
MATH 6702 Assignment 8 = Challenge Problems

Due Friday May 7, 2021

John McCuan

April 28, 2021

There are two challenge problems below. The first is quite involved to a large
extent due to technical issues (and has some difficult points as well), and the second
is much easier and less technical but still definitely challenging for most students at
your level. They are in this order to correspond to the order of material presented on
partial differential equations in the course, namely, the first problem is about gradient
flow in infinite dimensions (we presented the heat equation as a gradient flow on a
subset/subspace of L2(U)), and the second problem concerns the derivation of the
wave equation (this derivation was not presented in the lecture, but we discussed
some aspects of the wave equation at the end of the course). I wanted to put a
problem like the first one on the final exam, but I didn’t because I thought the exam
was already long enough and would probably turn out to be long, involved, and
difficult if I put such a problem. (I was correct about all three of those things.) I had
prepared most of the material for the second problem for the last/extra lecture, but
we didn’t get to it. Both variational constructions are quite beautiful I think.
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Infinite Dimensional Gradient Flow

Problem 1 We will denote by S
2 the two-dimensional unit sphere in R

3. That is,

S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.

It should be clear that we can take S
2 both as a domain of integration and as a domain

for real valued functions f : S2 → R. In fact, the set of continuously differentiable
functions f ∈ C1(S2) makes good sense as does C2(S2).

Calculus/Differentiability on a Sphere

(a) Give two different ways to define what it means for a function f : S2 → R to be
continuously differentiable and show they are equivalent. Here are some hints if
you need them

(i) Consider extensions f : V → R of f to an open subset V ⊂ R
3 with S

2 ⊂ V.
In order to decide if f ∈ C1(S2) consider whether or not there exists an
extension f ∈ C1(V).

(ii) Consider compositions f ◦X : U → R where U ⊂ R
2 is an open subset of

R
2 and X ∈ C1(U → S

2). The definition of C1 you get should only use
values of f that are given on S

2.

(b) Given a unit vector v ∈ TpS
2, define the directional derivative of f ∈ C1(S2) by

∇vf(p) = Dvf(p) = Df(p) · v

where f ∈ C1(U) is an extension of f to an open set U ⊂ R
3. Show that this

definition does not depend on the choice of extension f . Hint: Express ∇vf(p)
in terms of composition with a curve.

(c) Define C2(S2).
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Integration/Scaling Factor

(d) Note that the unit sphere map given by u : (0, π)× (0, 2π) → R
3 by

u(φ, θ) = (sin φ cos θ, sin φ sin θ, cosφ)

parameterizes most of the sphere. Calculate the scaling factor σu for area with
respect to this parameterization. That is, given f ∈ C0(S2) and U a domain of
integration in (0, π)× (0, 2π), we have

∫

u(U)

f =

∫

U

f ◦ u σu.

(e) Consider
A = {f ∈ C1(S2) : f > 0}

as an admissible class and the associated functions g : S2 → R
3 given by

g(p) = f(p)p.

Find the area scaling factor σ : S2 → R on S
2 giving the area of the radial

graph
G = {f(p)p : p ∈ S

2}

so that the area functional is given by A : A → R by

A[f ] =

∫

G

1 =

∫

S2

σ.

Hints: Calculate the area scaling factor σX associated with the parameterization
X : U → R

3 by X = g ◦ u. Then

σ =
σX

σu

.

(i) First obtain an expression involving the quantities Df · uφ and Df · uθ.

(ii) Simplify your expression using the surface gradient on S
2. Remember

this is a function grad f : S2 → R
3 having the properties

grad f(p) ∈ TpS
2 and grad f(p) ·w = ∇wf(p) for all w ∈ TpS

2.
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Calculus of Variations/First Variation of Area

(f) Calculate the first variation δAf [φ] of the area functional.

Gradient Flow

(g) Write down the equation of gradient flow on A ⊂ L2(S2). Here, of course, we
mean the infinite dimensional gradient flow with respect to the L2 inner product

〈f, g〉L2 =

∫

S2

fg

on A. That is, the gradient of A is defined to be the element gradA[f ] of C0(S2)
such that

δAf [φ] =

∫

S2

gradA[f ] φ for all φ ∈ C∞
c (S2).

As a bit of an aside, note that since S
2 is compact, we know C∞

c (S2) = C∞(S2).
Hint: You can define a surface divergence using the usual limit of flux inte-
grals and the usual proof will also give you a divergence theorem for domains
in S

2. You’ll want to assume (or prove) that a product rule for the surface
divergence of a scaled field has the usual form:

div(fw) = ∇f ·w + f divw.

(h) Find an explicit solution for the evolution of spheres under this gradient flow.
Hint: A sphere is given by the radial graph associated to f ≡ constant. This
means you can look for solutions f = f(p, t) having the form f = f(t).
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Two Derivations of the Wave Equation

Problem 2 The one-dimensional wave equation can be written as

utt = uxx.

This equation is usually derived as a small amplitude approximation of the equa-
tion for the vertical displacement of a horizontal one-dimensional elastic continuum
as indicated in Figure 1.

Figure 1: A “vibrating string.” The one-dimensional continuum or “string” is as-
sumed to be elastic and have equilibrium corresponding to u ≡ 0. The value of u
represents an approximation of the vertical displacement above the horizontal position
x.

In this context the function u typically has domain [0, L]× [0, T ) for some L > 0
and T > 0 and satisfies u(0, t) = u(L, t) ≡ 0. You can look up the derivation of the
1-D wave equation from this point of view in many textbooks on partial differential
equations and in many other places (e.g., on the internet) as well. I’m first going
to walk you through a derivation of the 1-D wave equation which I view as much
superior to the usual one. In particular, no approximation is required. I have not
seen this/my derivation elsewhere. My derivation requires one to assign a different
physical meaning to the value of the function u.
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Horizontal Displacements

Let u : [0, L]×[0, T ) → R represent the horizontal displacement of a one-dimensional
elastic continuum with fixed endpoints at x = 0 and x = L; see Figure 2.

Figure 2: A horizontally displaced one-dimensional continuum with fixed endpoints.
Here we also assume elasticity and an equilibrium corresponding to no displacement
or u(x) ≡ x. In the illustrated displacement each point (except for the two endpoints)
is displaced to the left. One can imagine this also as an initial displacement u0(x) =
u(x, 0) which corresponds to a restoring motion/force to the right. Naturally there
may also be an initial velocity distribution along the continuum.

This model for horizontal displacements with fixed endpoints is naturally suited to
the boundary conditions:

{

u(0, t) ≡ 0 t ≥ 0,
u(L, t) ≡ L t ≥ 0,

and the constraint
ux(x, t) > 0.

The constraint corresponds to keeping the continuum ordered, so that there is no
folding or overlap. Thus, horizontal displacements are naturally associated with the
admissible class

A = {u ∈ C2([0, L]× [0, T )) : ux(x, t) > 0, u(0, t) ≡ 0, u(L, t) ≡ L, t ≥ 0}.

(a) The displacement illustrated in Figure 2 corresponds to u(x, t) = x2 on the spatial
interval [0, L] = [0, 1]. Find and plot a (horizontal) displacement u0 ∈ C0[0, 1]
defined by the following
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(i) u0(1/2) = 3/4,

(ii) u0 is linear on the interval [0, 1/2], and

(iii) u0 agrees with an affine function on the interval [1/2, 1].

You can plot u0 in two different ways, once in the style of Figure 2 and also
simply as a graph in the x, u-plane.

(iv) Use the method of characteristics to determine the solution of






















utt = uxx on [0, 1]× [0,∞)
u(x, 0) = u0,
ut(x, 0) = 0,
u(0, t) ≡ 0,
u(1, t) ≡ 1

and make an animation of the image of u as a function of time represented
by image dots as on the right in Figure 2.

Constitutive Relation for Elasticity

We assume our continuum has the elastic properties of an inhomogeneously
compressed/extended linear spring. Given this assumption, we need to
determine how forces are determined locally in terms of the displacement u.
Recall that in the elementary modeling of a spring compression and extension
are assumed to be homogeneous. Specifically, if the spring is at equilibrium and
of length L it is assumed there is a constant k, called Hooke’s constant, such
that the spring exerts a force F = −k(X −L) on any object attached to the end
located at x = X for X > 0. Clearly this simple model needs to be generalized or
otherwise modified for our application. The following parts suggest one way to
do this based on the assumption that local forces exerted under inhomogeneous
displacement should be related to density.

(b) Assume a spring/string (one-dimensional elastic continuum) has one endpoint
fixed at x = 0 and one free end. Assume also an equilibrium length L corre-
sponding to a linear density ρ0. Determine the horizontal displacement function
u0 : [0, L] → R corresponding to a homogeneous horizontal displacement
to the interval [0, X ]. Express the density ρ is the displaced spring and the
resulting force associated with the displacement u0.
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(c) Use the previous part to explain/justify the elastic assumption

τ = α(ux − 1)

for the local tension is an inhomogeneously displaced spring where u : [0, L] ×
[0, T ) → R describes the displacement, α is an appropriate constant, and τ is
positive for extension beyond the equilibrium density and negative for compres-
sion.

Newton’s Second Law and the Continuum Assumption

Let x1 and x2 be two points with 0 ≤ x1 < x2 < L and images u(x1, t) and
u(x2, t) at time t so that the image interval is

I = {u(x, t) : x1 ≤ x ≤ x2}.

(d) Show the center of mass of the image interval is

1

ρ0(x2 − x1)

∫

I

u(x, t)ρ(x, t) dx =
1

x2 − x1

∫ x2

x1

u(x, t) dx.

The continuum assumption for motion is that the sum of the forces acting
on I, expressed with respect to the center of mass of I, is given by the resultant
tension forces on the endpoints of I.

(e) Under the continuum assumption, show that Newton’s second law gives

ρ0(x2 − x1)
d2

dt2
1

x2 − x1

∫ x2

x1

u(x, t) dx = α[ux(x2, t)− 1]− α[ux(x1, t)− 1].

(f) Simplify, manipulate, and use the expression from part (e) along with the fun-
damental lemma of the calculus of variations to finish the derivation of the
one-dimensional wave equation in the form

ρ0utt = αuxx.
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Hamilton’s Principle

Remember that Hamilton’s principle says that any particle motion determined
by Newton’s second law in a potential field can be obtained as an extremal for
the action functional

H [x] =
1

2

∫ T

0

ẋ(τ)2 dτ −

∫ T

0

Φ(x(τ), τ) dτ (1)

on the admissible class of motions with determinant outcomes

A = {x ∈ C2[0, T ] : x(0) = x0 and x(T ) = x1}

where Φ is the (possibly time varying) potential function for the field satisfying
F (x, t) = −Φx(x, t). In view of the derivation above (using Newton’s second law)
this rather strongly suggests there should be a variational derivation of the wave
equation using some kind of Hamilton’s principle. In fact, it is true that such a
derivation is possible, and what is moreover true is that this derivation applies
in any dimension to give the wave equation in arbitrary spatial dimensions

utt = ∆u.

(g) Obtain Newton’s second law for particle motion in a potential force field (once
more) using the Hamiltonian action functional defined in (1).

(h) Define an appropriate admissible class and an appropriate generalization of Hamil-
ton’s action functional on that admissible class so that the wave equation is given
as the Euler-Lagrange equation of C2 extremals.
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