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Abstract

This is a report for Kendra and James Riddle of the Sonshine Awning
Company, Pheonix Arizona, concerning their proposed design of an awning
satisfying a certain Dirichlet boundary value problem for the hyperbolic PDE
uyy −uxx = 0 on a rectangle. We introduce the problem, give some preliminary
discussion of techniques which can be applied to understand the possibilities
and properties of solutions, consider the consequences for this particular design,
and offer some conclusions and design alternatives.

1 Introduction

The proposed design suggests finding an awning with shape determined by the
boundary value problem

{

uxx = uyy on R = (−a/2, a/2) × (0, b)
u(x, 0) = a2/4 − x2, u(±a/2, y) = 0, u(x, b) = a2/16 − x2/4.

(1)

The partial differential equation appearing in (1) is hyperbolic, that is, it is
a version of the wave equation, and it is customary to think of one of the
variables as time. We will generally think of the second variable y as time. In
this framework, the condition

u(x, 0) = u0(x) =
a2

4
− x2

may be considered as an initial condition (with respect to the time variable
t = y). The homogeneous condition

u(±a/2, y) = 0 (2)

1



is a relatively natural condition for this PDE which may be interpreted as a
requirement that the endpoints of a “vibrating string” are kept fixed. The last
condition

u(x, b) = u1(x) =
a2

16
− x2

4
is somewhat unnatural with respect to this interpretation we have imposed on
the problem, however, it is clear that time could be reversed and one could take
this as an initial condition. One could also view x as the “time” variable and
take either of the homogeneous conditions (2) as an initial condition, but let us
proceed under the time assumption compatible with the given coordinates and
the assumption that y represents “time” so that time y = 0 corresponds to the
side of the awning closest to the building.

In this framework, it is natural to take the initial “velocity”

v0(x) = uy(x, 0)

as given. We will assume this value represents a function which may be chosen
within certain design parameters. For example it should be noted that a choice
of v0(x) with v0(x) > 0 will direct water back toward the building. This may
require additional considerations concerning drainage and gutters. We note
that such designs are sometimes used; see for example

https://www.cityofsydney.nsw.gov.au/__data/assets/pdf_file/0014/120371/Co.

Based on the other boundary values, we may assume the initial “velocity” v0

is an even function, though this also may be relaxed if desired.

2 Preliminaries

Perhaps the simplest situation for the wave equation (as we have imposed it
on this design) involves prescribing u0 = u0(x) and v0 = v0(x) along the entire
real line. Then the equation may be solved uniquely as follows: We write

w = uy − ux so that wy + wx = 0.

In addition, subject to differentiability of u0 which we have for |x| ≤ a/2 and
we will (for now) assume for any extension u0 : R → R, we can write

w(x, 0) = w0(x) = uy(x, 0) − ux(x, 0) = v0(x) − u′

0(x).

Restricting to a parameterized path γ(t) = (ξ + t, t) starting at (ξ, 0), we have

d

dt
w(ξ + t, t) = wx(ξ + t, t) + wy(ξ + t, t) = 0
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according to the first order PDE for w. Thus, solving x = ξ + t and y = t for
ξ and t so that ξ = x − y, we can say

w(x, y) = w(ξ, 0) = w0(ξ) = w0(x − y) = v0(x − y) − u′

0(x − y).

Similarly,

d

dt
u(ξ − t, t) = −ux(ξ − t, t) + uy(ξ − t, t) = w(ξ − t, t),

so that

u(x, y) = u(ξ, 0) +

∫ t

0
w(ξ − τ, τ) dτ

where this time ξ = x + y and t = y. That is,

u(x, y) = u0(x + y) +

∫ y

0
[v0(x + y − 2τ) − u′

0(x + y − 2τ)] dτ

=
1

2
[u0(x + y) + u0(x − y)] +

1

2

∫ x+y

x−y
v0(ξ) dξ.

This is d’Alembert’s solution.
Now, we note that the values of d’Alembert’s solution u(x, y) at a particular

point (x, y) depend on the values of u0 at x− y and x + y as well as the values
of v0(ξ) on the entire interval x − y < ξ < x + y. Of course, we do not know
v0 at all. Nevertheless, we make the following observation: If (x, y) satisfies
y < a/2 − |x| as indicated in Figure 1, then at least the values of u0 are given
by the desired boundary/initial value u0(x) = a2/4 − x2.

Before attempting to understand conditions imposed on v0 and, in particular
if v0 may be chosen so that d’Alembert’s formula produces the appropriate
boundary values u(x, b) = u1(x) for some b < a/2, we proceed to consider the
possibility of extending this solution to the regions R±

2 indicated in Figure 1
using only the values of u0 and v0 on the interval [−a/2, a/2] and the lateral
homogeneous values. In order to accomplish this, another approach to the
derivation of d’Alembert’s solution on R1 is instructive. Consider the region U
determined by the point (x, y) ∈ R1 as indicated in Figure 1, namely

U = {(ξ, η) : 0 < η < y − |x|, x − y < ξ < x + y}.

Letting v be the field on U defined by

v(ξ, η) = (ux,−uy) = (ux(ξ, η),−uy(ξ, η))
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Figure 1: A region where the value of u is determined by the values of u0 and v0 on
the interval [−a/2, a/2] according to d’Alembert’s formula.

we note that divv = −�u = uxx−uyy = 0. Thus, we may apply the divergence
theorem to see

∫

∂U
v · n = 0.

In this case, the region U is bounded by the three segments of a triangle which
we consider one by one. Letting Γ− denote the left side of the triangle,

∫

Γ−

v · n =

∫ y

0
(ux(x − y + t, t),−uy(x − y + t, t)) · (−1, 1)√

2

√
2 dt

= −
∫ y

0

d

dt
u(x − y + t, t) dt

= −[u(x, y) − u(x − y, 0)].

Similarly, the flux integral along the right side Γ+ is
∫

Γ+

v · n =

∫ y

0
(ux(x + t, y − t),−uy(x + t, y − t)) · (1, 1) dt

=

∫ y

0

d

dt
u(x + t, y − t) dt

= u(x + y, 0) − u(x, y).

Finally, the integral along the interval [x − y, x + y] is

∫ x+y

x−y
(ux(t, 0),−uy(t, 0)) · (0,−1) dt =

∫ x+y

x−y
v0(t) dt.
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Summing these three flux integrals, we have

−2u(x, y) + u0(x − y) + u0(x + y) +

∫ x+y

x−y
v0(t) dt = 0

which is d’Alembert’s formula.
Let us apply the same approach with regard to a point

(x, y) ∈ R−

2 = {(ξ, η) : a/2 − |ξ| < η < a/2 − ξ, −a/2 < ξ < 0}.

This time, we take U to be a rectangular region as indicated in Figure 2 with

Figure 2: Determining the value of u(x, y) be applying the divergence theorem on the
rectangular region U .

corners at (x, y), (−a/2, y − x − a/2), (y − x − a, 0), and (y − a/2, x + a/2).
We have four path integrals to compute. Let us start at (x, y) and proceed
counterclockwise to each corner as listed above:

∫ x+a/2

0
(ux(−a/2 + t, y − x − a/2 + t),−uy(−a/2 + t, y − x − a/2 + t) · (−1, 1) dt

= −
∫ x+a/2

0

d

dt
u(−a/2 + t, y − x − a/2 + t) dt

= u(−a/2, y − x − a/2) − u(x, y)

= −u(x, y).
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∫ y−x−a/2

0
(ux(−a/2 + t, y − x − a/2 − t),−uy(−a/2 + t, y − x − a/2 − t) · (−1,−1) dt

= −
∫ y−x−a/2

0

d

dt
u(−a/2 + t, y − x − a/2 − t) dt

= u(−a/2, y − x − a/2) − u(y − x − a, 0)

= −u0(y − x − a).

∫ x+a/2

0
(ux(y − x − a + t, t),−uy(y − x − a + t, t) · (1,−1) dt

=

∫ x+a/2

0

d

dt
u(y − x − a + t, t) dt

= u(y − a/2, x + a/2) − u(y − x − a, 0)

= u(y − a/2, x + a/2) − u0(y − x − a).

∫ y−x−a/2

0
(ux(x + t, y − t),−uy(x + t, y − t) · (1, 1) dt

=

∫ y−x−a/2

0

d

dt
u(x + t, y − t) dt

= u(y − a/2, x + a/2) − u(x, y).

Summing these four integrals, we find

−2u(x, y) − 2u0(y − x − a) + 2u(y − a/2, x + a/2) = 0

or
u(x, y) = u(y − a/2, x + a/2) − u0(y − x − a).

The point (y − a/2, x + a/2) lies in region R1 and the value u(y − a/2, x + a/2)
is given by d’Alembert’s formula:

u(x, y) =
1

2
[u0(x + y) + u0(y − x − a)] +

1

2

∫ x+y

y−x−a
v0(ξ) dξ − u0(y − x − a)

=
1

2
[u0(x + y) − u0(y − x − a)] +

1

2

∫ x+y

y−x−a
v0(ξ) dξ.

Naturally a symmetric formula may be obtained by assuming v0 is even and
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that the solution u = u(x, y) is even in x:

u(x, y) =
1

2
[u0(−x + y) − u0(y + x − a)] +

1

2

∫

−x+y

x+y−a
v0(ξ) dξ

=
1

2
[u0(x − y) − u0(a − x − y)] +

1

2

∫ a−x−y

x−y
v0(ξ) dξ.

This formula may also be obtained directly without the assumption that v0 is
even and is correct without that assumption. This suffices to consider some
special cases and the compatibility of the “initial” condition u(x, 0) = u0(x)
with the “final” condition u(x, b) = u1(x).

A simple explicit solution

We have obtained above formulas for awning shapes satisfying the PDE uyy −
uxx = 0 and three of the four boundary conditions for relatively short awnings
whose length satisfies b < a/2. These shapes depend on the initial “velocity”
u(x, 0) = v9(x) on the interval |x| ≤ a/2 and, in principle, on a choice of
b < a/2. If we take v0 ≡ 0, then we obtain a specific shape given by

u(x, y) =







a2/2 + a(x − y) − 2xy, a/2 + x ≤ y ≤ b, −a/2 ≤ x ≤ 0
a2/4 − x2 − y2, 0 ≤ y ≤ min{b, a/2 − |x|}
a2/2 − a(x + y) + 2xy, a/2 − x ≤ y ≤ b, 0 ≤ x ≤ a/2.

Note that by a homogeneous scaling in x and y, we may assume the width a
measures one unit. This shape is shown by b = a/2 in Figure 3. We observe
that for this solution

ux(x, y) =







a − 2y, a/2 + x ≤ y ≤ b, −a/2 ≤ x ≤ 0
−2x, 0 ≤ y ≤ min{b, a/2 − |x|}
−a + 2y, a/2 − x ≤ y ≤ b, 0 ≤ x ≤ a/2,

so that the solution satisfies u ∈ C1(R), but

uxx(x, y) =







0, a/2 + x < y ≤ b, −a/2 ≤ x ≤ 0
−2, 0 ≤ y < min{b, a/2 − |x|}
0, a/2 − x < y ≤ b, 0 ≤ x ≤ a/2.

This means, first of all, that even though we assumed the solution satisfied
u ∈ C2(R) in order to derive the formula, the formula we obtained does not
provide a classical solution for the problem. Presumably, we have here a weak
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Figure 3: A simple awning obtained by taking v0 ≡ 0

C1 solution of the PDE. Nevertheless, the awning shape does appear to be
practically and aesthetically viable.

a second observation is that it is not possible for one of these shapes to
match the desired “final” boundary value u(x, b) = u1(x) = a2/16 − x2/4. It
is enough to observe, as the calculations above indicate, that u(x, y) is affine
in x for fixed y on the regions R±

2 . We may still ask if it is possible to achieve
the final value for |x| ≤ a/2 − b for some b with 0 < b < a/2. The value of the
solution in this case is given by

u(x, b) =
a2

4
− b2 − x2 6= a2

16
− x2

4
.

So this is not possible. Choosing b to minimize ‖u(x, b) − u1(x)‖L2(−b/2,b/2)

however, we obtain a unique value b∗ ≈ (0.43172)a (fairly close to the maximum
value b = a/2 under consideration). Figure 4 shows how well (or how poorly)
this simple solution matches the desired end profile.

At this point, there are several natural conjectures:

1. The target end profile given by u1(x) = a2/16 − x2/4 can be more
closely approximated by a solution associated with an appropriate choice
of (nonzero but still even) v0.

2. Even with the assumption v0(x) ≡ 0, it should be possible to minimize the
overall deviance from the desired “initial” value and the desired “final”
value to obtain a (possibly) more satisfactory shape.

3. The form of d’Alembert’s solution giving

u(0, a/2) =

∫ a/2

−a/2
v0(ξ) dξ
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Figure 4: Plots of u(x, b∗) (solid line) in comparison to u1(x) = a2/16−x2/4 (dashed).

suggests that apart from extreme positive initial velocity, it will be difficult
to obtain a very long awning with adequate height at the outer edge.

3 Fourier series approximation

We can also attempt a separated variables solution u(x, y) = A(x)B(y) accord-
ing to which we obtain separation equations

A′′

A
=

B′′

B
= −λ.

Taking the implied boundary conditions A(±a/2) = 0 associated with a nonzero
solution A(x)B(y), we arrive at

Aj = cos
(2j + 1)πx

a
and Bj = aj cos

(2j + 1)πy

a
+ bj sin

(2j + 1)πy

a

for j = 0, 1, 2, . . .. Thus, our superposition takes the form

u(x, y) =
∞
∑

j=0

[

aj cos
(2j + 1)πy

a
+ bj sin

(2j + 1)πy

a

]

cos
(2j + 1)πx

a
.
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Differentiating this series formally, we find

uy(x, y) =
π

a

∞
∑

j=0

(2j+1)

[

−aj sin
(2j + 1)πy

a
+ bj cos

(2j + 1)πy

a

]

cos
(2j + 1)πx

a

so that

v0(x) = uy(x, 0) =
π

a

∞
∑

j=0

(2j + 1)bj cos
(2j + 1)πx

a
.

The coefficients aj are determined by the “initial condition” and integration
using the L2 orthonormality of the cosine basis since

u(x, 0) =

∞
∑

j=0

aj cos
(2j + 1)πx

a
.

In particular,

aj =
2

a

∫ a/2

−a/2
u0(x) cos

(2j + 1)πx

a
dx =

2

a

∫ a/2

−a/2

[

a2

4
− x2

]

cos
(2j + 1)πx

a
dx.

Computing we find

∫ a/2

0
cos

(2j + 1)πx

a
dx =

a

(2j + 1)π
sin

(2j + 1)πx

a
∣

∣

a/2

x=0

=
(−1)ja

(2j + 1)π
.

Also,

∫ a/2

0
x2 cos

(2j + 1)πx

a
dx =

a

(2j + 1)π
x2 sin

(2j + 1)πx

a
∣

∣

a/2

x=0

− 2a

(2j + 1)π

∫ a/2

0
x sin

(2j + 1)πx

a
dx

=
(−1)ja3

4(2j + 1)π
− 2a2

(2j + 1)2π2

∫ a/2

0
cos

(2j + 1)πx

a
dx

=
(−1)ja3

4(2j + 1)π
− 2(−1)ja3

(2j + 1)3π3
.

We conclude that

aj =
4

a

[

a2

4

(−1)ja

(2j + 1)π
− (−1)ja3

4(2j + 1)π
+

2(−1)ja3

(2j + 1)3π3

]

=
8(−1)ja2

(2j + 1)3π3
.
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Assuming the coefficients aj are known, we can attempt to determine the co-
efficients bj from the “final condition” u(x, b) = u1(x). We have

u(x, b) =

∞
∑

j=0

[

aj cos
(2j + 1)πb

a
+ bj sin

(2j + 1)πb

a

]

cos
(2j + 1)πx

a
.

Noting that the desired ending values satisfy u1(x) = u0(x)/4, we obtain the
desired relation

aj cos
(2j + 1)πb

a
+ bj sin

(2j + 1)πb

a
=

aj

4

or

bj sin
(2j + 1)πb

a
=

[

1

4
− cos

(2j + 1)πb

a

]

aj.

Clearly, we are going to have a problem if b/a is an integer or even if b/a is a
rational with odd integer denominator. On the other hand, for many choices
of the ratio b/a, the factor sin(2j + 1)/πb/a will be non-vanishing and we can
write

bj =
1

sin (2j+1)πb
a

[

1

4
− cos

(2j + 1)πb

a

]

aj

=
1

sin (2j+1)πb
a

[

1

4
− cos

(2j + 1)πb

a

]

8(−1)ja2

(2j + 1)3π3
.

In particular, if b/a = (2k + 1)/2 for some natural number k, then bj takes a
particularly simple (nonzero) value, namely,

bj =
2(−1)ka2

(2j + 1)3π3
,

so that

u(x, y) =
2a2

π3

∞
∑

j=0

1

(2j + 1)3

[

4(−1)j cos
(2j + 1)πy

a
+ (−1)k sin

(2j + 1)πy

a

]

cos
(2j + 1)πx

a
.

The fully singular coefficients bj may also be characterized as those for which

b =
k

2j + 1
a for some j ∈ N0 and k ∈ N.

Let us isolate these two collections of lengths:

The fully nonsingular lengths: N =

{

2k + 1

2
a : k ∈ N0

}

.
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The fully singular lengths: S =

{

k

2j + 1
a : j ∈ N0, k ∈ N

}

.

There are two immediate questions about the singular lengths and the lengths
b ∈ (0,∞)\(N ∪ S):

1. Is the singular behavior a direct result of something inherent in the PDE
or is this an extraneous artifact of the technique of Fourier expansion?

2. If we can understand the fully singular behavior, can we understand the
situation with the indeterminate lengths b ∈ (0,∞)\(N ∪ S)?

4 Heuristics and properties

We appear to have constructed a great many awnings meeting the nominal
design requirements of the boundary value problem (1). Unlike with awnings
arising from the heat equation, we do not expect these solutions to decay to
zero. Taking the “energy” of a solution to be

e(y) = ‖ut‖2
L2(−a/2,a/2) + ‖ux‖2

L2(−a/2,a/2) =

∫ a/2

−a/2

(

[ut(x, y)]2 + [ux(x, y)]2
)

dx

as a measure of the total “elastic and kinetic energy” of the cross-section of the
awning, we can calculate as before

e′(y) = 2

∫ a/2

−a/2
(uy(x, y)uyy(x, y) + ux(x, y)uxy(x, y)) dx

= 2

∫ a/2

−a/2
uy(x, y) (uyy(x, y) − uxx(x, y)) dx + ux(x, y)uy(x, y)∣

∣

a/2

x=−a/2

= 0

since u(±a/2, y) ≡ 0 implies uy(±a/2, y) = 0. This means the “energy” remains
constant over “time.”

We recall from the previous problem that the initial profile will be approx-
imated according to Figure 5. In particular, using one term in the Fourier ex-
pansion gives an overall rough qualitative approximation of the desired profile
while three terms in the Fourier series gives an initial profile almost indistin-
guishable from the desired profile. In addition, the form of our approximation,
when the first three terms or nonsingular, will give precisely the same approx-
imation (up to a factor of 1/4) at y = b. In particular, if we take the first fully
nonsingular value b = a/2, we obtain an awning shape as indicated in Figure 6

12



Figure 5: Initial cross-sections of Fourier approximations with one, two, and three
terms.

(using the first three terms of the approximation). This solution gives support-
ing evidence for conjectures 1 and 3 above: The end profile data is matched
precisely at the expense of including a nonzero positive initial inclination. It
will be noted that this can be expected to direct runoff toward the building.
The magnitude of the initial positive inclination does not appear to be severe,
but the length is also fixed at the specific nonsingular length b = a/2.

As noted above, taking the initial velocity zero in the Fourier approxima-
tion is equivalent to taking (all) the coefficients bj = 0. As expected, we
may take, for example, the first term of the Fourier approximation under
this assumption (b0 = 0) and obtain a length b = b∗ ≈ 0.41957 a minimiz-
ing ‖u(x, b)− u1(x)‖L2(−b/2,b/2) where u(x, y) is taken to be the approximation

u(x, y) = a0 cos
πy

a
cos

πx

a
.

This length is somewhat shorter than the previous length used to motivate our
second conjecture, but the approximation of the ending values is much better.
In fact, it can be expected that this approximation is, again, precisely the
approximation of the leftmost illustration in Figure 4 (scaled by 1/4). These
observations are indicated in Figure 7.

The single term approximation, and the observation that restriction to a
specific “time” y = b corresponds to a simple scaling of the initial value in
this case, can also be useful in addressing the third conjecture and the first
question. What we may do is temporarily abandon the prescriptions u(x, 0) =
u0(x) and u(x, b) = u1(x) and replace them with u(x, 0) = a0 cos(πx/a) and
u(x, b) = (a0/4) cos(πx/a). Then we have certainly a simple explicit solution
of the equation

u(x, y) =
[

a0 cos
πy

a
+ b0 sin

πy

a

]

cos
πx

a
. (3)
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Figure 6: An awning determined by the wave equation with length b = a/2 (left); the
initial inclination/velocity associated with this awning (right). We have used 5 terms
in the approximation for the initial velocity v0(x) = uy(x, 0) for additional accuracy
in the illustration.

Furthermore, the end profile requirement gives

b0 sin
πb

a
=

[

1

4
− cos

πb

a

]

a0 =

[

1

4
− cos

πb

a

]

8a2

π3
.

Thus, it is seen that the coefficient b0 is singular when b/a ∈ N. This is (appar-
ently) a feature of the PDE rather than a peculiarity of Fourier expansion.
Moreover, by taking b = αa for 0 < α < 1, we can see the nature of the singular
behavior. In Figure 8 we have plotted these solutions for a sequence of lengths
approaching the singular value b = a from below and then for corresponding
values larger than b = a. It will be observed that indeed, greater and greater
initial velocities as well as greater and greater overall amplitude for the awning
shape is required as the singular value is approached. In particular, for length
values just below the singular value b = a, the awnings have extreme initial
inclinations and large arching shapes, though the (trigonometric) initial and
final profiles are attained exactly. There is no solution of the problem

for the critical length b = a. In addition to large oscillations for b > a,
we also see the formation of an undesirable “bowl” which will persist for all
b > a. Thus, in this modified problem, and presumably in the general problem,
these “bowls” will persist for large length awnings making this particular PDE
unsuitable for such long awnings.

Figure 9 shows the three term awning approximations corresponding to the
fully nonsingular lengths b = 3a/2 and b = 5a/2.

14



Figure 7: An awning determined by the first term of the Fourier approximation (left)
with the error in the ending profile at b ≈ 0.41957 a.

The general situation is roughly as follows: The higher modes include more
and more features of the quadratic profiles u0(x) and u1(x). These are at-
tainable exactly for the fully nonsingular lengths with only the smallest fully
nonsingular length b = a/2 having no undesirable “bowls.” The first three
terms give a reasonably good approximation for most lengths of practical in-
terest. Using these three terms the fully nonsingular lengths b = a/5, b = a/3,
b = 2a/5, b = 3a/5, b = 2a/3, etc. will become evidently excluded. For a pre-
cise solution, there will be some singular expressions in the full expansion (in
the sense of large values of the coefficient bj for some j). If the length b under
consideration is close to a fully nonsingular length of interest, i.e., a/2, then
the large coefficient bj will also occur for a large index j, and the coefficient
aj will be extremely small eliminating the singular behavior. Precise estimates
may be given, but I will not give them here at the moment.
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Figure 8: From left to right the exact solution given by (3) for b =
a/2, 3a/4, 7a/8, 15a/16, (1 + 1/16)a, (1 + 1/8)a, (1 + 1/4)a, and 3a/2.

Figure 9: Long awnings with undesirable runoff catching bowls.
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