Assignment 10: Final Exam (draft) Due Friday, April 25, 2025, 2:10 PM

John McCuan

January 26, 2025

Problem 1 (convexity and continuity) For this problem, let a and b be real numbers with a < b.

(a) Formulate a definition of **convexity** for a function of one real variable

$$f:[a,b]\to\mathbb{R},$$

and recall the definition of continuity and the vector space $C^{0}[a, b]$.

- (b) Denote by $\mathcal{C}[a, b]$ the collection of convex functions $f : [a, b] \to \mathbb{R}$. Is $\mathcal{C}[a, b]$ a vector space? Explain your answer clearly and in detail.
- (c) Find an example of a function $f \in C[a, b] \setminus C^0[a, b]$.

Problem 2 (differentiability) Recall From Problem 8 of Assignment 2 the definition of differentiability for $f : \Omega \to \mathbb{R}$ where Ω is an open subset of \mathbb{R}^n . Recall also the definition of **directional differentiability**:

Definition 1 Given $\mathbf{x} \in \Omega$ and $\mathbf{u} \in \mathbb{S}^{n-1}$, the function f is said to have a directional derivative at \mathbf{x} in the direction \mathbf{u} if the limit

$$\lim_{v \to 0} \frac{f(\mathbf{x} + v\mathbf{u}) - f(\mathbf{x})}{v}$$

exists. In this case we write

$$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{v \to 0} \frac{f(\mathbf{x} + v\mathbf{u}) - f(\mathbf{x})}{v}$$

(a) Show that if a function $f : \Omega \to \mathbb{R}$ has a directional derivative in every direction $\mathbf{u} \in \mathbb{S}^{n-1}$ at a point $\mathbf{x} \in \Omega$, then f has partial derivatives

$$\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})$$

at \mathbf{x} .

- (b) Assume a function $f : \Omega \to \mathbb{R}$ has a directional derivative in every direction $\mathbf{u} \in \mathbb{S}^{n-1}$ at every point $\mathbf{x} \in \Omega$. Determine if this implies the function f is differentiable (on Ω). If f is differentiable, prove it. If there is an example of a function f with this property which is not differentiable at some point \mathbf{x} , then give that example.
- (c) Assume $f : \Omega \to \mathbb{R}$ has a directional derivative in every direction $\mathbf{u} \in \mathbb{S}^{n-1}$ at a point $\mathbf{x} \in \Omega$ and denote by $Df(\mathbf{x})$ the vector of partial derivatives at \mathbf{x} , i.e., the gradient of f at \mathbf{x} , as usual. Assume further that the forumula

$$Df_{\mathbf{u}}(\mathbf{x}) = Du(\mathbf{x}) \cdot \mathbf{u} = \sum_{j=1}^{n} u_j \frac{\partial f}{\partial x_j}(\mathbf{x})$$

for a directional derivative in terms of the gradient holds for every $\mathbf{u} \in \mathbb{S}^{n-1}$ and every $\mathbf{x} \in \Omega$. Show f is differentiable at every point in Ω .