Mean Curvature

Now let us consider a little surface geometry in coordinates. Say u ∈ C2(U) has graph G = {(x, y, u(x, y)) :
(x, y) ∈ U}. We have discussed the signed curvature of a plane curve with

k =

(

u′√
1 + u′2

)′

=
u′′

(1 + u′2)3/2
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when the curve is given as the graph of a function {(x, u(x)) : x ∈ (a, b)}. In this context, the signed
curvature can also be realized as the derivative, with respect to arclength, of the inclination angle ψ with
respect to the horizontal; see Exercise 20. In fact,

sinψ =
u′√

1 + u′2

so that

k =
d

dx
[sinψ] =

d

ds
[sinψ]

ds

dx
= cosψ

dψ

ds

ds

dx
=
dψ

ds
.

Exercise 45 Reparameterize the graph {(x, u(x)) : x ∈ (a, b)} by arclength to show

ds

dx
=

√
1 + u′2.

More generally, the curvature vector ~k of a space curve α : (a, b) → Rn at a point α(t0) with t0 ∈ (a, b)
is defined as follows: Reparameterize α by arclength obtaining, for some ǫ > 0, a parameterization of
(perhaps a portion of) the same curve γ : (−ǫ, ǫ) → Rn defined on {s : |s| < ǫ} and satisfying γ(0) = α(t0).
Then,

~k =
d2γ

ds2
(0).

This definition assumes reparameterization by arclength is possible and that the derivatives to be computed
exist. Sufficient conditions for this to be the case are the following:

1. α ∈ C2((a, b) → Rn) and

2. α′(t0) 6= 0.

Exercise 46 The arclength of a curve α ∈ C1((a, b) → Rn) is

s =

∫ t

t0

|α′(τ)| dτ.

Assuming α′(t0) 6= 0, reparameterize α to obtain an arclength parameterization γ : (−ǫ, ǫ) → Rn as in the
definition above and compute

dγ

ds
.

Exercise 47 Given u ∈ C2(a, b) and α(x) = (x, u(x)), find the curvature vector ~k of the graph G =
{(x, u(x)) : x ∈ (a, b)} at each point, and find an expression for the signed curvature of the graph with
respect to the upward normal.

Exercise 48 Assuming α ∈ C2((a, b) → Rn) with α′(t0) 6= 0, compute the curvature vector ~k at α(t0) in
terms of γ.

In physics, it is often convenient to express derivatives with respect to time using a “dot” instead of a
prime so that velocity v is given by the derivative of position ẋ with respect to time and acceleration
a is given by the derivative of velocity ẍ with respect to time. This seems to be a tradition started by
Newton and it leaves open the prime notation for derivatives with respect to space. A similar tradition is
convenient when one makes curvature calculations like those above: We denote derivatives with respect to
the parameter t (or whatever parameter is used to define α) with a prime and derivatives with respect to

arclength with a “dot.” Thus, γ̇ = α′/|α′| and ~k = γ̈.
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It will be noted that there is no immediately obvious notion of signed curvature for a space curve.
There are certain situations, however, where such a notion does make sense. If that curve happens to lie
in a two-dimensional plane and a particular unit normal N (to the curve within that plane) is specified at
a point α(t0), then we may define the signed curvature of α at α(t0) with respect to N by

k = ~k ·N

where ~k is the curvature vector to the curve at α(t0). The value of the signed curvature in this context is
sometimes denoted by kN .

Exercise 49 Show the new notion of signed curvature for a graph {(x, u(x)) : x ∈ (a, b)} agrees with the
previous definition if we take as the specified normal

N =
(−u′, 1)√
1 + u′2

,

that is, the upward unit normal to the graph.

Perhaps this is a good start to understanding the curvature of curves.

Exercise 50 Find the curvature of the graph of the function u(x) =
√
r2 − x2 for |x| < r. Find the

curvature of the graph of the function u(x) = −
√
r2 − x2 for |x| < r.

Let us return to our simple surface which is the graph of a function u:

G = {(x, y, u(x, y)) : (x, y) ∈ U}.

If we want to talk about the curvature of this surface, things are somewhat (more) complicated. We note
that there are many curves passing through each point (x0, y0, u(x0, y0)) on the surface, and it is reasonable
to imagine that the curvatures of these curves are somehow related to the curvature of the surface at this
point. There are a several nominally different ways to think about (and compute) the kind of curvature
(mean curvature) that is prescribed by the capillary equation. Probably we should think about at least a
couple of them.

Take the upward unit normal to the surface G is given by

N =
(−ux,−uy, 1)
√

1 + |Du|2
.

Exercise 51 Explain why the vectors Xx = (1, 0, ux) and Xy = (0, 1, uy) are linearly independent tangent
vectors to G and compute N using the cross product Xx ×Xy.

We denote the tangent plane to G at X by TXG. Thus,

TXG = {aXx + bXy : (a, b) ∈ R2}.

Any nonzero tangent vector v = (v1, v2, v3) ∈ TXG determines a unique plane Π = Π(v) orthogonal to
v×N . Such a normal plane intersects the surface G in a curve, and we would like to compute the signed
curvature of this curve in the plane Π with respect to N at the point X = (x, y, u(x, y)).

To illustrate how this computation works, we make a specific choice of unit tangent vector

v =
Xx

|Xx|
=

(1, 0, ux)
√

1 + u2x
.
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Let us denote the associated plane by Πα where we imagine α : (−ǫ, ǫ) → R3 parameterizes the intersection
curve on some interval (−ǫ, ǫ) with α(0) = X . A unit normal to Π is

w = N × v.

Computing and writing this vector as a column vector we have

w =
1

√

1 + |Du|2
√

1 + u2x





−uxuy
1 + u2x
uy



 .

We also write
Πα = {(ξ, η, ζ) ∈ R3 : [(ξ, η, ζ)− (x, y, u)] ·w = 0}.

The intersection of Πα with the graph of u

G = {(ξ, η, u(ξ, η)) : (ξ, η) ∈ U}

in some small neighborhood of X = (x, y, u(x, y)) is a C2 curve. This follows from the implicit function
theorem. This is a touch tricky, so let’s see if we can give the details of how it works: Consider the
function Ψ : U → R2 by

Ψ

(

ξ
η

)

=

(

ξ
[(ξ, η, u(ξ, η))− (x, y, u)] ·w

)

.

I’ve written the arguments as columns here because they are (I think) a little easier to visualize and
compute with in that form. Notice Ψ(x, y) = (x, 0). Also, the transformation Ψ has total derivative

DΨ =





1 0

(1, 0, ux(ξ, η)) ·w (0, 1, uy(ξ, η)) ·w



 .

In particular, at (ξ, η) = (x, y), we have detDΨ 6= 0. These are the hypotheses of the inverse function
theorem, which then tells us there is an open ball Bδ(x, y) ⊂ U such that Ψ restricted to Bδ(x, y) has a
well-defined C2 inverse with domain V = Ψ(Bδ(x, y)) ⊂ R2 and (x, 0) ∈ V. We write the second component
of Psi−1 as φ, so that

Ψ−1

(

ξ
p

)

=

(

ξ
φ(ξ, p)

)

.

Setting η(ξ) = φ(ξ, 0) it is easy to check α : (x− δ, x+ δ) → R2 by

α(ξ) = (ξ, η(ξ), u(ξ, η(ξ)))

is a parameterization of the intersection curve near X with α′ = (1, η′, ux + η′uy) 6= 0. What we have
actually done here is give the proof of the implicit function theorem in this case applied directly would say
that if

∂

∂η

{

[(ξ, η, u(ξ, η))− (x, y, u)] ·w
}

∣

∣

(x,y)

6= 0,

then there is some δ > 0 for which the equation

[(ξ, η, u(ξ, η))− (x, y, u)] ·w = 0

determines η uniquely as a C2 function of ξ for x− δ < ξ < x+ δ. We get the same conclusion.
Reparameterizing by arclength, we can assume the intersection curve is given locally by

γ(s) = (ξ(s), η(s), u(ξ(s), η(s)))
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with γ(0) = X = (x, y, u). Parameterization by arclength means that the tangent vector γ̇ = (ξ̇, η̇, ξ̇ux +
η̇uy) is a unit vector where ux = ux(ξ, η) and uy = uy(ξ, η). That is,

ξ̇2 + η̇2 + (ξ̇ux + η̇uy))
2 = 1. (12)

In the particular case under consideration, we are also assuming

γ̇(0) = v =
Xx

|Xx|
=

(1, 0, ux)
√

1 + u2x
.

Exercise 52 Use the inverse/implicit function theorem to generalize the construction above with v any
unit vector in TXG.

Figure 2: Planes normal to the graph of a function of two variables

If we differentiate the relation [γ(s) − (x, y, u)] · w = 0, noting that the vectors X = (x, y, u) and w are
independent of the arclength s, we conclude γ̇ · w = 0. Using the expression for w computed above, we
see this implies

−ξ̇uxuy + η̇(1 + u2x) + (ξ̇ux + η̇uy)uy = 0. (13)

We should be careful to recognize something about this dot product. Notice the three components of γ̇
appearing here. Each involves dependence on the arclength s with ξ̇ = ξ̇(s) and η̇ = η̇(s). Note very
carefully, the third component:

ξ̇ux + η̇uy = η̇(s)ux(ξ(s), η(s)) + η̇(s)uy(ξ(s), η(s)).

The remaining first partial derivatives in (13) are evaluated at (x, y). Thus, in the first and second terms

uxuy = ux(x, y)uy(x, y) and 1 + u2x = 1 + [ux(x, y)]
2 independent of s.
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Similarly, the second factor in the third term is uy = uy(x, y), independent of s, and not uy(ξ(s), η(s)). If we
evaluate (13) at s = 0, however, there is a cancellation, and we obtain the useful relation η̇(0)(1+|Du|2) = 0
according to which η̇(0) = 0. It follows from (12) that ξ̇(0) = ±1/

√

1 + u2x. With a choice according to

which γ̇(0) = ξ̇(0)Xu = v, we have

ξ̇(0) =
1

√

1 + u2x
.

As mentioned above, we would like to compute the curvature of the intersection curve—the signed
curvature as a plane curve (graph) in Πα with respect to N . This value is given by

kα = γ̈ ·N = γ̈(0) ·NX .

We find
γ̈ = ξ̈(1, 0, ux) + η̈(0, 1, uy) + (0, 0, ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy).

Evaluating at s = 0, this becomes

γ̈(0) = ξ̈Xx + η̈Xy + (0, 0, ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy).

Since Xx and Xy are tangent vectors to G, both orthogonal to N at the point X ∈ G, the dot product is
given by

kα =
ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy

√

1 + |Du|2
=

uxx

(1 + u2x)
√

1 + |Du|2
. (14)

Let us now pause to think carefully (as carefully as we can) about this value. In particular, let us attempt
to compare this value to what we know about the curvature of planar graphs. If N = (0, 0, 1), that is, if
the tangent plane TXG is horizontal with ux = uy = 0, then kα = uxx as we would expect. Now, if ux is
nonzero but uy = 0, then N = (−ux, 0, 1)/

√

1 + u2x, and

kα =
uxx

(1 + u2x)
3/2
, (15)

and this matches precisely what we would expect for a planar graph according to the familiar formula

k =
u′′

(1 + u′2)3/2

for the signed curvature. In this case, for the surface, the vector w is horizontal. In fact according to
our formula for w in this case we will have w = (0, 1, 0). The normal plane is vertical and parallel to the
x, z-plane, and the intersection curve is given by α(ξ) = (ξ, y, u(ξ, y)). This is all as it should be: a second
derivative reduced/scaled by the reciprocal of the cube of the length scaling factor.

The interesting, geometrically new, phenomenon here is how the curvature of the intersection curve
changes with the tilt in the other (y) coordinate direction. First of all, when uy 6= 0 the Xx normal plane
is not vertical and parallel to the x, z-coordinate plane. The normal curvature, however, is still (just) a
scaling of uxx.

Exercise 53 Perhaps the simplest situation in which the phenomenon captured in (15) is operative and
evident is when the graph G is the graph of a circular cylinder. Start with the cylinder x2 + z2 = r2, and
then express half of this cylinder as a graph G, and tilt G using a rotation





x
y
z



 7→





1 0 0
0 cos θ − sin θ
0 sin θ cos θ









x
y
z



 .

Explain why it makes sense that the curvature of the tilted cylinder in the normal planes determined by Xx

at each point are given by (15). Does it make any difference for, say the bottom half of the cylinder if one
considers

u(x, y) = −
√
r2 − x2 − tan θ y?
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Notice the vectors w and N also determine a unique plane

Πβ = {(ξ, η, ζ) : [(ξ, η, ζ)− (x, y, u)] · (1, 0, ux) = 0}

passing through X = (x, y, u(x, y)) ∈ G and orthogonal to v, i.e. containing w and N . The intersection
Πβ ∩ G is also a planar curve that can be parameterized by arclength with

γ(s) = (ξ, η, u(ξ, η))

as above. Several of the computations above apply, but differentiating the defining relation (γ−X)·Xx = 0,
we find

γ̇ ·Xx = (ξ̇, η̇, ξ̇ux + η̇uy) · (1, 0, ux) = 0

where, as above, ux = ux(ξ, η) and uy = uy(ξ, η) depend on s in the first vector, but ux = ux(x, y) in the
second tangent vector is independent of s. Evaluating at s = 0 this time, we obtain

(1 + u2x)ξ̇(0) + uxuyη̇(0) = 0.

It follows that for some nonzero constant c we must have

ξ̇(0) = −cuxuy and η̇(0) = c(1 + u2x).

From the condition |γ̇| = 1 and the choice η̇(0) > 0, we find after some simplification that

c =
1

√

1 + |Du|2
√

1 + u2x

so that

ξ̇(0) = − uxuy
√

1 + |Du|2
√

1 + u2x
and η̇(0) =

√

1 + u2x
√

1 + |Du|2
.

Substituting these values in the expression for γ̈(0) · N from above, we have the signed curvature of this
intersection curve with respect to the normal N at the point X satisfies

kβ =
ξ̇2uxx + 2ξ̇η̇uxy + η̇2uyy

√

1 + |Du|2

=
1

(1 + |Du|2)3/2
(

u2xu
2
y

1 + u2x
uxx − 2uxuy uxy + (1 + u2x) uyy

)

.

It is quite easy to see from this expression that

kα + kβ = Mu

is the quantity we have called the mean curvature of the graph.
We have shown

The mean curvature given by the expression Mu is the sum of the curvatures of two orthog-
onal planar curves lying on the graph G of u, each taken as a signed curvature with respect to
the surface normal N which also lies in the (normal) plane containing each curve.

The derivation above leaves open the possibility that one of the two normal planes determining one of
the intersections curves must be the plane Π(v) determined by the special tangent vector v = Xx/|Xx|.
Thus, we can ask: Is this quantity Mu something of fundamental geometric meaning as curvature, or is it
somehow dependent on the particular coordinates we have used, and consequently, the first normal plane
we have chosen?

Perhaps the derivation suggests, however, a more general construction:
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Let v be any unit length vector in TXG, and let w = N × v. Let kα be the signed curvature of
the intersection of the normal plane Π(v) orthogonal to w with respect to N , and let kβ be the
signed curvature of the intersection of the normal plane Π(w) orthogonal to v with respect to
N . Is the number

kα + kβ

always equal to Mu?

In fact, the suggested construction is correct:

If Πα and Πβ are any pair of orthogonal planes intersecting along the normal line to
a C2 surface S at a point X ∈ S, then each of the two planes intersects S locally in a planar
curve. The two resulting planar curves have some signed curvatures kα and kβ with respect to a
choice of normal N , and the average of these two numbers is called the mean curvature H of
the surface. The mean curvature is independent of the choice of orthogonal planes and depends
only on the surface S and the (unit) normal N (chosen among two possibilities). According to
this construction

H =
kα + kβ

2
and M = 2H. (16)

The last expression relating the mean curvature operator M and the value of the mean curvature assumes
the surface S is given by the graph of a function. In fact, every surface (a concept we have not actually
defined carefully but which one can hope3 is a relatively intuitively clear concept) can be expressed as a
union of graphs of functions, so in particular, coordinates ξ and η can be chosen so that all points in the
surface S near a given point X ∈ S are congruent to a graph

G = {(ξ, η, u(ξ, η)) : (ξ, η) ∈ U}

for some open set U ⊂ R2. According to the above assertion, it does not matter which graph is chosen to
locally represent S.

There are various ways to see the mean curvature H is a geometric quantity as described above. The
following is one way:

Say we take a different direction v ∈ TXG and an orthogonal direction w = N × v ∈ TXG. Rather
than try to generalize the computation above for v = Xx‖Xx| directly, note that this new tangent vector
v = (v1, v2, v3) must have some nonzero projection into the x, y-plane, namely u1 = (v1, v2)/

√

v21 + v22.

Exercise 54 Explain how we know (v1, v2) 6= 0 ∈ R2.

We can represent G as a graph in new coordinates as follows: We first write u1 = (cos θ, sin θ) determining
the angle θ uniquely in the interval [0, 2π). We then consider the function ũ : Ũ → R by

ũ(ξ, η) = u(x+ ξ cos θ − η sin θ, y + ξ sin θ + η cos θ)

on an appropriate domain Ũ ⊂ R2.

Exercise 55 Find the “appropriate” domain Ũ in terms of the domain U ⊂ R2 for u ∈ C2(U), and show
there exists a rigid motion ρ : R3 → R3 (translation and rotation) such that

G̃ = {(ξ, η, ũ(ξ, η)) : (ξ, η) ∈ Ũ}
3If you do not know the technical definition of a surface and (for some reason) are not interested in looking it up and

understanding it at the moment, then you might write down any example you can imagine being a surface and see if
you can express every small enough piece of that surface as the graph of a function. For example, one might start with
∂Br(0) = {(x, y, z) : x2 + y2 + z2 = r2}. Perhaps we will also remedy this deficiency soon.
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is the (congruent) image of G under ρ, that is

G̃ = {ρ(X) : X ∈ G}

with (1, 0, ũξ) = ρ(v). Thus, the sum of the normal curvatures associated with v and w is the same as
calculating Mũ(0, 0), which we know to be

Mũ =
(1 + ũ2η)ũξξ − 2ũξũηũξη + (1 + ũ2ξ)ũηη

(1 + |Dũ|2)3/2 .

In view of the above construction/exercise we compute Mũ:

ũξ = ux cos θ + uy sin θ and ũη = −ux sin θ + uy cos θ.

The denominator (1 + |Dũ|2)3/2 in Mũ is easily calculated at this point and found to be (1 + |Du|2)3/2,
which is promising. The coefficients involving first order terms are more complicated, but straightforward
to compute:

1 + ũ2ξ = 1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ

ũξũη = −u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ

1 + ũ2η = 1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ.

Finally, for the second order derivatives we have

ũξξ = uxx cos
2 θ + 2uxy cos θ sin θ + uyy sin

2 θ

ũξη = −uxx cos θ sin θ + uxy(cos
2 θ − sin2 θ) + uyy cos θ sin θ

ũηη = uxx sin
2 θ − 2uxy cos θ sin θ + uyy cos

2 θ.

Algebraically, the calculation of the expression

(1 + ũ2η) ũξξ − 2ũξũη ũξη + (1 + ũ2ξ) ũηη

becomes somewhat long and cumbersome. With this in mind, we compute the products giving the coeffi-
cients of the second order terms one by one. The coefficient of uxx is the sum of three terms: The first is
from the product (1 + ũ2η)ũξξ and is given by

cos2 θ(1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ). (17)

The second is from −2ũξũηũξη and is

2 cos θ sin θ(−u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ). (18)

The third comes from (1 + ũ2ξ)ũηη:

sin2 θ(1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ). (19)

It is not difficult to see that the sum of (17), (18), and (19) simplifies to

1 + u2y.

Thus, we have established

Mũ =
1

(1 + |Du|2)3/2
[

(1 + u2y) uxx + · · ·
]

.
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The coefficient of uxy is similarly the sum of three terms:

2 cos θ sin θ(1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ)

− 2(cos2 θ − sin2 θ)(−u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ)

− 2 cos θ sin θ(1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ).

This sum, as might be expected, simplifies to 2uxuy. Finally, the coefficient of uyy is

sin2 θ(1 + u2x sin
2 θ − 2uxuy cos θ sin θ + u2y cos

2 θ)

− 2 cos θ sin θ(−u2x cos θ sin θ + uxuy(cos
2 θ − sin2 θ) + u2y cos θ sin θ)

+ cos2 θ(1 + u2x cos
2 θ + 2uxuy cos θ sin θ + u2y sin

2 θ)

= 1 + u2x.

We have shown Mũ(0, 0) = Mu(x, y) is independent of the choice of orthogonal vectors v and w in TXG.

Geometric meaning and curvature

Let us return to the discussion surrounding (14) and attempt to think about this expression a little more
carefully and filling out a little more the connection with the curvature of curves and the broader idea of
what it means for a quantity to be geometric.

If u : (a, b) → R has u ∈ C2(a, b) and graph a curve {(x, u(x)) : x ∈ (a, b)}, then the values of u are
made geometric by the consideration of the graph.

When you think of the distance ξ = ξ(t) traveled by someone walking, or someone in a car, or a
baseball, or a rocket, then that distance alone (as a function of time) is analytic or physical but not
necessarily geometric. It becomes geometric when we plot the curve {(t, ξ(t)) ∈ R2 : t ∈ (a, b)} which is
the graph of the distance as a function of time. Once we have this graph, then the value ξ′(t) may be
thought of as geometric: The slope of the tangent line to the graph. Without the graph, the rate of
change ξ′(t) of the distance with respect to time is merely analytic or physical.

We are quite accustomed to identify the physical/analytic meaning with the geometric meaning in this
instance, and forget there is a difference. The point of this discussion is that the situation changes with
the second derivative u′′(x) of u ∈ C2(a, b). This quantity, the second derivative by itself, has no
geometric meaning.

Though this startling declaration may be obvious, it also may be quite subtle for some people, so I will
elaborate. Geometric meaning in relation to the function u ∈ C2(a, b) is associated, and only associated,
with the graph of the function u, which is a curve. That curve, as a geometric object, may have a relation to
a fixed direction, like a direction specified as horizontal, given by a quantity like slope or inclination. If we
know which direction is horizontal, and we know u′(x) with respect to this horizontal direction (measured
by the quantity x), then we know something about the geometry of the curve—the inclination of the curve
at the point (x, u(x)) on the curve—just as u(x) tells us something about the orthogonal distance from
(x, u(x)) to the horizontal. If we know u′′(x), however, this tells us (almost) nothing about the geometry
of the graph and, since that is the only geometry we have, nothing geometric (period).

As an illustration, consider the specific function ξ(t) = t2. In Figure 3 I have plotted the graph of the
function ξ along with three small disks focusing on three different portions of the graph and having centers
on specific points (t, ξ(t)) on the graph. Now, if I were to tell you a particular point (t, ξ(t)) at the center
of one of these disks is a point where ξ′′ = 2, could you look at the three disks, and determine the point
to which I was referring (from the geometry)? In fact, you cannot determine anything geometric from the
information ξ′′(t) = 2. If you know time is measured in seconds and ξ is measured in meters, you can
tell something physical: The rate of change of ξ′ with respect to time (or the acceleration) at this point
(and every point) is 2 meters per second. More generally, you can tell something analytic, namely that
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Figure 3: The graph of a “position” function ξ = ξ(t) = t2.

the rate of change of ξ′ with respect to the quantity t (whatever the appropriate units may happen to be)
is 2. This kind of information can be useful both computationally (analytically) and physically, but it is
not geometric.

Geometric information comes from the graph and the value of the second derivative is not simply
related to the geometry of the graph. As we know, one quantity

k =
u′′

(1 + u′2)3/2
,

a combination of the first and second derivatives called curvature, does give precise quantitative geometric
information. We may qualify our comments by pointing out that u′′(x) does give some qualitative
geometric information: If u′′(x) is positive, we can infer the geometric convexity of the graph of u with
respect to the horizontal. It is the quantitative measure of that convexity we cannot discern without the
curvature. And, as we know, the formula says that if the inclination of the graph is zero (i.e., has slope
zero) at a point, then u′′(x) gives the curvature, but if the inclination is nonzero, then the number u′′(x)
is strictly larger in absolute value than the curvature and must be diminished by a factor

1

(1 + u′2)3/2
< 1.

This is how curvature works in relation to a second derivative. Why that particular scaling factor is the
correct one is difficult to see geometrically, but that is what comes out from the computation using the
chain rule. Maybe you can find a nice geometric interpretation for the scaling factor.

Exercise 56 Consider the vectors u′′(−u′, 1)/
√
1 + u′2 and u′′(1, u′)/

√
1 + u′2 normal and tangent to the

graph of u ∈ C2(a, b). Can you express the curvature vector ~k = u′′(−u′, 1)/(1 + u′2)2 geometrically in
terms of one (or both) of these vectors?

The expression

kα =
uxx

(1 + u2x)
√

1 + |Du|2

given in (14) is telling us something new (and geometric) about the curvature of curves on a surface—and
indirectly about the curvature of a surface. Let a surface S be given locally as a graph

G = {(x, y, u(x, y)) : (x, y) ∈ U}

where U is an open subset of R2 as usual.
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If we intersect the surface S with a vertical plane, say a plane parallel to the x, z-plane, then
the signed curvature of the intersection curve at a particular point is

uxx
(1 + u2x)

3/2
, (20)

and this value is always larger in absolute value than (or possibly equal to) the normal curva-
ture determined by the tangent vector (1, 0, ux) at that point. If the slope in the orthogonal
coordinate direction at the point, as measured by uy, is zero, then the value (20) is the
normal curvature. If, however, uy 6= 0, then the value given in (20) must be diminished by a
factor

√

1 + u2x
√

1 + |Du|2
< 1. (21)

It will be noted that the factor in (21) is the ratio of the length scaling factor for the coordinate intersection

{(ξ, y, u(ξ, y)) : (ξ, y) ∈ U}

to the area scaling factor for the surface. This is how the curvature of curves given by the intersection
with normal planes works on a surface.

Exercise 57 Find the projection of the curvature vector

~kx =
uxx

(1 + u2x)
2
(−ux, 0, 1)

of the intersection of the vertical plane

Πx = {(ξ, y, ζ) : (ξ, ζ) ∈ R2}

with the graph
G = {(x, y, u(x, y)) : (x, y) ∈ U}

onto the normal N = (−ux,−uy, 1)/
√

1 + |Du|2 of the surface.

In 1776 Jeen Baptiste Marie Charles Meusnier de la Place discovered4 a remarkable generalization of the
construction we have given concerning kα. The result is purely geometric and captures precisely what is
happening.

Theorem 9 (Meusnier’s theorem) Let S be a surface containing a point X ∈ S and having a unit
tangent vector v ∈ TXS at X. If γ : (−ǫ, ǫ) → S is a parameterization by arclength of any curve on the
surface S with γ(0) = X ∈ S, γ̇(0) = v, and well-defined curvature vector γ̈(0), then the number

kN = γ̈(0) ·N,

where N is a choice of unit normal to S at X, is independent of the curve γ. This is called the normal
curvature of the surface S at the point X and depends only on

1. the surface S,

2. the tangent direction v, and

3. the choice of unit normal to S (up to a sign).

4The French name Meusnier is pronounced like “moon yay.”
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Additional Exercises

Exercise 58 Compare the graphs of the functions u : R → R by u(x) = x2 and v : [x0 − r, x0 + r] → R by

v(x) = y0 −
√

r2 − (x− x0)2.

(a) Discuss the regularity of each function.

(b) Compute the curvature of the graph of each function.

(c) Given a point (x, u(x)) on the graph of u, find a center (x0, y0) and radius r so that the graph of v
“matches the graph of u to second order” at the point (x, u(x)). Show the center and radius you have
found are unique.

(d) Use numerical software to plot the graph of u and some osculating circles determined by the graph of
u.

4 Integration

We wish to discuss the integration of real valued functions on (somewhat) general sets. The basic setup is
this: You have a function

f : X → R

where X is a metric space with a measure. As we know, the metric on a metric space (or distance
function) allows one to measure distances between points and diameters of sets with diam : P(X) → [0,∞]
by

diam(A) = sup{d(x, y) : x, y ∈ A}.
Here we have used P(X) to denote the collection of all subsets of X . This particular set is also called the
power set of X and is sometimes denoted 2X .

A measure µ is usually different from the diameter associated with a metric, though these functions
can agree, for example on intervals in R where the measure of an integral (and the diameter of an interval)
is its length. Ideally, we can also measure all sets with µ : P(X) → [0,∞], and little harm is done (usually)
if we imagine that to be the case. Technically, it is sometimes only possible to define a measure on some
proper subset M of P(X) called the collection of measurable sets. Measurable sets should have the
following properties:

1. φ,X ∈ M.

2. If A ∈ M, then Ac ∈ M.

3. If A1, A2, A3, . . . comprise a (countable) sequence of sets in M, then the union should also be mea-
surable:

∞
⋃

j=1

Aj ∈ M.

The measure µ : M → [0,∞] should have the following properties:

1. µφ = 0.

2. If A1, A2, A3, . . . comprise a (countable) sequence of pairwise disjoint sets in M, then

µ

∞
⋃

j=1

Aj =

∞
∑

j=1

µAj.
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The second property is called countable additivity.
Given a set X (with a metric and a measure) you can think of an integral as a limit

∫

X

f = lim
‖P‖→0

∑

j

f(x∗j)µAj

where P = {Aj}∞j=1 is a (finite) partition of X , that is

X =
k
⋃

j=1

Aj and µ(Ai ∩ Aj) = 0 for i 6= j,

and ‖P‖ = maxj diam(Aj).
Two important possibilities (for integration) are the following:

1. X = U is an open subset of Rn with µ = L
n given by n-dimensional volume measure (or Lebesgue

measure) and d the Euclidean metric. We call this integration on flat space.

2. X = ∂U is the smooth boundary of an open subset of Rn with µ = Hn−1 given by (n−1)-dimensional
Hausdorff measure on Rn (and d again the Euclidean metric). These are examples of integration
on manifolds.

If you do not know what it means for the boundary of an open subset of Rn to be “smooth,” (or what
it means to be a “manifold”) do not worry. We can give precise definitions later. You can just think of
the boundary of the disk S1 = {(x, y) ∈ R2 : x2 + y2 = 1} in the case n = 2 where you should have a
pretty good idea of how one-dimensional Hausdorff measure H1 should work. You can also think of the
boundary of the ball S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} in the case n = 3 on which one would use
two-dimensional Hausdorff measure, that is area measure for surfaces in R3.

In practice, computation of an integral on a higher dimensional flat space is often reduced to the
computation of iterated integrals on lower dimensional spaces by some form of Fubini’s theorem:

Theorem 10 (Fubini) If f : X1×X2 → R is defined on the product X1×X2 = {(x1, x2) : xj ∈ Xj, j = 1, 2}
of measurable metric spaces X1 and X2, then

∫

X1×X2

f =

∫

X1

(∫

X2

f

)

=

∫

X2

(∫

X1

f

)

where the integrand of
∫

X2
f is taken to mean the function g : X2 → R given by g(x) = f(x1, x) for each

(fixed) x1 ∈ X1, and the integrand of
∫

X1
f is interpreted similarly.

Integrals over manifolds are usually computed using a parameterization and a change of variables
formula. To describe such a computation, in general terms, we change notation slightly: Let U ⊂ Rn be
a flat domain of integration and

X : U → Rk an injection onto its image M = X(U).

Here M is assumed to be a manifold (or a subset of a manifold) and the function X is a parameterization;
this is almost the definition of a manifold. Then we seek a change of variables formula which looks
like this:

∫

M

f =

∫

U

(f ◦X) σ.

In this formula:

1. f :M → R is a real valued function on M , as expected,
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2. f ◦X : U → R is the composition given by

f ◦X(p) = f(X(p)),

and

3. σ is a scaling factor for the measures involved.

You can think of σ (roughly) according to the following description:
Using the measure µ on M , the measure of a set A ⊂M is

µA =

∫

A

1 =

∫

X−1(A)

σ (22)

where σ : U → R is a (scaling) function allowing the computation of µA by integration on the corresponding
(flat) preimage

X−1(A) = {p ∈ U : X(p) ∈ A}.
The area scaling relation (22) is required to hold for all (measurable) sets A in such a way that the value
of σ can be recovered by taking a limit

σ(p) = lim
A→{p}

µA

µU [X−1(A)]
(23)

where µU is the measure on U and the limit is taken as A tends to {p} as a set. You may recognize (23)
as defining a kind of derivative of the measure µ.

Exercise 59 Consider the polar coordinates map Φ : (0,∞) × R → R2. This function is a smooth
bijection on any restriction to a half strip (0,∞)× [θ0, θ0+2π). Let A be the image under Φ of a rectangle
R = [r0, r0 + ǫ]× [θ0, θ0 + δ] for some r0 > 0 and any θ0. That is,

A = {Φ(r, θ) : r0 ≤ r ≤ r0 + ǫ, θ0 ≤ θ ≤ θ0 + δ}.

Compute the area of A and the limit

lim
ǫ,δ→0

L
2A

L2R

where L
2 denotes area measure in the plane, i.e., 2-dimensional Lebesgue measure.

Let’s try to illustrate the notions of integration just introduced using an example. Say we want to
integrate on the surface M = S shown in Figure 4.

This surface is parameterized by

Φ(r, θ) =
r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)





on the rectangle U = [1, 2]× [0, π/2]. A small square [r0, r0 + ǫ]× [θ0, θ0 + ǫ] in the rectangle U has image
approximated by the image of the linearization:

Φ(r, θ) ∼ Φ(r0, θ0) + dΦ(r0,θ0)(r − r0, θ − θ0).

The linear part L = dΦ(r0,θ0) : R
2 → R3 is given by

Lv = DΦ(r0, θ0)v
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Figure 4: A parameterized surface and the associated scaling factor.

where DΦ is the total derivative matrix, in this case

DΦ =





















∂Φ1

∂r

∂Φ1

∂θ

∂Φ2

∂r

∂Φ2

∂θ

∂Φ3

∂r

∂Φ3

∂θ





















=
1

4













(2 +
√
2) cos θ − (2−

√
2) sin θ −r[(2 +

√
2) sin θ + (2−

√
2) cos θ

(2 +
√
2) sin θ − (2−

√
2) cos θ r[(2 +

√
2) sin θ + (2−

√
2) sin θ]

2(cos θ + sin θ) 2r(cos θ − sin θ)













.

The image L([0, ǫ]× [0, ǫ]) is a parallelogram spanned by the vectors

w1 =
ǫ

4













(2 +
√
2) cos θ0 − (2−

√
2) sin θ0

(2 +
√
2) sin θ0 − (2−

√
2) cos θ0

2(cos θ0 + sin θ0)













and

w2 =
ǫr0
4













−[(2 +
√
2) sin θ0 + (2−

√
2) cos θ0]

(2 +
√
2) sin θ0 + (2−

√
2) sin θ0

2(cos θ0 − sin θ0)













.

The area of this parallelogram is given by

|w1||w2| sinA = |w1 ×w2|

where A is the angle between w1 and w2 with

sinA =
|w1 ×w2|
|w1||w2|

.
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Calculating, we find
|w1||w2| sinA = |w1 ×w2| = ǫ2r0.

Thus, the linearization takes a square of area ǫ2 (with corner at (r0, θ0) ∈ U precisely onto a parallelogram
of area ǫ2r0. Using this relation, we can decompose U into many small squares Uj (as indicated for example
in Figure 5) with images Φ(Uj) partitioning S and observe

∑

j

f(q∗j )µS [Φ(Uj)] ∼
∑

j

f(q∗j ) r
∗
j µU [Uj ]

=
∑

j

f(q∗j ) r
∗
j L

2[Uj ] (24)

∼
∑

j

f ◦ Φ(p∗j) r∗j L2[Uj ]

where p∗j = (r∗j , θ
∗
j ) ∈ Uj and we recall that L

2 denotes area measure, i.e., two-dimensional Lebesgue
measure, in the plane. Taking the limit as the norms of our partitions tend to zero, we obtain the familiar
change of variables formula

∫

S

f =

∫

U

(f ◦ Φ) r.

Taking the special case f ≡ 1, we obtain (22) in the form

H2(A) =

∫

Φ−1(A)

r for subsets A of the surface S.

We may continue with this calculation using Fubini’s theorem to write the flat integral on the right in
terms of iterated integrals:

∫

S

f =

∫

r∈[1,2]

r





∫

θ∈[0,π/2]

f





r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)













on the rectangle U = [1, 2]× [0, π/2].
Assuming f is a continuous (Riemann integrable) function, we can also write

∫

S
f in terms of familiar

Riemann integrals:

∫

S

f =

∫ 2

1

r





∫ π/2

0

f





r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)







 dθ



 dr.

Exercise 60 Let X : U → Rk be a bijection onto the image manifold M = X(U) where U is a (flat)
domain of integration in Rn.

(a) Write down a measure scaling limit relation like (23) involving the measure µ on M and the measure
L
n on U .

(b) Carefully justify the change of variables formula

∫

M

f =

∫

U

(f ◦X) σ

along the lines of (24).

Here are two change of variables formulas that cover many cases of interest:
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Theorem 11 If U and W are open sets of Rn and Φ : U → W is a change of variables, i.e., a differentiable
bijection (diffeomorphism), then

∫

W

f =

∫

U

f ◦ Φ | detDΦ|.

The total derivative DΦ is an n× n matrix, and the scaling factor is

σ = | detDΦ|.
Theorem 12 If U is an open subset of Rn and X : U → Rk parameterizes a smooth manifold M = X(U),
then

∫

M

f =

∫

U

f ◦X
√

det(DXT DX)

where DX is the k × n matrix which is the total derivative of X and DXT is the transpose of DX. The
matrix DXT DX is a n × n, square, positive definite matrix with det(DXT DX) > 0. The scaling factor
is

σ =
√

det(DXT DX)

Exercise 61 Apply Theorem 12 to the parameterization

Φ(r, θ) =
r

4





(2 +
√
2) cos θ − (2−

√
2) sin θ

(2 +
√
2) sin θ − (2−

√
2) cos θ

2(cos θ + sin θ)





to determine the scaling factor for integration on the surface S given above.

4.1 Special Integrands

The general theory of integration as presented above is not really complete in at least two respects. The
major omission, perhaps, is that we have not discussed measures and the construction of specific measures
in any detail. Closely related to this omission is the fact that we have not discussed conditions under
which the limit in the Riemann style integral we have defined converges. It would also be natural to
discuss alternatives to the Riemann style limit, but we will not include that discussion here. Hopefully it
will be adequate for our purposes to know such questions can be addressed.

Say U ⊂ Rn is an open subset of Rn and ∂U is a smooth (n − 1)-dimensional manifold upon which
integration is possible and upon which there is a well-defined outward unit normal field N . Assume,
furthermore, that v : U → Rn is a smooth vector field. Under these circumstances

∫

∂U

v ·N

is called the outward flux integral of v with respect to U .
Exercise 62 Let U be an open subset of R2 and consider a “window”

U = {(x, y, z) ∈ R3 : (x, y) ∈ U}.
Let v = (0, 0, v) be a smooth vertical field on R3 with units given by

[v] =
mass

area time

where [ · ] denotes the units of a quantity. A field in R3 with these units is called a mass flow field. If
we take N = e3 = (0, 0, 1) what is the physical significance of

∫

U

v ·N?

Note: This integral is also called a flux integral.
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Exercise 63 Let U be a rectangular “window”

U = {(x, y, z) ∈ R3 : (x, y) ∈ [a, b]× [c, d]}

as described in the previous exercise. Let v be a constant constant mass flow field on R3 with third
component v3 > 0. If we take N = e3 = (0, 0, 1), explain the physical significance of

∫

U

v ·N

and draw a picture of this quantity in relation to a picture (you’ve drawn) of the mass which has passed
through U in one unit of time.

Exercise 64 If v : R3 → R3 denotes the identity (or outward radial) field on R3 given by v(x) = x,
compute the outward flux integral

∫

∂Br(0)

v ·N

for r > 0.

The Divergence

Let us assume again that U is an open subset of Rn with smooth boundary ∂U and outward unit normal
field N . Also, we assume, as before that v : U → Rn is a smooth vector field. Taking a sequence of
subdomains V converging as sets to a singleton {p} with p ∈ U , we define div v : U → R by

div v(p) = lim
V→{p}

1

Ln

∫

∂V

v ·N.

Theorem 13 (divergence theorem)
∫

U

divv =

∫

∂U

v ·N.

Outline of the proof: Partition U into small pieces Uj as indicated (in the two-dimensional case) in Figure 5.
Call the partition P. Then

Figure 5: Proof of the divergence theorem in the plane; partitioning a region
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∫

∂U

v ·N =
∑

j

∫

∂Uj

v ·N

where N = Nj is the outward unit normal to Uj in the integrals on the right. Notice how the integrals
over the intersections of adjacent pieces cancel one another. We can write this as

∫

∂U

v ·N =
∑

j

(

1

µUj

∫

∂Uj

v ·N
)

µUj = lim
‖P‖→0

∑

j

(

1

µUj

∫

∂Uj

v ·N
)

µUj.

The measure µ, in this case, is Ln. If ‖P‖ is small there is, for each j, some evaluation point p∗
j ∈ Uj such

that
1

µUj

∫

∂Uj

v ·N is close to div v(p∗
j ).

Naturally, we need the differences of these quantities to be uniformly small in j. Given that we can write

∫

∂U

v ·N = lim
‖P‖→0

∑

j

(div v(p∗
k)) µUj =

∫

U

div v. �

Exercise 65 Let U ⊂ R2 be a set containing a rectangle

R = {p+ s(1, 0) + t(0, 1) : (s, t) ∈ [−ǫ, ǫ]× [−δ, δ].

Assume v : U → R2 is a C1 vector field on U .

(a) Use the mean value theorem to express the flux integral

∫

∂R

v ·N

as a sum

2δ

∫ ǫ

−ǫ

f1(s) ds+ 2ǫ

∫ δ

−δ

f2(t) dt

for appropriate functions f1 and f2.

(b) Use your result to determine the value of

div v(p) = lim
ǫ,δ→0

1

µR

∫

∂R

v ·N

in rectangular coordinates.

The divergence theorem is the version of integration by parts we need to find/derive partial differential
equations as Euler-Lagrange equations in the calculus of variations. Such partial differential equations are
called variational PDE.

Derivatives and the Gradient

Our proof of the divergence theorem relies heavily on the convergence of the limit in the definition of the
divergence, which we have not shown. In fact, some (not so restrictive) conditions should be satisfied by the
vector field v and the regions V ⊂ U with V → {p}. We will show the limit exists for several different kinds
of regions and for several different kinds of coordinates. It will be noted that the divergence is a differential
expression (or a kind of derivative) though it was defined in terms of an integral expression/quantity. As
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a consequence, filling in the deficiency of showing the divergence exists will benefit from some preliminary
discussion of derivatives.

The starting point for essentially all derivatives is the limit of the diffence quotient

u′(x) = lim
h→0

u(x+ h)− u(x)

h
(25)

for a real valued function u : (a, b) → R of one variable, when this limit exists. This quantity is interpreted
(physically) as the (instantaneous) rate of change of the quantity measured by u with respect to the change
in the independent variable x and (geometrically) as the slope of the tangent line to the graph of u.

Exercise 66 Assume x = x(t) measures distance (length) and t measures time.

(a) Use the formula

average rate =
total net distance

total ellapsed time

to find and expression for the average rate of change of x over a finite time interval [a, b].

(b) Interpret your answer geometrically in terms of points on the graph of the function x : [a, b] → R.

Given a function u : U → R of two or more variables defined on an open subset U ⊂ Rn, a natural
generalization of (25) is the directional derivative given by

Dvu(x) = lim
h→0

u(x+ hv)− u(x)

h
(26)

where v is a (tangent) vector at x ∈ U . There are some differences between this kind of difference quotient
and (25) and several remarks are in order. First of all, it will be remarked that to specialize (26) to the
one-dimensional case and obtain the same derivative, one must make the particular choice v = 1 ∈ R.
Thus, our generalization is not only a generalization in dimension but also in the generality of the notion
considered. Illustrating this latter generalization, here are two special cases of note:

1. If v is a unit vector, that is, |v| = 1, then the value of Dvu(x) gives the instantaneous rate of change
of the function u in the direction v. Many authors restrict the definition (26) to only this case. In
particular, in this case one may construct a “graph” over the line {x + tv} given by taking some
(small) ǫ > 0 and considering

G = {(t, u(x+ tv)) : |t| < ǫ}.
The difference quotient (26) is then recognized as the slope of the secant line to the graph G deter-
mined by the points (h, u(x+ hv)) and (0, u(x)) as indicated in Figure 6.

Exercise 67 In two dimensions, when U ⊂ R2, the graph

G = {(x, y, u(x, y)) : (x, y) ∈ U}

of the function u : U → R is a surface, and the illustration of Figure 6 can be realized in a somewhat
different form. Draw such an illustration and interpret the difference quotient in (26) in terms of
your illustration.

2. If v is taken to be a standard unit basis vector ej, then the resulting directional derivative has
a special name and notation. First of all, recall that the standard unit basis vector ej is the vector
in Rn with zeros in all entries except for the j-th entry, which is 1. The vector ej is also called the
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Figure 6: Difference quotient.

standard coordinate vector (with respect to a choice of rectangular coordinates). In this case we
write

∂u

∂xj
= Deju

and call this quantity a partial derivative. The notations

Dxj
u, Dju, uxj

, and Deju (27)

are also used to denote this same quantity. In two dimensions e1 = (1, 0), e2 = (0, 1), and another
usual notation is given by

∂u

∂x1
=
∂u

∂x
and

∂u

∂x2
=
∂u

∂y
.

Similarly, in three dimensions one finds

∂u

∂x1
=
∂u

∂x
,

∂u

∂x2
=
∂u

∂y
and

∂u

∂x3
=
∂u

∂z
.

Each of the above notations, especially those in (27), should be considered carefully and compared
to the meaning of this kind of derivative.

Exercise 68 How does your illustration and explanation from Exercise 67 change in the case v = ej
is a standard unit basis vector in R2?

We have not followed other authors in restricting the directional derivative Dvu to unit vectors v. As
a consequence, Dvu(x) does not always give the instantaneous rate of change of the quantity u in the
direction v at x, and we need (perhaps) to be a little careful. First notice v = 0 implies Dvu = 0, and this
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quantity indicates nothing about the local behavior of u near x. Nevertheless, we obtain a well-defined
(zero) value in this case. If v 6= 0, then

Dvu(x) = |v| lim
h→0

u(x+ (h|v|)(v/|v|))− u(x)

h|v| = |v|Dv/|v|u

is the scaling of the rate of change of u in the unit direction v/|v| by the factor |v|. This can be recognized
as a familiar form of the chain rule which says the derivative (u◦v)′(x) of a composition u◦v : (a, b) → R
where v : (a, b) → (c, d) and u : (c, d) → R is the product of the instantaneous rate of change of u at v(x)
and the instantaneous rate of change of v at x:

(u ◦ v)′(x) = u′(v(x)) v′(x), (28)

or (as it is often cryptically expressed)
du

dx
=
du

dv

dv

dx
.

In the multivariable case ofDvu, the composition is one with u and the vector valued function α(t) = x+tv
with velocity vector α′ = v is constant. To be explicit

d

dt
u(α(t))∣

∣

t=0

= Dv/|v|u(α(0)) |α′(0)|. (29)

Exercise 69 Notice that in comparing the one-dimensional chain rule (28) with the chain rule we have
derived/observed for directional derivatives (29) one contains a norm/absolute value which is conspicuously
missing in the other.

(a) If one applies the definition of a directional derivative (26) to a function u : (a, b) → R of one variable
using only unit vectors v, what is the difference between Dvu and u′? Put another way, how many
points are there in the boundary of the one-ball Br(0) = {x ∈ R : |x| = 1}?

(b) Explain why there are no absolute values in (28).

In the context of higher dimensional directional derivatives defined by (26) certain additional construc-
tions (often overlooked in 1-D calculus) are of interest. It may first be noted that the expression Dvu(x)
has several possible quantities which can be considered as “arguments.” Perhaps the simplest way to think
about this quantity is with u : U → R and v ∈ Rn fixed and argument x ∈ U . Thus, Dvu becomes a real
valued function on U . This naturally opens the door for repetition of the construction (directional differen-
tiation) and consideration of higher order directional derivatives. Naturally, some regularity is required
to compute derivatives as limits of difference quotients. The absolute value function is not differentiable
at x = 0 in this sense, and we have already introduced the continuity/differentiability classes C0, C1, C2,
. . . in one dimension. We turn to partial derivatives for the analogue in higher dimensions:

Definition 10 A function u : A → R defined on any subset A ⊂ Rn is continuous at x0 ∈ A if for any
ǫ > 0, there is some δ > 0 such that

|u(x)− u(x0)| < ǫ whenever x ∈ A and |x− x0| < δ.

The function u : A→ R is said to be continuous on A if u is continuous at each point x0 ∈ A.

Exercise 70 Show that if the domain of a function u : U → R is an open subset U ⊂ Rn, then the
condtion x ∈ U may be omitted from the definition. In other words, consider the alternative definition: u
is continuous at x0 ∈ U if for any ǫ > 0, there is some δ > 0 such that

|u(x)− u(x0)| < ǫ whenever |x− x0| < δ.

Show a function continuous according to this definition is continuous with respect to the “official” definition
above.
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Definition 11 Given an open set U ⊂ Rn, the set C1(U) consists of the real valued functions u : U → R
for which the partial derivatives satisfy

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn
∈ C0(U).

Exercise 71 Show that u ∈ C1(U) implies u ∈ C0(U).

Definition 12 Given an open subset U ⊂ Rn and a natural number k ≥ 2, the set Ck(U) consists of the
real valued functions u : U → R for which the partial derivatives satisfy

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn
∈ Ck−1(U).

Exercise 72 If U is an open subset of Rn and u ∈ C2(U), then (show)

DvDwu = DwDvu for any vectors v,w ∈ Rn.

Definition 13 If A is any subset of Rn and k is a natural number with k ≥ 1, then Ck(A) consists of
those functions u : A→ R for which the following holds: There exists an open set U ⊂ Rn and an extension
u ∈ Ck(U) for which

1. A ⊂ U , and

2. the restriction of u to A is u:
u∣
∣

A

= u.

Exercise 73 If u ∈ C0(A), then does there (necessarily) exist an extension u : U → R with U some open
subset satisfying

1. A ⊂ U , and

2. the restriction of u to A is u:
u∣
∣

A

= u,

and u ∈ C0(U)?

Returning to the possible arguments of Dvu(x), in addition to Dvu : U → R, we may consider u and x
fixed, so that Dvu(x) is considered a function of v. This point of view brings to light a distinction which
is usually lost (or ignored) in calculus that the collection of vectors v is ususally distinct from the set of
arguments x ∈ U ⊂ Rn for the function u. Technically, the directions v available for computing Dvu(x)
include all vectors in the tangent space to the domain U at x which is TxU = Rn. When the value of
the directional derivative is considered as a function of the direction of differentiation v in this way, the
result is called the differential of u at x and is denoted by

dux : Rn → R.

While u : U → R, we have a collection of differential functions (one for each x ∈ U) with dux : Rn → R.
In addition to having the distinction of having all of Rn for domain, we have given an argument above
showing homogeneity with respect to scaling along the following lines:

Exercise 74 Show that the differential dux : Rn → R, as we have defined it, satisfies

dux(av) = a dux(v) for each v ∈ Rn and a ∈ R.
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This suggests, at the very least, we should consider the possibility that the functions dux might be linear.
It follows from Exercise 74, in fact, that in the case n = 1 the differential map is linear. At this point it
should be confessed that I have again departed, to a certain extent, from standard usage in not making
the linearity of a differential an apriori requirement. As I now examine this point in more detail, let me
start by recalling that in 1-D calculus the functions in Diff(a, b), considered as a special case of functions
u : U → R where U might be a higher dimensional domain, are both the functions that are differentiable
at each point and the functions that have all partial derivatives (of which there is only one) existing at
each point, and

C0(a, b) % Diff(a, b) % C1(a, b). (30)

In higher dimensions it is customary to make a distinction so that the differentiable functions on a
domain U in a higher dimensional space and those with all first order partial derivatives existing at
each point x in U are not the same thing. With this in mind, we introduce the set of functions u : U → R
with all first order partial derivatives existing at every point x in an open subset U ⊂ Rn and call it
pDiff(U). These may be informally called the collection of partially differentiable functions on U , and
we can also write for (30)

C0(a, b) % Diff(a, b) = pDiff(a, b) % C1(a, b).

For U ⊂ Rn (any n) and u ∈ pDiff(U), there is a linear function Lx : Rn → R associated to u at the point
x with values given by

Lx(v) = Du(x) · v = 〈Du(x),v〉Rn

where Du : U → Rn represents the vector field on U given in standard coordinates by

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

.

This vector of first partial derivatives is also called the total derivative of u or the gradient vector.
It should be noted that this is a coordinate dependent expression for the gradient, and we will discuss
an important coordinate free version of the gradient vector below. For now, however, we have a linear
function Lx at each point x ∈ U associated with each function u in

pDiff(U) % C1(U).

The difference between the one dimensional case and the higher dimensional cases starts to become apparent
now since there is no simple inclusion relating pDiff(U) and C0(U) when U ⊂ Rn and n > 1.

Exercise 75 Find a function u ∈ pDiff(U)\C0(U). Find a function u ∈ C0(U)\ pDiff(U).

The notion of differentiability in higher dimensions involves another linear function, potentially different
from both Lx and dux mentioned above, and more explicitly based on first order approximation:

Definition 14 Given an open subset U ⊂ Rn, a function u : U → R is differentiable at x ∈ U if there
exists a linear function ℓ : Rn → R for which

lim
v→0

u(x+ v)− u(x)− ℓ(v)

|v| = 0.

The collection of functions u : U → R which are differentiable at each point x ∈ U is denoted by Diff(U).

Exercise 76 Show that the definition of Diff(U) in the special case n = 1, with U an interval (a, b), is
consistent with the previous definition of Diff(a, b) based on the limit of the difference quotient.
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It is, thus, with this notion we obtain a higher dimensional version of (30):

C0(U) % Diff(U) % C1(U).

In order to verify the inclusion on the right we recall the mean value theorem for functions of one
variable:

Theorem 14 Given u ∈ C0[a, b] ∩ C1(a, b), there exists some x∗ ∈ (a, b) with

u′(x∗) =
u(b)− u(a)

b− a
. (31)

In the special case u ∈ C1[a, b] there is a simple proof of (31) using (mainly) the fundamental theorem of
calculus and the chain rule. The construction is useful in many contexts, so we present it:

u(b)− u(a) =

∫ 1

0

d

dt
u((1− t)a+ tb) dt =

∫ 1

0

u′((1− t)b+ ta)(b− a) dt.

The quantity
∫ 1

0

u′((1− t)b+ ta) dt

is the average value of the integrand u′((1 − t)b + ta) which is a continuous function of t, and it follows
that for some t∗ ∈ (0, 1)

∫ 1

0

u′((1− t)b+ ta) dt = u((1− t∗)b+ t∗a).

Now, in the case u ∈ C1(U), we claim the linear function Lx given by the Euclidean inner product
with the vector of partial derivatives Du(x) gives the linear approximation required by the definition of
differentiability. To see this, let v = (v1, v2, . . . , vn) and note that by the mean value theorem

u(x+ v1e1)− u(x) = De1u(x
∗
1)v1

where x∗
1 = x+ v∗1e1 and v∗1 is between 0 and v1. Similarly,

u(x+ v2e2 + v1e1)− u(x+ v1e1) = De2u(x
∗
2)v2

where x∗
2 = x + v∗2e2 + v1e1 and v∗2 is between 0 and v2. Repeating this application of the mean value

theorem along the remaining standard coordinate directions, we obtain

u(x+ v)− u(x) =

n
∑

k=2

[

u

(

x+

k
∑

j=1

vjej

)

− u

(

x+

k−1
∑

j=1

vjej

)]

+ u(x+ v1e1)− u(x)

=

n
∑

j=1

Deju(x
∗
j)vj

for points x∗
1,x

∗
2, . . . ,x

∗
n tending to x as v tends to 0. This can be written as

u(x+ v)− u(x) = 〈D∗u,v〉Rn

where D∗u = (De1u(x
∗
1), De2u(x

∗
2), . . . , Denu(x

∗
n)). Therefore,

u(x+ v)− u(x)− Lx(v) = 〈(D∗u−Du(x),v〉Rn .
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The Cauchy-Schwarz inequality says that for any vectors v and w in Rn, we have

|〈v,w〉Rn| ≤ |v||w|.

Applying this inequality we have

|u(x+ v)− u(x)− Lx(v)| ≤ |D∗u−Du(x)||v|

and
∣

∣

∣

∣

u(x+ v)− u(x)− Lx(v)

|v|

∣

∣

∣

∣

=
|u(x+ v)− u(x)− Lx(v)|

|v| ≤ |D∗u−Du(x)|.

By the continuity of the partial derivatives

limv→0|D∗u−Du(x)| = 0

since

Deku(x
∗
k) =

∂u

∂xk

(

x+ v∗kek +
∑

j 6=k

vjej

)

and v∗k is between 0 and vk. �

The argument above not only shows that u ∈ C1(U) is differentiable, but the approximating linear
function ℓ in the definition of differentiability can be taken to be the particular linear function Lx obtained
using the inner product with the total derivative/gradient vector Du(x).

A multivariable chain rule

Let u ∈ C1(U) where U is an open subset of R2.

4.2 Coordinates and inner product spaces

The relation of vectors and other mathematical constructions to coordinates is often first encountered (and
usually not fully appreciated) in a course on linear algebra. The basic idea is also operative in elementary
geometry where a circle with a given radius and center can be considered without coordinates and, yet,
if one wishes to make certain computations introducing coordinates for the center of a circle is seemingly
unavoidable. A similar situation prevails with vectors, linear transformations, and other mathematical
constructions. Two such constructions we wish to consider here are the gradient of a real valued function
(of several variables) and the divergence of a vector field. It will be noted that in the first case, we have
used coordinates to define the gradient:

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

.

The divergence, on the other hand, we have defined in a manner that did not use coordinates:

÷v(x) = lim
V→{x}

1

Ln(V)

∫

V

v · n.

Technically, the dot product appearing in this definition involves coordinates if by v · n we mean

v · n =
n
∑

j=1

vjnj .

The dot product itself, however, can be considered without coordinates, and this distinction may be
indicated by the use of a different notation.
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Definition 15 An inner product space is a vector space V equipped with a function 〈 · , · 〉 : V ×V → R
having the following properties:

(i) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V . (symmetric)

(ii) 〈av + bw, z〉 = a〈v, z〉+ b〈w, z〉 for all a, b ∈ R and v,w, z ∈ V . (bilinear)

(iii) 〈v,v〉 ≥ 0 with equality if and only if v = 0. (positive definite)

Multi-index notation

The last notation for a partial derivative given in (27) deserves special notice. Though Deju bears a
strong superficial resemblance to the standard notation Deju for a partial derivative, something quite
different is in mind. Though not immediately of interest in regard to our present discussion of first order
partial derivatives, the multi-index notation is quite useful in certain applications, most notably for writing
down higher order Taylor approximations in several variables, so let us briefly explain it in passing. The
superscript vector in Dβu can not only be taken as one of the standard unit basis vectors to indicate a
single directional derivative in that direction, but β denotes a multi-index which is an element in the set

Nn
0 = {(β1, β2, . . . , βn) : βj ∈ N0 for j = 1, 2, . . . , n}

and N0 = {0, 1, 2, . . .} denotes the nonnegative integers. In words, Dβu indicates the result of taking βj
partial derivatives of u with respect to ej for j = 1, 2, . . . , n. It is assumed, when this notation is used, that
u is continuously (partial) differentiable β1+β2+ · · ·+βn times in any combination of standard directions.
In this context, the sum

∑

βj is denoted ‖β‖ and called the norm of the multi-index β, and a function
with this regularity on an open subset U ⊂ Rn is said to be in C‖β‖(U). It can then be proved that the
order of application of the partial derivatives does not effect the result, so we can write

Dβu =
∂‖β‖u

∂β1x1∂β2x2 · · ·∂βnxn
. (32)

This may seem complicated, but consider the simplicity and economy of notation obtained in (32). Re-
turning to Deju and Deju, the former denotes taking a directional derivative in the direction of the vector
ej , which happens to be a partial derivative. Thus, Deju is simply a special case of Dvu as explained
above. The expression Deju on the other hand means “one partial derivative with respect to the variable
xj” where Dβu has the more general meaning “βj derivatives with respect to xj for j = 1, 2, . . . , n.”

Definition 16 Given an open subset U ⊂ Rn and a natural number k ≥ 1, the set Ck(U) consists of
all functions u ∈ Ck(U) such that each partial derivative Dβu with |β| ≤ k has a continuous extension
vβ ∈ C0(U) to the closure of U :

vβ
∣

∣

U

= Dβu.

Exercise 77 Definition 13 and Definition 16 overlap when A = U is the closure of an open subset of Rn.
Are they consistent with one another in this case?
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