
MATH 6702 Assignment 8 = Challenge Problems

Due Friday May 7, 2021

Solutions and Notes

John McCuan

May 5, 2021

There are two challenge problems below. The first is quite involved to a large
extent due to technical issues (and has some difficult points as well), and the second
is much easier and less technical but still definitely challenging for most students at
your level. They are in this order to correspond to the order of material presented on
partial differential equations in the course, namely, the first problem is about gradient
flow in infinite dimensions (we presented the heat equation as a gradient flow on a
subset/subspace of L2(U)), and the second problem concerns the derivation of the
wave equation (this derivation was not presented in the lecture, but we discussed
some aspects of the wave equation at the end of the course). I wanted to put a
problem like the first one on the final exam, but I didn’t because I thought the exam
was already long enough and would probably turn out to be long, involved, and
difficult if I put such a problem. (I was correct about all three of those things.) I had
prepared most of the material for the second problem for the last/extra lecture, but
we didn’t get to it. Both variational constructions are quite beautiful I think.
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Infinite Dimensional Gradient Flow

Problem 1 We will denote by S
2 the two-dimensional unit sphere in R

3. That is,

S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.

It should be clear that we can take S
2 both as a domain of integration and as a domain

for real valued functions f : S2 → R. In fact, the set of continuously differentiable
functions f ∈ C1(S2) makes good sense as does C2(S2).

Calculus/Differentiability on a Sphere

(a) Give two different ways to define what it means for a function f : S2 → R to be
continuously differentiable and show they are equivalent. Here are some hints if
you need them

(i) Consider extensions f : V → R of f to an open subset V ⊂ R
3 with S

2 ⊂ V.
In order to decide if f ∈ C1(S2) consider whether or not there exists an
extension f ∈ C1(V).

Solution: A function f : S2 → R is in C1(S2) if there exists an open subset
V ⊂ R

3 with S
2 ⊂ V and an extension f : V → R satisfying

f ∈ C1(V) and f ∣
∣

S2

≡ f.

(ii) Consider compositions f ◦X : U → R where U ⊂ R
2 is an open subset of

R
2 and X ∈ C1(U → S

2). The definition of C1 you get should only use
values of f that are given on S

2.

Solution: A function f : S2 → R is in C1(S2) if f ◦ X ∈ C1(U) for any
X ∈ C1(U → S

2) defined on an an open set U ⊂ R
2.
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To show the two definitions above are equivalent, note that it is clear the exis-
tence of a C1 extension f gives the regularity of f ◦X because f ◦X = f ◦X
(and a composition of C1 functions on open subsets of Euclidean spaces is C1.
To see that the second definition implies the first, consider the extension

f(x) = f(x/|x|) for 1/2 < |x| < 3/2.

In order to show f ∈ C1(V) where

V = {x ∈ R
3 : 1/2 < |x| < 3/2},

it is enough to show that for each p ∈ V, there is some open set V0 with p ∈ V0

and f ∈ C1(V0).

Take, for example, the situation where p = (p1, p2, p3) ∈ V and p1 > 0. That is,

p ∈ V1 = {x ∈ R
3 : 1/2 < |x| < 3/2, x1 > 0}.

Note that V1 is an open set and there is a C1 function w : V1 → U = (0, π)×
(−π/2, π/2) given by

w(x) =

(

cos−1

(

x3
|x|

)

, sin−1

(

x2
√

x21 + x22

))

.

In the definition of w we are using the principal arcsine and arccosine, and w
gives the spherical angles φ and θ (used in spherical coordinates) associated
with the point x. It is easily checked that

u ◦w(x) =
x

|x| for x ∈ V1

where u : U = (0, π)× (−π/2, π/2) → S
2 by

u(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ).

Consequently,

f̄(x) = f

(

x

|x|

)

= f ◦ u ◦w(x) for x ∈ V ∩ V1.

Since u ∈ C1(U → S
2), we know, from the second definition, f ◦ u ∈ C1(U).

This then gives f ∈ C1(V ∩ V1). In particular, f is C1 locally near p ∈ V ∩ V1.
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Similar constructions can be used for each of the open sets Vj, j = 2, 3, · · · , 6
associated with the six coordinate hemispheres of S2. That is,

V2 = {x = (x1, x2, x3) ∈ R
3 : x2 > 0}

V3 = {x = (x1, x2, x3) ∈ R
3 : x3 > 0}

V4 = {x = (x1, x2, x3) ∈ R
3 : x1 < 0}

V5 = {x = (x1, x2, x3) ∈ R
3 : x2 < 0}

V6 = {x = (x1, x2, x3) ∈ R
3 : x3 < 0}.

Since V ⊂ ∪6
j=1Vj and f ∈ C1(V ∩ Vj) for j = 1, 2, . . . , 6, we have (or at least

can) establish the equivalence of the two definitions.

(b) Given a unit vector v ∈ TpS
2, define the directional derivative of f ∈ C1(S2) by

∇vf(p) = Dvf(p) = Df(p) · v

where f ∈ C1(U) is an extension of f to an open set U ⊂ R
3. Show that this

definition does not depend on the choice of extension f . Hint: Express ∇vf(p)
in terms of composition with a curve.

Solution: If ǫ > 0 and γ ∈ C1((−ǫ, ǫ) → S
2) with γ(0) = p and γ′(0) = v, then

d

dt
f ◦ γ(t)∣

∣

t=0

=
d

dt
f ◦ γ(t)∣

∣

t=0

= Df(p) · v = ∇vf(p).

Notice the first expression does not depend on the extension. One may also ask
about the existence of such a curve γ. Letting γ0 : R → R

3 by γ0(t) = p + tv,
we can set γ(t) = γ0(t)/|γ0(t)|. It is relatively easy to see that γ ∈ C∞(R → S

2)
and

γ(0) = p/|p| = p

with

γ′(t) =
v

|γ0(t)|
− γ0(t) · v

|γ0(t)|3
(p+ tv) and γ′(0) = v − p · v = v

since N = p is a normal to S
2.
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(c) Define C2(S2).

Solution: We can do this in the two ways suggested above. That is, we can say
f ∈ C2(S2) if there is an extension f : V → R where V is some open set in R

3

with S
2 ⊂ V, and

f ∈ C2(V).
On the other hand, we can say f ∈ C2(S2) if whenever U is an open subset of
R

2 and X ∈ C2(U → S
2), then

f ◦X ∈ C2(U).

These two definitions of C2(S2) may also be shown to be equivalent.
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Integration/Scaling Factor

(d) Note that the unit sphere map given by u : (0, π)× (0, 2π) → R
3 by

u(φ, θ) = (sin φ cos θ, sin φ sin θ, cosφ)

parameterizes most of the sphere. Calculate the scaling factor σu for area with
respect to this parameterization. That is, given f ∈ C0(S2) and U a domain of
integration in (0, π)× (0, 2π), we have

∫

u(U)

f =

∫

U

f ◦ u σu.

Solution: σu =
√

det(DuTDu) and

Du =





cosφ cos θ − sinφ sin θ
cosφ sin θ sinφ cos θ
− sinφ 0





Thus,

σu =

√

det

(

1 0
0 sin2 φ

)

= sinφ.

(e) Consider
A = {f ∈ C1(S2) : f > 0}

as an admissible class and the associated functions g : S2 → R
3 given by

g(p) = f(p)p.

Find the area scaling factor σ : S2 → R on S
2 giving the area of the radial

graph
G = {f(p)p : p ∈ S

2}
so that the area functional is given by A : A → R by

A[f ] =

∫

G

1 =

∫

S2

σ.
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Hints: Calculate the area scaling factor σX associated with the parameterization
X : U → R

3 by X = g ◦ u. Then

σ =
σX
σu
.

Solution: There are various ways to approach this calculation, and I will try
to give several possibilities. The basic dimensions under consideration in this
problem are 1, 2 and 3, though it will be convenient at times to make calculations
as if they apply to a general dimension n. When this happens n = 3. It should
be kept in mind throughout that one may use extensions to allow computation
with the usual chain and product rules, this requires some care with regard
to the multiplication of various total derivative matrices that arise, and some
complication/inconvenience is to be expected. In particular the conventions
about certain vectors being row vectors or column vectors and the order of
various multiplications require some attention. Perhaps the easiest way to get
started is by recognizing/writing

DX = (Xφ Xθ) .

Here the total derivative is viewed as consisting of two column vectors of length
3. Thus, it is natural here to view X as a column vector as well with three
components X1, X2, and X3 so that each row of DX is a gradient of one of
these components. The column vectors Xφ and Xθ are tangent vectors to the
surface and

σX =
√

det(DXTDX)

=

√

√

√

√

√det





|Xφ|2 Xφ ·Xθ

Xφ ·Xθ |Xθ|2





=
√

|Xφ|2|Xθ|2 − (Xφ ·Xθ)2.

We can then write X = g ◦ u where g : V → R
3 is an extension of g obtained

as g(p) = f(p) p with f : V → R an extension of f : S2 → R to an open set
V ⊂ R

3 with S
3 ⊂ V (as above). With these extensions we find using the chain

rule and the product rule that, for example,

Xφ = (Df(u) · uφ) u+ f(u) uφ. (1)
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Similarly,
Xθ = Df(u) · uθ u+ f(u) uθ, (2)

so that
|Xφ|2 = (Df(u) · uφ)

2 + (f(u))2,

Xφ ·Xθ = (Df(u) · uφ)(Df(u) · uθ),

and
|Xθ|2 = (Df(u) · uθ)

2 + (f(u))2 sin2 φ.

We have used here that |u| = 1, |uφ| = 1, u · uφ = 0 = u · uθ, uφ · uθ = 0, and
|uθ|2 = sin2 φ.

From here, it is not difficult to complete the task suggested in the hint (i)
below. We give the details below under that heading. The route we have
taken, however, depends to a certain extent on the recognition that σX can be
expressed in terms of the tangent vectors Xφ and Xθ. Though it is a natural
thing to recognize, you might not have recognized this possibility. Also, it may
simply be of general interest to compute the total derivative DX more directly.
Therefore, I will begin again and describe how this may be done.

In terms of the extensions of g and f we can use the usual product and chain
rules to write

DX = D(g ◦ u) = Dg Du (3)

where Dg = Dg(u) is an appropriate 3 × 3 matrix determined by the product
rule and having a form something like

Dg = Df(p) ∗ p+ f(p) I (4)

since g(p) = f(p) p. The nature of the product denoted Df(p) ∗ p is not
intended to be entirely clear in (4), but it is imagined that there should be
some kind of product rule according to which this product gives the correct
term in the total derivative matrix Dg. Now I will attempt to explain this
product and make it entirely clear. First of all, note generally that we expect
the derivatives in Du to be with respect to φ and θ. In particular, the tangent
vectors Xφ and Xθ discussed above should appear here, and there should be
no derivatives with respect to φ and θ in the factor Dg in (3), though there
is a composition with u, so that Dg = Dg(u). The question then is how to
compute this matrix.
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Recall that f is scalar valued, so if we write g out as a column vector in com-
ponents, we get something like

g(p) =











f(p) p1
f(p) p2

...

f(p) pn











.

Therefore, taking Euclidean gradients with respect to the variable p, we can
write

Dg(p) =











Df(p) p1 + f(p) Dp1
Df(p) p2 + f(p) Dp2

...

Df(p) pn + f(p) Dpn











=











Df(p) p1 + f(p) e1
Df(p) p2 + f(p) e2

...

Df(p) pn + f(p) en











=











p1 Df(p)

p2 Df(p)
...

pn Df(p)











+ f(p) I.

Comparing this expression to (4), we conclude

Df(p) ∗ p =



































p1
∂f

∂p1
p1
∂f

∂p2
· · · p1

∂f

∂pn

p2
∂f

∂p1
p2
∂f

∂p2
· · · p2

∂f

∂pn

...

pn
∂f

∂p1
pn
∂f

∂p2
· · · pn

∂f

∂pn



































.
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There are two, more or less, obvious ways to obtain this matrix as a product of
the gradient Df(p) and the vector p. Let us agree to consider Df(p) as a row
vector and p as a column vector, then

Df(p) ∗ p = p Df(p).

Under this interpretation (4) becomes

Dg(p) = D(f(p) p) = p Df(p) + f(p) I

which, in turn, gains some unity and follows the usual form of the chain rule if
the usual convention for scaling vectors is reversed: g(p) = p f(p) and

Dg = D(p f) = I f(p) + p Df(p).

Alternatively, since the matrix is symmetric, one may keep the order and intro-
duce the transpose:

Dg(p) = D(f(p) p) = Df(p)T pT +Df(p) I

so that
Df(p) ∗ p = Df(p)T pT

which is the same matrix. What one cannot do (and should be careful not to
do) is to interpret the matrix product Df(p) ∗ p in D(fp) as a dot product of
two vectors Df · p+ f I; that would be incorrect.

Returning to (3), we have obtained

DX = [u Df(u) + f(u) I]Du = u Df(u) Du+ f(u) Du

or
DX = [Df(u)T uT + f(u) I]Du = Df(u)T uTDu+ f(u) Du.

In order to complete task (i) suggested below we compute the product(s)

DXTDX = [DuT Df(u)T uT + f(u) DuT ][u Df(u) Du+ f(u) Du]

= [DuT u Df(u) + f(u) DuT ][Df(u)T uTDu+ f(u) Du]

where we interpret Du as the 3× 2 matrix consisting of columns

Du = (uφ uθ) .
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Noting that uTu = 1 and uTDu = 0, we can write

DXTDX = DuT Df(u)T Df(u) Du+ f(u)2 DuT Du

=

(

Df(u) · uφ

Df(u) · uθ

)

(Df(u) · uφ Df(u) · uθ)

+ f(u)2
(

1 0
0 sin2 φ

)

=

(

(Df(u) · uφ)
2 (Df(u) · uφ)(Df(u) · uθ)

(Df(u) · uφ)(Df(u) · uθ) (Df(u) · uθ)
2

)

+ f(u)2
(

1 0
0 sin2 φ

)

=

(

(Df(u) · uφ)
2 + f(u)2 (Df(u) · uφ)(Df(u) · uθ)

(Df(u) · uφ)(Df(u) · uθ) (Df(u) · uθ)
2 + f(u)2 sin2 φ

)

.

This evidently leads to the same value of σX and of σ calculated below.

(i) First obtain an expression involving the quantities Df · uφ and Df · uθ.

Solution: Based on the computation of the tangent vectors Xφ and Xθ

above we have

σX =

√

f(u)2[(Df(u) · uφ)2 sin
2 φ+ (Df(u) · uθ)2 + f(u)2 sin2 φ]

= f(u)

√

(Df(u) · uφ)2 sin
2 φ+ (Df(u) · uθ)2 + f(u)2 sin2 φ.

Notice that wherever we have the value f in the result of this computa-
tion we can replace f with f . When we have the Euclidean gradient Df
however, we cannot write Df .

Recalling that σ = σX/σu, we can now write (at least for 0 < φ < π)

σ =
f(u)

sin φ

√

(Df(u) · uφ)2 sin
2 φ+ (Df(u) · uθ)2 + f(u)2 sin2 φ

= f(u)

√

(Df(u) · uφ)2 + (Df(u) · uθ/ sinφ)2 + f(u)2

= f(u)

√

(Df(u) · uφ)2 + (Df(u) · (− sin θ, cos θ, 0))2 + f(u)2.
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This essentially completes the task suggested by hint (i). The fundamental
problem with what we have obtained is that we have a function of φ and
θ, but we are supposed to integrate the scaling factor σ over the surface S2

rather than the parameter domain U . One way to deal with this “defect,”
at least partially, is to introduce an inverse u−1 : S2 → U and, wherever we
see (φ, θ) in this expression, replace φ with first component of the inverse
of u and replace θ with the second component of the inverse of u. In this
way, we can obtain a function on some subset u(U) of S2, and it would
make sense to compute an integral

∫

u(U)

σ.

This still doesn’t give us the entire integral
∫

S2

σ

since u does not give a one-to-one and onto (bijective) map onto the sphere.

(ii) Simplify your expression using the surface gradient on S
2. Remember

this is a function grad f : S2 → R
3 having the properties

grad f(p) ∈ TpS
2 and grad f(p) ·w = ∇wf(p) for all w ∈ TpS

2.

Solution: We begin with a local computation in coordinates based on the
observation that {uφ,uθ} is a basis for the tangent space TuS

2 at least at
points where the spherical map is well-defined. In this case, any vector w
can be written as w = auφ + buθ for some a and b. Taking inner products
we find

w · uφ = a and w · uθ = b sin2 φ.

Consequently,

w = (w · uφ) uφ +
w · uθ

sin2 φ
uθ

and

∇wf = Df ·w
= (w · uφ) (Df · uφ) +

w · uθ

sin2 φ
(Df · uθ)

=

[

(Df · uφ) uφ +

(

Df · uθ

sin φ

)

uθ

sinφ

]

·w.

12



Thus, considering the definition of the surface gradient, we have

grad f = (Df · uφ) uφ +

(

Df · uθ

sinφ

)

uθ

sin φ
,

and comparison with our expression for σ according to hint (i) gives

σ = f
√

| grad f |2 + f 2.

This function is entirely and unambiguously defined on S
2 in terms of f ,

so that

A[f ] =

∫

S2

σ =

∫

S2

f
√

| grad f |2 + f 2.
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Calculus of Variations/First Variation of Area

(f) Calculate the first variation δAf [φ] of the area functional.

Solution: Though the surface gradient is a somewhat new object for us, it can be
checked (and it is entirely believable) that linearity holds so that, for example,

grad(f + ǫφ) = grad f + ǫ gradφ

where φ ∈ C1(S2) and gradφ ∈ TpS
2. Consequently, the first variation is

relatively easy to compute in the form

δAf [φ] =
d

dǫ

∫

S2

(f + ǫφ)
√

| grad f + ǫ gradφ|2 + (f + ǫφ)2∣
∣

ǫ=0

=

∫

S2

[

φ
√

| grad f |2 + f 2 + f
grad f · gradφ+ fφ
√

| grad f |2 + f 2

]

=

∫

S2

φ

[

√

| grad f |2 + f 2 +
f 2

√

| grad f |2 + f 2

]

+

∫

S2

f grad f
√

| grad f |2 + f 2
· gradφ.

It should be clear at this point that we should look for some version of the
divergence theorem on a surface and an associated product rule applied
to the scaled field

φ f grad f
√

| grad f |2 + f 2
(5)

when f, φ ∈ C2(S2). This, of course, will require a surface divergence for
vector fields on S

2. This suggestion is given as a hint for the next part below, but
it is natural to discuss these topics in the context of the calculus of variations,
so I will go ahead and fill in the details here.

The treatment of the divergence theorem is quite easy, as our discussion from
Euclidean space applies without change. To be precise, we define for v ∈
C1(S2 → R

3) and p ∈ S
2

divS
2

v(p) = lim
W→{p}

1

H2(W)

∫

∂W

v · n (6)
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where W is a family of “nice” domains in the surface S
2 shrinking to the point

p, H2 is two-dimensional Hausdorrf (surface) measure on subsets of R3, and
n is a unit vector tangent to S

2, normal to ∂W, and pointing out of W. The
vector n is called the unit co-normal to ∂W pointing out of W.

With this definition, and some assumed convergence, the divergence theorem
is easy. If W is a domain in S

2 partitioned into small pieces W = ∪k
j=1Wj ,

then when the norm of the partition P = {Wj}kj=1 is small (and the pieces are
reasonably well-behaved) we have

∫

∂W

v · n =

k
∑

j=1

∫

∂Wj

v · n

= lim
‖P‖→0

k
∑

j=1

∫

∂Wj

v · n

= lim
‖P‖→0

k
∑

j=1

div v(p∗
j)H2(Wj)

=

∫

W

div v,

just as in the Euclidean case. In the first equality, the integrals over boundary
curves of adjacent partitition pieces Wj (having opposite co-normals) cancel.
The third equality follows from the definition of the divergence on the surface
(6) and uniformity. The last equality is the definition of integration on W.
Incidentally, if the field v is defined globally on the entire sphere w = S

2, then

∫

S2

divv =
∑

∫

Wj

divv =
∑

∫

∂Wj

v · n = 0

because every boundary component of a partition piece Wj is adjacent to an-
other, and all the boundary integrals cancel one another.

Next, we need a product rule for this divergence. You may recall that I do not
know a nice proof without using coordinates giving the product rule. Thus,
as we did for the product rule for the divergence of a scaled field in Euclidean
space, I will will use coordinates. Given that φ and θ are the natural (spherical)
coordinates on S

2 used in the definition of u = u(φ, θ) above, and φ is appearing
as a test function both above and below, I will change notation slightly. Also,
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I denoted the surface gradient by ∇ below, but I will use “grad” here for the
gradient so that the rule I want to justify is

divS
2

(ψv)(p) = gradψ(p) · v(p) + ψ(p) divS
2

v(p) (7)

for ψ ∈ C1(S2) a scalar function and v ∈ C2(S2 → R
3) a vector field tangent to

S
2 so that v(p) ∈ TpS

2. The approach is similar to the standard derivation of
the formula

divv =
∂v1
∂x1

+
∂v2
∂x2

for a vector field on R
2 using shrinking rectangles. We start with a rectangle

[φ0 − ǫ, φ0 + ǫ]× [θ0 − δ, θ0 + δ] as a domain W for u and write the image as

W = u([φ0 − ǫ, φ0 + ǫ]× [θ0 − δ, θ0 + δ])

= {(sinφ cos θ, sinφ sin θ, cosφ) : |φ− φ0| ≤ ǫ, |θ − θ0| ≤ δ}.

We also write p = u(φ0, θ0). I find it very helpful to draw pictures of all these
sets and each of the sets considered below as I go through the calculation. We
wish to calculate the limit

div v(p) = lim
ǫ,δ→0

1

H2(W)

∫

∂W

v · n.

Let us denote by Γ = Γ1 the image of Γ = {φ0 + ǫ} × [θ0 − δ, θ0 + δ]. That is,

Γ1 = {(sin(φ0 + ǫ) cos θ, sin(φ0 + ǫ) sin θ, cos(φ0 + ǫ)) : |θ − θ0| ≤ δ}

is the image of the right side of the rectangle W and is the lower longitudinal
boundary of W on S

2. Note that the tangent vector v = v ◦ u(θ, φ0 + ǫ) along
Γ can be written as

v = (v · uφ) uφ +
v · uθ

sin2(φ0 + ǫ)
uθ

where the tangent vectors uφ = uφ(φ0 + ǫ, θ) and uθ = uθ(φ0 + ǫ, θ) are given
above. On the other hand, if we take any point (φ0 + ǫ, θ) along Γ, we can
consider a vector w = (w1, w2) ∈ R

2 and write

α(t) = (φ0 + ǫ, θ) + tw
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where we think of θ as fixed. Observe that the tangent vector to this curve at
p is

d

dt
u ◦ α(t)∣

∣

t=0

= w1uφ + w2uθ.

Comparing this to the expression for v above, we obtain a vector

v =

(

v · uφ,
v · uθ

sin2(φ0 + ǫ)

)

∈ T(φ0+ǫ,θ)R
2.

Evidently, the same construction may be used to determine a vector field v on
the portion of the φ, θ-plane corresponding to W, namely W.

Notice also that we have the unit co-normal n along Γ = Γ1 given by n = uφ.
Thus the corresponding vector field on W is n = (1, 0) = e1 (which happens to
be a unit field and the unit co-normal to ∂W along Γ).

It is natural to ask at this point what is the relation between v · n and v · n,
and to note that these are equal. That is to say

v ◦ u(φ0 + ǫ, θ) · n ◦ u(φ0 + ǫ, θ) = v(φ0 + ǫ, θ) · n(φ0 + ǫ, θ).

Finally, we can parameterize Γ = Γ1 on Γ by

γ(θ) = u(φ0 + ǫ, θ) = (sin(φ0 + ǫ) cos θ, sin(φ0 + ǫ) sin θ, cos(φ0 + ǫ))

for θ0 − δ ≤ θ ≤ θ0 + δ. Changing variables, we have

∫

Γ1

v · n =

∫ θ0+δ

θ0−δ

v · n sin(φ0 + ǫ) dθ = sin(φ0 + ǫ)

∫

Γ

v · n

because |γ′(θ)| = |uθ(φ0 + ǫ, θ)| = sin(φ0 + ǫ).

Proceeding counterclockwise around ∂W , or equivalently around ∂W, we write

Γ2 = {(sinφ cos(θ0 + ǫ), sinφ sin(θ0 + epsilon), cos φ) : |φ− φ0| < ǫ}
Γ3 = {(sin(φ0 − ǫ) cos θ, sin(φ0 − ǫ) sin θ, cos(φ0 + ǫ)) : |θ − θ0| ≤ δ}, and

Γ4 = {(sinφ cos(θ0 − ǫ), sin φ sin(θ0 − ǫ), cos φ) : |φ− φ0| < ǫ}

Let us consider the integral
∫

Γ2
v · n in detail. The co-normal field along Γ2 is

n =
1

sin φ
uθ(φ, θ + δ)
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which induces the field

n =

(

n · uφ,
n · uθ

sin2 φ

)

=

(

0,
1

sin φ

)

which is not a unit field but is a co-normal. Furthermore, using the expression
for v above, we see

v · n =
v · uθ

sinφ
while v · n =

v · uθ

sin3 φ
,

so along Γ2

v ◦ u(φ, θ0 + δ) · n ◦ u(φ, θ0 + δ) = sin2 φv(φ, θ0 + δ) · n(φ, θ0 + δ).

Taking γ(φ) = u(φ, θ0 + δ), we have |γ′(φ)| = 1, so

∫

Γ2

v · n =

∫ φ0+ǫ

φ0−ǫ

v ◦ u(φ, θ0 + δ) · uθ(φ, θ0 + δ)

sinφ
dφ =

∫

Γ
2

sin2 φ (v · n).

The last expression is significant in that it illustrates the difficulty of expressing
a boundary integral on a surface like

∫

Γ
v ·n in terms of a simple Euclidean dot

product on the primage curve Γ in coordinates.

Exercise 1 Let X : U → R
3 be a parameterization of a surface which may be

considered to be C1 on the closure of the domain U in the u, v-plane. (This
notation is not uncommon for parameterized surfaces.) In particular, you may
also assume X is one-to-one and onto (and continuously invertible) onto its
image surface S = X(U). Define an inner product 〈 · , · 〉 : R2×R

2×U → R

so that for each (u, v) ∈ U , the function 〈 · , · 〉(u,v) : R2×R
2 → R is an abstract

inner product in the usual sense and
∫

Γ

v ·w =

∫

(u,v)∈Γ

〈v,w〉(u,v) σ

where v and w are defined by the relations

d

dt
X ◦ α(t)∣

∣

t=0

= v = p and
d

dt
X ◦ β(t)∣

∣

t=0

= w

where α(0) = X−1(p) = β(0), α′(0) = v, β ′(0) = w, and σ is the scaling factor
associated with the change of variables from Γ to Γ = X−1(Γ).
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Similarly, we find
∫

Γ3

v · n = − sin(φ0 − ǫ)

∫ θ0+δ

θ0−δ

v · n dθ

= − sin(φ0 − ǫ)

∫

Γ

v · n

= − sin(φ0 − ǫ)

∫ θ0+δ

θ0−δ

v ◦ u(φ0 − ǫ, θ) · uφ(φ0 − ǫ, θ) dθ

and
∫

Γ4

v · n = −
∫ φ0+ǫ

φ0−ǫ

v ◦ u(φ, θ0 − δ) · uθ(φ, θ0 − δ)

sinφ
dφ

= −
∫

Γ
4

sin2 φ (v · n).

Note that we may write
∫

Γ1∪Γ3

v · n =

∫ θ0+δ

θ0−δ

[sin(φ0 + ǫ) v ◦ u(φ0 + ǫ, θ) · uφ(φ0 + ǫ, θ)

− sin(φ0 − ǫ) v ◦ u(φ0 − ǫ, θ) · uφ(φ0 − ǫ, θ)] dθ

= 2ǫ

∫ θ0+δ

θ0−δ

∂

∂φ
[sin φ v ◦ u(φ, θ) · uφ(φ, θ)]∣

∣

φ=φ∗

dθ

for some φ∗ with |φ∗ − φ0| < ǫ.

Turning to the area of W, we can write

H2(W) =

∫ φ0+ǫ

φ0−ǫ

∫ θ0+δ

θ0−δ

sinφ dθ dφ

= (2δ)[cos(φ0 − ǫ)− cos(φ0 + ǫ)]

= (2δ)(2ǫ) sinφ∗∗

for some φ∗∗ with |φ∗∗ − φ0| < ǫ. We have then

lim
ǫ,δց0

1

H2(W)

∫

Γ1∪Γ3

v · n =
1

sinφ0

∂

∂φ
[sinφ v ◦ u(φ, θ0) · uφ(φ, θ0)]∣

∣

φ=φ0

= cotφ0v(p) · uφ(φ0, θ0) +
∂

∂φ
[v ◦ u(φ, θ0) · uφ(φ, θ0)]∣

∣

φ=φ0

.
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On the other hand, we can also write

∫

Γ2∪Γ4

v · n =

∫ φ0+ǫ

φ0−ǫ

1

sinφ
[v ◦ u(φ, θ0 + δ) · uθ(φ, θ0 + δ)

− v ◦ u(φ, θ0 − δ) · uθ(φ, θ0 − δ)] dφ

= 2δ

∫ φ0+ǫ

φ0−ǫ

1

sin φ

∂

∂θ
[v ◦ u(φ, θ) · uθ(φ, θ)]

∣

∣

θ=θ∗

dφ

for some θ∗ with |θ∗ − θ0| < δ. Hence,

lim
ǫ,δց0

1

H2(W)

∫

Γ2∪Γ4

v · n =
1

sin2 φ0

∂

∂θ
[v ◦ u(φ0, θ) · uθ(φ0, θ)]

∣

∣

θ=θ0

.

We have obtained the following coordinate formula for the surface divergence:

divS
2

v(p) = lim
ǫ,δց0

1

H2(W)

∫

∂W

v · n

= cotφ0v(p) · uφ(φ0, θ0) +
∂

∂φ
[v ◦ u(φ, θ0) · uφ(φ, θ0)]∣

∣

φ=φ0

+
1

sin2 φ0

∂

∂θ
[v ◦ u(φ0, θ) · uθ(φ0, θ)]∣

∣

θ=θ0

.

Now we apply this formula to the product ψv. Replacing v with ψv, we find

divS
2

(ψv)(p) = cotφ0ψ(p)v(p) · uφ(φ0, θ0)

+
∂

∂φ
[ψ ◦ u(φ, θ0) v ◦ u(φ, θ0) · uφ(φ, θ0)]∣

∣

φ=φ0

+
1

sin2 φ0

∂

∂θ
[ψ ◦ u(φ0, θ) v ◦ u(φ0, θ) · uθ(φ0, θ)]∣

∣

θ=θ0

=
∂

∂φ
ψ ◦ u(φ, θ0)∣

∣

φ=φ0

v(p) · uφ(φ0, θ0)

+
1

sin2 φ0

∂

∂θ
ψ ◦ u(φ0, θ)∣

∣

θ=θ0

v(p) · uθ(φ0, θ0)

+ ψ(p) divS
2

v(p).
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Comparison with (7) indicates that it remains to show

gradψ(p) · v =
∂

∂φ
ψ ◦ u(φ, θ0)∣

∣

φ=φ0

v(p) · uφ(φ0, θ0)

+
1

sin2 φ0

∂

∂θ
ψ ◦ u(φ0, θ)∣

∣

θ=θ0

v(p) · uθ(φ0, θ0).

Recalling the definition of the surface gradient as considered in part (ii), we can
use an extension ψ : V → R and write

gradψ(p) = (Dψ(p) · uφ)uφ +
Dψ(p) · uθ

sin2 φ0

uθ.

Since
v = (v · uφ)uφ +

v · uθ

sin2 φ0

uθ

as well, we have

gradψ(p) · v(p) = (Dψ(p) · uφ)(v(p) · uφ) +
(Dψ(p) · uθ)(v · uθ)

sin2 φ0

.

The chain rule gives

∂

∂φ
ψ ◦ u(φ, θ0)∣

∣

φ=φ0

= Dψ(p) · uφ and
∂

∂θ
ψ ◦u(φ0, θ)∣

∣

θ=θ0

= Dψ(p) ·uθ,

so we have established the product rule (7) for the divergence of a scaled vector
field on a surface.

In particular, we can apply this to the scaled field

φ f grad f
√

| grad f |2 + f 2

appearing in (5) which rose in relation to our first variation formula. If f ∈
C2(S2), then we can conclude

divS
2

(

φ f grad f
√

| grad f |2 + f 2

)

= gradφ ·
(

f grad f
√

| grad f |2 + f 2

)

+ φ divS
2

(

f grad f
√

| grad f |2 + f 2

)

.
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Substituting this into our first variation formula, we find that for f ∈ C2(S2)

δAf [φ] =

∫

S2

φ

[

√

| grad f |2 + f 2 +
f 2

√

| grad f |2 + f 2

]

+

∫

S2

f grad f
√

| grad f |2 + f 2
· gradφ

=

∫

S2

φ

[

√

| grad f |2 + f 2 +
f 2

√

| grad f |2 + f 2
− divS

2

(

f grad f
√

| grad f |2 + f 2

)]

+

∫

S2

divS2

(

φ f grad f
√

| grad f |2 + f 2

)

=

∫

S2

φ

[

√

| grad f |2 + f 2 +
f 2

√

| grad f |2 + f 2
− divS

2

(

f grad f
√

| grad f |2 + f 2

)]

.

Note that the last expression is
〈

√

| grad f |2 + f 2 +
f 2

√

| grad f |2 + f 2
− divS

2

(

f grad f
√

| grad f |2 + f 2

)

, φ

〉

L2(S2)

.

Therefore, we have identified gradA:

gradA[f ] =
√

| grad f |2 + f 2 +
f 2

√

| grad f |2 + f 2
− divS

2

(

f grad f
√

| grad f |2 + f 2

)

.

Gradient Flow

(g) Write down the equation of gradient flow on A ⊂ L2(S2). Here, of course, we
mean the infinite dimensional gradient flow with respect to the L2 inner product

〈f, g〉L2 =

∫

S2

fg

on A. That is, the gradient of A is defined to be the element gradA[f ] of C0(S2)
such that

δAf [φ] =

∫

S2

gradA[f ] φ for all φ ∈ C∞
c (S2).
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As a bit of an aside, note that since S
2 is compact, we know C∞

c (S2) = C∞(S2).
Hint: You can define a surface divergence using the usual limit of flux inte-
grals and the usual proof will also give you a divergence theorem for domains
in S

2. You’ll want to assume (or prove) that a product rule for the surface
divergence of a scaled field has the usual form:

div(fw) = ∇f ·w + f divw.

Solution: We identified the gradient of the area functional in the last part. The
gradient flow equation is for a function f = f(p, t) : S2 × [0, T ) → R and is
given by

∂f

∂t
= − gradA[f ].

That is, the gradient flow equation in this case is

∂f

∂t
= divS

2

(

f grad f
√

| grad f |2 + f 2

)

−
√

| grad f |2 + f 2 − f 2

√

| grad f |2 + f 2
.

(h) Find an explicit solution for the evolution of spheres under this gradient flow.
Hint: A sphere is given by the radial graph associated to f ≡ constant. This
means you can look for solutions f = f(p, t) having the form f = f(t).

Solution: If we have a graph which is a sphere concentric with S
2, then we

have f = c(t) > 0 is spatially constant on the sphere and of course the spatial
gradient vanishes. The equation for f becomes the ODE

c′ = −2c.

Thus, c(t) = r0e
−2t. The radius starts at r0 and shrinks to r = 0 exponentially.

This seems strange, as I would expect something like mean curvature flow
according to which the radius should shrink to zero in finite time according to
the ODE

r′ = −1

r
(the mean curvature with respect to the outward normal)

For this equation r(t) =
√

r20 − 2t which vanishes in finite time (T = r20/2).

Another interesting possibility to consider here is the evolution of a sphere which
is a graph of a function f > 0 over the unit sphere S2 centered at the origin but
is not concentric with the unit sphere.
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Two Derivations of the Wave Equation

Problem 2 The one-dimensional wave equation can be written as

utt = uxx.

This equation is usually derived as a small amplitude approximation of the equa-
tion for the vertical displacement of a horizontal one-dimensional elastic continuum
as indicated in Figure 1.

Figure 1: A “vibrating string.” The one-dimensional continuum or “string” is as-
sumed to be elastic and have equilibrium corresponding to u ≡ 0. The value of u
represents an approximation of the vertical displacement above the horizontal position
x.

In this context the function u typically has domain [0, L]× [0, T ) for some L > 0
and T > 0 and satisfies u(0, t) = u(L, t) ≡ 0. You can look up the derivation of the
1-D wave equation from this point of view in many textbooks on partial differential
equations and in many other places (e.g., on the internet) as well. I’m first going
to walk you through a derivation of the 1-D wave equation which I view as much
superior to the usual one. In particular, no approximation is required. I have not
seen this/my derivation elsewhere. My derivation requires one to assign a different
physical meaning to the value of the function u.
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Horizontal Displacements

Let u : [0, L]×[0, T ) → R represent the horizontal displacement of a one-dimensional
elastic continuum with fixed endpoints at x = 0 and x = L; see Figure 2.

Figure 2: A horizontally displaced one-dimensional continuum with fixed endpoints.
Here we also assume elasticity and an equilibrium corresponding to no displacement
or u(x) ≡ x. In the illustrated displacement each point (except for the two endpoints)
is displaced to the left. One can imagine this also as an initial displacement u0(x) =
u(x, 0) which corresponds to a restoring motion/force to the right. Naturally there
may also be an initial velocity distribution along the continuum.

This model for horizontal displacements with fixed endpoints is naturally suited to
the boundary conditions:

{

u(0, t) ≡ 0 t ≥ 0,
u(L, t) ≡ L t ≥ 0,

and the constraint
ux(x, t) > 0.

The constraint corresponds to keeping the continuum ordered, so that there is no
folding or overlap. Thus, horizontal displacements are naturally associated with the
admissible class

A = {u ∈ C2([0, L]× [0, T )) : ux(x, t) > 0, u(0, t) ≡ 0, u(L, t) ≡ L, t ≥ 0}.

(a) The displacement illustrated in Figure 2 corresponds to u(x, t) = x2 on the spatial
interval [0, L] = [0, 1]. Find and plot a (horizontal) displacement u0 ∈ C0[0, 1]
defined by the following
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(i) u0(1/2) = 3/4,

(ii) u0 is linear on the interval [0, 1/2], and

(iii) u0 agrees with an affine function on the interval [1/2, 1].

You can plot u0 in two different ways, once in the style of Figure 2 and also
simply as a graph in the x, u-plane.

Solution:

u0(x) =

{

3x/2, x ≤ 1/2
(1 + x)/2, x ≥ 1/2.

Figure 3: The piecewise affine displacement function u0 illustrated in two dif-
ferent ways.

(iv) Use the method of characteristics to determine the solution of























utt = uxx on [0, 1]× [0,∞)
u(x, 0) = u0,
ut(x, 0) = 0,
u(0, t) ≡ 0,
u(1, t) ≡ 1
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and make an animation of the image of u as a function of time represented
by image dots as on the right in Figure 2.

Solution: Let us begin with d’Alembert’s solution for the PDE which in
the case of zero velocity reads:

u(x, t) =
1

2
[u0(x− t) + u0(x+ t)].

On the face of it, this solution will not apply in general for this problem
as x − t and x + t are not generally in the domain of u0. Considering
the domain of independence and the characteristics used to derive this
solution, however, we note that it should apply in the triangle {(x, t) : t <
1/2 − |x − 1/2|, 0 < x < 1} indicated in Figure 4. Due to the piecewise
nature of the initial values u0, we also must consider three different cases
within the initial triangle corresponding determined by the conditions/lines
x − t = 1/2 and x + t = 1/2. These division lines are also indicated as
dashed lines in Figure 4.

Figure 4: Domain for the solution of the 1-D wave equation.
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For this initial triangular domain, we obtain

u(x, t) =







1
2
[3(x− t)/2 + 3(x+ t)/2], for (a) x− t ≤ 1/2 and x+ t ≤ 1/2

1
2
[3(x− t)/2 + (1 + x+ t)/2], for (b) x− t ≤ 1/2 and x+ t ≥ 1/2

1
2
[(1 + x− t)/2 + (1 + x+ t)/2], for (c) x− t ≥ 1/2 and x+ t ≤ 1/2

=







3x/2, for (a) x− t ≤ 1/2 and x+ t ≤ 1/2
1/4 + x− t/2, for (b) x− t ≤ 1/2 and x+ t ≥ 1/2
(1 + x)/2, for (c) x− t ≥ 1/2 and x+ t ≤ 1/2.

If we move to a point outside the initial triangle, say to a point p =
(p1, p2) = (x, t) with x + t < 1/2, as indicated in Figure 5, then one of
the characteristics t = x− p1 + p2 passing through p intersects the lateral
boundary x = 0 instead of the initial boundary t = 0. There are several
possibilities for how to proceed in this case, one of which is to solve the wave
equation again from scratch using the method of characteristics. There is
another process according to which one can extend the initial data u0 to
the rest of R and just use d’Alembert’s formula. My favorite method is to
introduce a rectangular region Ω as indicated in Figure 5 and apply the
divergence theorem.

Figure 5: Using the method of characteristics outside the initial trianglular
domain.
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Notice that the wave equation in one dimension (ux−ut)x+(ux−ut)t = 0
can be written as divv = 0 where div denotes the plane divergence on
the x, t-plane and v is the “diagonal” vector field (ux − ut, ux, ut) with
the same entry in both coordinates. As you might guess, this method
will apply to other divergence form equations associated with other (more
complicated) vector fields. But let me carry out the details for the point
p under consideration. By the divergence theorem we know

∫

∂Ω

v · n = 0

where n is the outward co-normal to the rectangle. Let us decompose the
boundary of Ω into four side segments Γ1, Γ2, Γ3, and Γ4 going around
counterclockwise with

Γ1 =

{

(ξ, ξ) :
p2 − p1

2
≤ ξ ≤ p2 + p1

2

}

is the segment on the initial triangle where we already know u(x, t). The
limits on ξ in this set description were obtained by considering parameter-
ized charactericts. For example, the expression (ξ(t), η(t)) = (p1+ t, p2− t)
has equal components when t = (p2 − p1)/2 corresponding to ξ = p1 + t =
(p1 + p2)/2. This is the upper limit for ξ. We can calculate the integral
over Γ1 as follows:

∫

Γ1

v · n =

∫ (p1+p2)/2

(p2−p1)/2

v(ξ, ξ) · (1,−1)√
2

√
2 dξ = 0,

since n = (1,−1)/
√
2 along this segment and v ·n = 0. The segment Γ2 is

parameterized by γ(t) = (p1+ t, p2− t) with 0let ≤ (p2−p1)/2. Therefore,

∫

Γ2

v · n =

∫ (p2−p1)/2

0

v · (1, 1) dt

=

∫ (p2−p1)/2

0

2[ux(p1 + t, p2 − t)− ut(p1 + t, p2 − t)] dt

=

∫ (p2−p1)/2

0

2
d

dt
[u(p1 + t, p2 − t)] dt

= 2u((p1 + p2)/2, (p1 + p2)/2)− 2u(p).
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Notice that u(p) = u(x, y) appearing here is the value we would like to
determine, and

u

(

p1 + p2
2

,
p1 + p2

2

)

=
3(p1 + p2)

4
=

3(x+ t)

4

is a value we know. Since n = (−1, 1)/
√
2 along Γ3, we will have

∫

Γ3

v · n = 0,

and we have only to consider the flux integral along the segment Γ4 con-
necting (0, p2 − p1) to ((p2 − p1)/2, (p2 − p1)/2).

∫

Γ4

v · n =

∫ (p2−p1)/2

0

v · (−1,−1) dt

= −
∫ (p2−p1)/2

0

2[ux(t, p2 − p1 − t)− ut(t, p2 − p1 − t)] dt

= −
∫ (p2−p1)/2

0

2
d

dt
[u(t, p2 − p1 − t)] dt

= 2u(0, p2 − p1)− 2u((p2 − p1)/2, (p2 − p1)/2).

We know both of these values with u(0, p2 − p1) = 0 from the (lateral)
boundary condition and

u

(

p2 − p1
2

,
p2 − p1

2

)

=
3(p2 − p1)

4
=

3(t− x)

4
.

Putting these integrals together we find

0 =

∫

∂Ω

v · n =
3(x+ t)

2
− 2u(x, t)− 3(t− x)

2
,

or

u(x, t) =
3x

2
for x+ t ≤ 1/2.

I will leave it to you to apply whatever method you prefer to find the value
of u(x, t) on the rest of the strip U = {(x, t) : 0 ≤ t ≤ 1, t ≥ 0}. Having
a little experience, I can now “see” the entire solution, so I will explain
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to you what you should get. You can also find this solution animated in
the Mathematica notebook posted on the course webpage. Notice first
that the expression u(x, t) = 3x/2 prevails across the transition from the
lateral triangle considered above to the initial d’Alembert triangle. You
will find that the same thing will hold for the transition to the lateral
triangle {(x, t) : t ≤ x − 1/2, 1/2 ≤ x ≤ 1} on the right. That is, any
fixed time t0 < 1/4 determines a piecewise C1 function u(x, t0) of x having
two corners corresponding to x = x1 = 1/2 − t0 and x = x2 = 1/2 + t0;
these are the x values corresponding to the intersections of the dashed
characteristics t = |x − 1/2| with the line t = t0. The graph of u(x, t0) is
shown for t0 = 1/8 in Figure 6.

Figure 6: The displacement of the continuum for fixed small time t < 1/4.
In this case, t = t0 = 1/8.

Notice that this displacement matches the original displacement identically
on the intervals 0 ≤ x ≤ x1 and x2 ≤ x ≤ 1 in accord with the finite
propogation speed associated with the wave equation. The slope ux(x, t0)
in the middle interval is the average of the slopes 1/2 and 3/4 on the lateral
intervals. That is, ux(x, t) = 1 for x1 < x < x2, and we can see this is the
case from the formula given in the initial triangle by d’Alembert’s formula.

As time progresses, the initial peak illustrated on the right in Figure 3
and on the right in Figure 6 is replaced on an expanding central inter-
val [x1, x2] = [x1(t), x2(t)] by a displacement of slope identically 1. This
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continues until time t = 1/2 at which point u(x, 1/2) ≡ x is the iden-
tity/”equilibrium” displacement. Of course, the resulting configuration is
not an actual equilibrium because the velocity ut(x, 1/2) is not identically
zero. So for times t > 1/2 two corner points will appear again creating a
shrinking central interval on which slope ux(x, t) = 1 is preserved but the
displacement is “reversed” with

u(x, t) =
x

2
for 0 ≤ x ≤ t− 1/2

and

u(x, t) =
3x− 1

2
for 3/2− t ≤ x ≤ 1.

In this way a new zero velocity displacement will be attained at time t = 1
given by

u1(x) =

{

x/2, x ≤ 1/2
(3x− 1)/2, x ≥ 1/2.

After this, the oscillation reverses in like manner and repeats for all time.

The description above allows one to write down the solution u(x, t) for
all time in terms of a linear oscillation between the inital piecewise affine
right displacement u0 and the piecewise affine left displacement given by
u1. It is also perhaps easier to “see” the solution in terms of the function
w(x, t) = u(x, t)− x which satisfies the wave equation with homogeneous
boundary values. Again, w oscillates linearly in time between two zero
velocity (wt ≡ 0) wave forms w0(x) = (1/2 − |x − 1/2|)/4 and w1(x) =
(|x− 1/2| − 1/2)/4.

The animation, as mentioned above, is given in the posted Mathematica
notebook in terms of w.
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Constitutive Relation for Elasticity

We assume our continuum has the elastic properties of an inhomogeneously
compressed/extended linear spring. Given this assumption, we need to
determine how forces are determined locally in terms of the displacement u.
Recall that in the elementary modeling of a spring compression and extension
are assumed to be homogeneous. Specifically, if the spring is at equilibrium and
of length L it is assumed there is a constant k, called Hooke’s constant, such
that the spring exerts a force F = −k(X −L) on any object attached to the end
located at x = X for X > 0. Clearly this simple model needs to be generalized or
otherwise modified for our application. The following parts suggest one way to
do this based on the assumption that local forces exerted under inhomogeneous
displacement should be related to density.

(b) Assume a spring/string (one-dimensional elastic continuum) has one endpoint
fixed at x = 0 and one free end. Assume also an equilibrium length L corre-
sponding to a linear density ρ0. Determine the horizontal displacement function
u0 : [0, L] → R corresponding to a homogeneous horizontal displacement
to the interval [0, X ]. Express the density ρ is the displaced spring and the
resulting force associated with the displacement u0.

Solution: The homogeneous stretch u0 described is given by

u0(x) =
X

L
x.

The density under this stretch is

ρ =
total mass

total length
=
ρ0L

X
=
ρ0
u′0
. (8)

The force on an object attached at X > 0 should be

F = −k(X − L) = −kL (u′0 − 1) = −kL
(

ρ0
ρ

− 1

)

. (9)
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(c) Use the previous part to explain/justify the elastic assumption

τ = α(ux − 1)

for the local tension in an inhomogeneously displaced spring where u : [0, L] ×
[0, T ) → R describes the displacement, α is an appropriate constant, and τ is
positive for extension beyond the equilibrium density and negative for compres-
sion.

Solution: Assuming the tension is related to the local density by the continuous
version of (8)

ρ = ρ(x, t) =
ρ0
ux

(10)

and the local density is related to the tension according to the local version of
(9)

τ = kL

(

ρ0
ρ(x, t)

− 1

)

with τ = −F because the tension is opposite the force, we have

τ = α(ux − 1)

with α = kL.
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Newton’s Second Law and the Continuum Assumption

Let x1 and x2 be two points with 0 ≤ x1 < x2 < L and images u(x1, t) and
u(x2, t) at time t so that the image interval is

I = {u(x, t) : x1 ≤ x ≤ x2}.

(d) Show the center of mass of the image interval is

1

ρ0(x2 − x1)

∫

I

u(x, t)ρ(x, t) dx =
1

x2 − x1

∫ x2

x1

u(x, t) dx.

Solution: By definition, the center of mass is x∗ = x∗(t) with

x∗ =
1

ρ0(x2 − x2)

∫

u∈I

uρ

=
1

ρ0(x2 − x2)

∫

u∈I

u(x, t)ρ(x, t)

=
1

ρ0(x2 − x2)

∫ x2

x1

u(x, t)ρ(x, t) ux(x, t) dx

=
1

ρ0(x2 − x2)

∫ x2

x1

u(x, t)ρ0 dx

=
1

x2 − x2

∫ x2

x1

u(x, t) dx.

The key is the third equality where the scaling factor for the parameterization
γ(x) = u(x, t) is σ = |γ′(x)| = |ux(x, t)| = ux(x, t). The fourth equality follows
from (10).
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The continuum assumption for motion is that the sum of the forces acting
on I, expressed with respect to the center of mass of I, is given by the resultant
tension forces on the endpoints of I.

(e) Under the continuum assumption, show that Newton’s second law gives

ρ0(x2 − x1)
d2

dt2
1

x2 − x1

∫ x2

x1

u(x, t) dx = α[ux(x2, t)− 1]− α[ux(x1, t)− 1].

Solution: Newton’s second law (under the continuum assumption) gives

ρ0(x2 − x1)
d2

dt2
x∗ = τ(x2, t)− τ(x1, t).

Replacing the center of mass x∗ with the expression from part (d) and the
tension with the expression from part (c), we have

ρ0(x2 − x1)
d2

dt2
1

x2 − x2

∫ x2

x1

u(x, t) dx = α[ux(x2, t)− 1]− α[ux(x1, t)− 1]

= α[ux(x2, t)− ux(x1, t)].

(f) Simplify, manipulate, and use the expression from part (e) along with the fun-
damental lemma of the calculus of variations to finish the derivation of the
one-dimensional wave equation in the form

ρ0utt = αuxx.

Solution: Continuing from part (e), we have

ρ0
d2

dt2

∫ x2

x1

u(x, t) dx = α[ux(x2, t)− ux(x1, t)]

= α

∫ x2

x1

∂

∂x
ux(x, t) dx

= α

∫ x2

x1

uxx(x, t) dx.
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Differentiating under the integral sign on the left and collecting both sides in a
single integral we get

∫ x2

x1

[ρ0 utt(x, t)− α uxx(x, t)] dx = 0.

The argument from the fundamental lemma tells us that we get a contradiction
unless

ρ0 utt(x, t)− α uxx(x, t) ≡ 0.

This completes this derivation of the 1-D wave equation.

Exercise 2 Generalize the derivation above to higher dimensions. Hint: Start
at the end with the application of the fundamental lemma of the calculus of
variations and deduce the appropriate form of the elastic assumption for a
higher-dimensional continuum/membrane. (I think the step of justifying this
assumption using homogeneous expansions is rather complicated.)

Hamilton’s Principle

Remember that Hamilton’s principle says that any particle motion determined
by Newton’s second law in a potential field can be obtained as an extremal for
the action functional

H [x] =
1

2

∫ T

0

mẋ(τ)2 dτ −
∫ T

0

Φ(x(τ), τ) dτ (11)

on the admissible class of motions with determinant outcomes

A = {x ∈ C2[0, T ] : x(0) = x0 and x(T ) = x1}
where Φ is the (possibly time varying) potential function for the field satisfying
F (x, t) = −Φx(x, t). In view of the derivation above (using Newton’s second law)
this rather strongly suggests there should be a variational derivation of the wave
equation using some kind of Hamilton’s principle. In fact, it is true that such a
derivation is possible, and what is moreover true is that this derivation applies
in any dimension to give the wave equation in arbitrary spatial dimensions

utt = ∆u.
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(g) Obtain Newton’s second law for particle motion in a potential force field (once
more) using the Hamiltonian action functional defined in (11).

Solution: Taking the first variation of the Hamiltonian give above we get

δHx[φ] =

∫ T

0

[

mẋ(τ) φ̇(τ)− Φx(x(τ), τ) φ(τ)
]

dτ

=

∫ T

0

[

−m d

dt
ẋ(τ)− Φx(x(τ), τ)

]

φ(τ) dτ

=

∫ T

0

[−mẍ(τ)− Φx(x(τ), τ)] φ(τ) dτ.

Thus, the Euler-Lagrange equation (for C2 extremals x ∈ A) is

mẍ = −Φ(x, t).

Since the potential gives the force according to F = −Φ, this is F = ma.

(h) Define an appropriate admissible class and an appropriate generalization of Hamil-
ton’s action functional on that admissible class so that the wave equation is given
as the Euler-Lagrange equation of C2 extremals.

Solution: Let us consider

A = C2(U × (0, T ))

and the functional H : A → R by

H [u] =
1

2

∫

U

[
∫ T

0

ut(x, τ)
2 dτ −

∫ T

0

|Du(x, τ)|2 dτ
]

=
1

2

∫

U×(0,T )

[

ut(x, τ)
2 − |Du(x, τ)|2

]

.

With a full variation φ ∈ C∞
c (U × (0, T )) we have

(u+ ǫφ)t = ut + ǫφt and D(u+ ǫφ) = Du+ ǫDφ,

so

δHu[φ] =

∫

U×(0,T )

[utφt −Du ·Dφ] .
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In the first integral, we separate out the time dependence (Fubini’s theorem)
and integrate by parts:

∫

U

(
∫ T

0

ut(x, τ) φt(x, τ) dτ

)

=

∫

U

(

−
∫ T

0

utt(x, τ) φ(x, τ) dτ

)

.

For the second integral, we reverse the order of integration and apply the diver-
gence theorem/product rule:

∫

(0,T )

(
∫

U

Du ·Dφ
)

=

∫

(0,T )

(

−
∫

U

∆uφ

)

.

Recombining the integrals we find

δHu[φ] =

∫

U×(0,T )

[∆u− utt]φ.

Thus, the Euler-Lagrange equation is the wave equation

utt = ∆u.
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