
Math 6702, Assignment 9

Weak Derivatives

1. Show that if u ∈W 1(−1, 1), then u ∈ C0(−1, 1).

Warning: To complete this problem requires, perhaps, a bit more detailed understanding of
the nature and properties of measurable functions than I had intended. I included this
problem because someone (of you students) asked about it—and rightly so. It’s a very
interesting question, namely:

Is it always true that a weakly differentiable function u ∈W 1(U) is continuous?

Basically for U ⊂ R1, the answer is “yes,” but for U ⊂ Rn with n ≥ 2, the answer is
“no.” I have attempted to take up the first situation in this homework assignment and
the other situation in the next.

I think I can basically reduce this problem to two, rather believable, facts for you. So,
for now, I suggest you just use these facts, and I will write up some more detailed notes
at least outlining why these facts are true under some heading like “the fundamental
theorem of calculus for measurable functions.” See my notes on integration.

Fact 1: If g ∈ L1(a, b), then v : (a, b) → R by

v(x) =

∫

(a,x)

g

has v ∈ C0(a, b).

Fact 2: If w ∈ L1(a, b) and
∫

(a,b)

w φ′ = 0 for every φ ∈ C∞
c (a, b),

then there exists a constant c such that w(x) = c for almost every x ∈ (a, b). That is,
µ{x ∈ (a, b) : w(x) 6= c} = 0 where µ is Lebesgue measure, or put another way, w is
essentially constant.

I gave a proof of Fact 2 in my lecture. At least I reduced the assertion to an application
of the fundamental lemma of the calculus of variations for L1

loc functions. Incidentally,
in studying up to (re)compose this problem, I’ve discovered that Fact 2 is also called
the second fundamental lemma of the calculus of variations. You learn something new
every day! All of these results rest, more or less on another, more basic, fact I mentioned
briefly in my lecture, namely that almost every point in the domain of an L1

loc function
is a Lebesgue point. More precisely, if u ∈ L1

loc(U) with U an open subset of Rn, then

lim
rց0

1

µBr(x0)

∫

Br(x0)

|u(x) − u(x0)| = 0 for almost every x0 ∈ U . (1)

As always, when I say almost every x0 ∈ U , I mean except on a set of Lebesgue
measure zero. In this case,

µ{x0 ∈ U : (1) does not hold} = 0.



This result is called the Lebesgue differentiation theorem.

Beyond Fact 1 and Fact 2 you need to know (or understand) the paradoxical fact that
while the pointwise values of a “function” u ∈ L1(U) are defined nowhere (i.e., at no
single point!), the pointwise values of such a function may still be, and are, uniquely
defined almost everywhere. The trick to understanding this paradox, is to realize one is
actually talking about not a single function but a certain equivalence class of functions.
That is to say: The standard meaning of “u ∈ L1(U)” is the following:

There is a measurable function u : U → R with
∫

U

|u| <∞,

and you might (actually) get any function ũ : U → R which is measurable
and satisfies

∫

U

|ũ− u| = 0.

Using the standard meaning, the set of all measurable functions ũ : U → R with
∫

U
|ũ−u| = 0 is an equivalence class of functions. From the measure theoretic point

of view, the functions u and ũ are indistinguishable; they are “the same function.” This
means, that one should be careful when one says something about u ∈ L1(U) because
anything you say, generally speaking, should be true for every function in the equivalence
class determined by u.

In particular, if one takes any one point x0 ∈ U and any particular value c ∈ R, then the
function ũ : U → R by

ũ(x) =

{

u(x), x 6= x0

c, x = x0,

satisfies ũ = u ∈ L1(U), so the pointwise value of u at x0 clearly has no meaning. Now
the statement of the problem given here, concluding u ∈ C0(−1, 1), obviously departs
from the standard meaning. When this kind of thing is done, first of all, one is said to
be considering the “fine properties of measurable functions,” and things can be expected
to get a little delicate. In particular, what we are asserting here is the following:

There exists some specific u1 : (−1, 1) → R for which the following hold

(i) u1 ∈ C0(−1, 1) and

(ii) u1 = u ∈ L1(−1, 1).

Technically, condition (ii) should be u1 = u ∈W 1(−1, 1) which (technically) means u1 =
u ∈ L1(K) for every compact set K with K ⊂ (−1, 1). Remember that u ∈ W 1(−1, 1)
technically means u ∈ L1

loc(−1, 1) with a weak derivative also in L1
loc(−1, 1). If you want,

you can just assume u and the weak derivative of u are in L1(−1, 1), then condition (ii)
holds as it is. More could be said, but let me leave it for the notes.



Hint(s): Remember that if u ∈W 1(−1, 1), then there is some g ∈ L1
loc(−1, 1) with

−

∫

uφ′ =

∫

gφ for every φ ∈ C∞
c (−1, 1). (2)

Let a, b ∈ R with −1 < a < b < 1. Then

u = u∣
∣

(a,b)

∈ L1(a, b) and g = g∣
∣

(a,b)

∈ L1(a, b)

with g a weak derivative of u in W 1,1(a, b).

Consider v : (a, b) → R by

v(x) =

∫

(a,x)

g.

Use Fubini’s theorem to show
∫

(a,b)

(v − u)φ′ = 0 for all φ ∈ C∞
c (a, b).

Hint for the hint:
∫

x∈(a,b)

∫

t∈(a,x)

g(t)φ′(x) =

∫

T

g(t)φ′(x)

where T = {(x, t) : a < x < b, a < x < x} is a triangular domain in the plane. Be
careful: You can write

∫

x∈(a,b)

∫

t∈(a,x)

g(t)φ′(x) =

∫

x∈(a,b)

φ′(x)

∫

t∈(a,x)

g(t)

without Fubini’s theorem, but you can’t evaluate the integral due to the x dependence
in the inner t integral.

Solution: By Fubini’s theorem

∫

(a,b)

v φ′ =

∫

x∈(a,b)

∫

t∈(a,x)

g(t)φ′(x)

=

∫

t∈(a,b)

∫

x∈(t,b)

g(t)φ′(x)

=

∫

t∈(a,b)

g(t)

∫

x∈(t,b)

φ′(x)

= −

∫

t∈(a,b)

g(t)φ(t).

Therefore,

∫

(a,b)

(v − u)φ′ =

∫

(a,b)

v φ′ −

∫

(a,b)

u φ′ = −

∫

(a,b)

g φ+

∫

(a,b)

g φ = 0.



By the second fundamental lemma of the calculus of variations, there is a constant c
such that u = v − c ∈ L1(a, b). Now, if we have (or assume) a = −1 and b = 1, then
we are essentially done. If not, we have a little more work to do.

Consider the compactly contained subintervals Ij = [aj , bj ] = [−1 + 1/j, 1 − 1/j]
for j = 2, 3, 4, . . .. On each such subinterval we obtain a continuous function wj =
vj − cj ∈ C0(Ij) and a constant cj with u = wj ∈ L1(aj , bj). In view of the strict
nesting

(aj−1, bj−1) ⊂ (aj , bj) ⊂ (aj+1, bj+1)

we have wj, wj+1 ∈ C0[aj−1, bj−1] with wj = wj+1 = u ∈ L1(aj−1, bj−1). In particular,
for the continuous functions wj and wj+1, we have

∫

(aj−1,bj−1)

|wj+1 − wj| = 0.

It follows that
wj+1(x) ≡ wj(x) for every x ∈ (aj−1, bj−1),

and
w(x) = lim

j→∞
wj(x)

is well-defined for every x ∈ (−1, 1). Furthermore, the function w ∈ C0(−1, 1) with

∫

Ij

|w − u| = 0 for every j = 2, 3, 4, . . ..

Thus,
∫

K
|w − u| = 0 for every compact set K ⊂ (−1, 1), and this is what it means

to have w = u ∈ L1
loc(−1, 1). Finally, it is also clear that g is a weak derivative for w

since
∣

∣

∣

∣

∫

(−1,1)

wφ′ −

∫

(−1,1)

uφ′

∣

∣

∣

∣

≤ ‖φ′‖C0

∫

supp φ′

|w − u| = 0.

This is what it means to have w = u ∈W 1(−1, 1). 2



Fundamental Solution

2. Find all axially symmetric solutions u(x, y) = u0(x
2 + y2) of ∆u = 0 on R2\{(0, 0)}.

Note that u is a function of two variables and u0 is a function of one variable; the form
I have given you is what it means to be axially symmetric.

3. Let Φ = Φ(x, y) satisfy Φ(x, y) = Φ0(x
2+y2) and “−∆Φ = δ0” on R2 in the distributional

sense where δ0 represents a point impulse at the origin.

(a) Write down what this means as a condition involving test functions.

(b) Let U ⊂ R2 be a bounded open domain, and consider ξ ∈ U fixed. Setting x =
(x, y), consider v(x, ξ) = Φ0(|x − ξ|2). Show that

v(x, ξ) = v(ξ,x) and −

∫

x∈U

v(x, ξ)∆φ(x) = φ(ξ) for every φ ∈ C∞
c (U).

Solution:

(a)

−

∫R2

Φ∆φ = φ(0) for every φ ∈ C∞
c (R2). (3)

(b) For the first assertion we have v(x, ξ) = Φ0(|x − ξ|2) = Φ0(|ξ − x|2) = v(ξ,x).

For the second assertion, let φ ∈ C∞
c (U). Then note that ψ : R2 → R by

ψ(x) =

{

φ(x), x ∈ U
0, x /∈ U

satisfies ψ ∈ C∞
c (R2). Therefore, changing variables with η = x − ξ,

−

∫

x∈U

v(x, ξ)∆φ(x) = −

∫

x∈R2

Φ0(|x − ξ|2)∆ψ(x)

= −

∫

η∈R2

Φ0(|η|
2)∆ψ(η + ξ).

Note then that µ : R2 → R by µ(x) = ψ(x + ξ) has µ ∈ C∞
c (R2), and we can

write

−

∫

x∈U

v(x, ξ)∆φ(x) = −

∫

η∈R2

Φ0(|η|
2)∆ψ(η + ξ)

= −

∫

x∈R2

Φ(x)∆µ(x)

= µ(0)

= ψ(ξ)

= φ(ξ).

Note that we have used (3) with φ replaced by µ.



§4.12 Differentiating Integrals

4. (4.12.9,13) Compute the derivatives using the chain rule and without evaluating the
integral first.

d

dx

∫ x

0

sin(xt) dt.

d

dx

∫ 2/x

1/x

sin(xt)

t
dt.

(You can check your answer to the first one by evaluating the integral first and then
differentiating.)

§5.5 Surface Integrals

5. (5.4.3) Find the area of the paraboloid z = x2 + y2 inside the cylinder x2 + y2 ≤ 9.

6. Find the area of the helicoid parameterized by

X(u, v) = (u cos v, u sin v, v) on [0, 1] × [0, nπ].


