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Problem 1 (Hooke’s constant) This is the third in a series of problems on Hooke’s
constant.

Recall Problem 2 of Assignment 8. Say you are given a spring of (equilibrium)
length a modeled using the horizontal model of Problem 2 (assuming no gravity and
no spring mass). Recall the model position of the fixed end was x = −a and the
equilibrium for the extended/compressed end was at x = 0. Assume this spring has
Hooke’s constant k, so that the force corresponding to the position x is modeled by

F = −kx.

(a) If you cut this spring in half to obtain two springs of length a/2 made of precisely
the same “material,” i.e., the same coils and elastic properties, can you model
the uniform extensions and compressions of one of these half springs with the
same spring constant?

(b) What does your answer to part (a) tell you about Hooke’s constant. Hint:
Hooke’s constant may be used to model the force exerted by a compressed or
extended spring, but Hooke’s constant is not. . . (what?).

(c) (important) Recall my solution of Problem 1 of Assignment 1. Model the uniform
compression and extension of the spring of length a using the extension u :
[0, a] → [0, L]. Notice the force exerted is now modeled by

F = −k(L− a). (1)
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Write down a/the formula for u(x) and reexpress the model force (1) in terms
of u. Hint: Use the derivative of u.

(d) Based on your force formula from part (c), postulate the existence of a different
constant (not the Hooke’s constant) associated with a certain kind of spring
material (rather than a particular spring of a given length) called the elastic
modulus. Hint(s): Think about units/physical dimensions. What are the
physical dimensions [k] of the Hooke’s constant? The elastic modulus for spring
material should have units/physical dimenions of force.

Remark(s): Parts (c) and (d) are crucial. It is important (I think) to understand
that Hooke’s law and its attendant constant are restricted to the context of uniform
deformations of a spring. If you want to model non-uniform deformations, like that
displayed in the hanging slinky, you need something else. If you think carefully about
the suggestion in part (c), it will tell you how to do part (d). This is a relatively
hard task, but it is one that is absolutely crucial to good mathematical modeling
of physical systems. You need to understand the driving mechanisms behind your
system and the applicable “laws” to use to model it. In this case your answer to part
(d) is what is called a constitutive relation. Once you have formulated something
for part (d), you need to go back and ask yourself: Is this reasonable? Does it behave
in a manner consistent with the modeling of the physical system/slinky? Another
example of a constitutive relation is Fourier’s law of heat conduction. They are
generally considered kind of “magic,” so if you were able to find the constitutive
relation in part (d) above, congratulate yourself.

Problem 2 (slinky mass considerations) Problem 1 above should take you a long
way toward understanding the elastic aspect of the slinky. Another important aspect
is the modeling of the mass. Let us assume an initial linear density ρ0 (constant) for
the equilibrium slinky so that the total mass of the slinky is M = ρ0L0.

(a) Consider a/the vertical model for a slinky based on an extension u : [0, L0] →
[0, L], so that y : [0, L0] → R is given by y(x) = −u(x). Approximate the
(non-constant linear) mass density ρ : [0, L0] → R of the extension between two
points u(x1) and u(x2) in the extension.

(b) Find a mass density ρ : [0, L] → R on the extension so that

M =

∫ L

0

ρ(ξ) dξ.
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(c) Express the gravitational potential energy associated with a hanging slinky mod-
eled in the vertical model by y = −u. Hint(s): Take a reference level y = y0 and
find the work (against gravity) to move the mass element ρ0/u

′(−y∗j )(yj+1− yj)
from height y = y0 to height y = y∗j . Remember work is force times distance.
Form a Riemann sum.

Problem 3 (slinky) Determine and plot a set of height measurment data for the
hanging slinky.

Problem 4 (slinky: first model) If you understood and were able to solve Problem 1
above, especially parts (c) and (d), then you should be in a position to give an
elementary model for the hanging slinky. We should find a better model later.

(a) Pose an intial value problem for a first order ODE to model the hanging slinky
with modeling function the extension u : [0, L0] → [0, L]. Hint: The tension
force in the slinky at each position y = −u(x) should balance the force mg
associated with the mass of the slinky hanging hanging below that point.

(b) Determine any constants from the model using the measured data.

(c) Compare your model prediction with the measured data by plotting each on the
same axes.

Problem 5 (continuous weak solutions of the wave equation) There are various kinds
of weak solutions for various kinds of PDE. Most decent notions of weak solution have
two properties:

(i) Classical solutions should also be weak solutions.

(ii) Any weak solution is unique.

In the context of differentiability classes it is often nice to make sense of and have a
third property:

(iii) If a weak solution happens to be (appropriately) classically differentiable, then
it is a classical solution.

Sometimes, for example with linear elliptic PDE like Laplace’s equation, weak solu-
tions turn out to (always) be classical solutions. This might seem to imply the notion
of weak solutions in this case is irrelevant, but it does not. The reason is that it is
rather difficult to show classical solutions of linear elliptic PDE exist. On the other
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hand, it is relatively easy to show weak solutions of linear elliptic PDE exist. It is
not easy to show weak solutions of linear elliptic PDE are classical solutions, but it
turns out to be possible, and this is (basically) the only way known to do it, or at
least it is the standard way. But this problem is about hyperbolic equations, and the
wave equation in particular. Here is a definition:

Definition 1 (weak solutions of the wave equation, cf. Angenant) A function w ∈
C0(R× [0,∞)) is a continuous weak solution of the initial value problem







utt = uxx, (x, t) ∈ R× (0,∞)
u(x, 0) = f(x), x ∈ R

ux(x, 0) = g(x), x ∈ R

(2)

for the 1-D wave equation if
∫

R×(0,∞)

w �φ =

∫

∞

−∞

g(x)φ(x, 0) dx−
∫

∞

−∞

f(x)φt(x, 0) dx

for every φ ∈ C∞

c (R× [0,∞)).

Notice the set C∞

c (R× [0,∞)) is a little different from the set(s) C∞

c (U) considered
before where U is an open subset of Rn. In this case, the support of φ is required to
be a compact set and to be a subset of R× [0,∞). This allows points in the support
of φ to be (in a compact subset) on the t = 0 boundary.

(a) Show that if u ∈ C2(R× [0,∞)) is a classical solution of (2), i.e., the conditions
of (2) simply hold as stated, then u is a weak solution. Hint(s): Multiply the
PDE by by a test function, integrate over all of R×(0,∞), express the resulting
area integral as appropriate iterated integrals, and integrate by parts.

(b) Show that if w ∈ C2(R × [0,∞)) is a weak solution of (2), then w is a classical
solution.

Problem 6 (Problem 5.2.1 in Boas) Calculate
∫

A
f where A = (0, 1) × (2, 4) is a

rectangle and f : A → R is given by f(x, y) = 3x.

Problem 7 (Problem 5.2.3 in Boas) Calculate
∫

A
f where A = {(x, y) : 0 < y <

2, 2y < x < 4 is a triangle and f : A → R given by f(x, y) ≡ 1 is constant.

Problem 8 (Problem 5.2.6 in Boas) Calculate
∫

A
f where A = {(x, y) : 1 < y <

2,
√
y < x < y2 and f : A → R given by f(x, y) = x.
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Problem 9 (Problem 5.2.14 in Boas) Calculate
∫

A
f where A is the region bounded

by the curves

{(x, 1/x) : x ∈ R\{0}}, {(x, 1/x2) : x ∈ R\{0}}, and {(ln 4, y) : y ∈ R},

and f : A → R given by f(x, y) = x2ex
2y.

Problem 10 (Problem 5.2.30 in Boas) Calculate the iterated integral

∫

x∈(0,2)

(
∫

y∈(x,2)

e−y2/2

)

by expressing the value first as an integral over a region in the plane and re-expressing
the value as an iterated integral with the dependence of integration reversed.

5


